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Machine learning performance in classification has significantly improved, fueled by the 
development of more advanced learning algorithms and enhanced by faster computational 
speeds. In several cases, artificial intelligence has beaten a panel of doctors in classifying 
data. However, there is a weakness in this machine learning algorithm, namely that it cannot 
explain why data falls into a certain class. For cases in the world of health, this explanation 
is much more important than simply judging that someone has a certain disease. This study 
uses a multi layer perceptron (MLP) as the classification method to explore the connection 
between risk factors for heart disease and coronary artery disease reporting and data system 
(CAD-RADS) scores. Analysis of influential features (global analysis) using SHapley 
Additive explanations (SHAP), while local explanations using local interpretable model-
agnostic explanations (LIME). This paper also conducted an in-depth exploratory data 
analysis (EDA) on the features using box plots. The best classification result with an 
accuracy value 0.87 was obtained using the symptom and examination feature groups. 
Meanwhile, if viewed from the F1 score and AUC values, the best features are all features 
with an F1 score of 0.83 and an AUC value of 0.92. 
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1. INTRODUCTION

Coronary artery disease (CAD) is when the coronary art
series, which supply blood to the heart, become narrowed or 
blocked due to fatty deposits, inflammation, or other factors. 
This blockage can lead to a heart attack or stroke [1]. 

Diagnosis of CAD can be done invasively or non-
invasively. Invasive diagnostic methods involve procedures 
that directly visualize the coronary arteries. The main invasive 
method for diagnosing CAD is Coronary Angiography. This 
involves injecting a contrast agent into the coronary arteries 
through a catheter inserted through an artery in the leg or arm. 
X-ray images are then taken to visualize the coronary arteries
and detect any blockages or narrowing of the arteries [2].

Non-invasive methods involve testing that does not require 
the insertion of instruments into the body. One common non-
invasive diagnostic technique for CAD uses a computed 
tomography (CT) scan to measure calcium deposits in the 
coronary arteries. Higher calcium scores indicate more 
significant plaque buildup and potential risk of CAD [3, 4]. 
Coronary CT angiography (CCTA) is a specialized imaging 
technique that uses a computed tomography (CT) scan to 
visualize the coronary arteries and assess for blockages or 
disease. CCTA typically uses a high-speed CT scanner with 
multiple detector rows to quickly and accurately capture 
images of the heart and coronary arteries [3]. 

Coronary angiography remains the gold standard for 
definitive diagnosis of CAD, while non-invasive tests offer 
valuable tools for early screening and risk assessment [5]. 

The CAD-RADS was developed to ensure consistency in 
reporting for patients receiving coronary CT angiography 
(CCTA) and to assist in determining appropriate follow-up 
actions for patient care [1]. CAD-RADS categorizes CAD 
patients based on the severity of stenosis and plaque thickness 
[6, 7]. CAD-RADS categories range from CAD-RADS 0, 
indicating no plaque, to CAD-RADS 5, representing at least 
one complete occlusion. Each category is defined based on the 
highest degree of stenosis present. For example, a single 
maximum stenosis of 1%–24% is classified as CAD-RADS 1, 
25%–49% as CAD-RADS 2, 50%–69% as CAD-RADS 3, and 
70%–99% as CAD-RADS 4. CAD-RADS 4 is further divided 
into subcategories 4A and 4B, depending on whether the 
stenosis is in one or two vessels or three vessels or the left main 
artery. CAD-RADS 5 represents complete occlusion of at least 
one vessel, which can be acute or chronic [7]. 

Using machine learning techniques to classify CAD-RADS 
based on Computed Tomography Coronary Angiography 
(CCTA) images has become an active area of research in 
recent years. This field combines advanced imaging 
techniques with sophisticated machine learning algorithms to 
improve diagnostic accuracy. Studies that have been 
conducted include using Convolutional Neural Network 
(CNN) for CAD-RADS score classification based on CCTA 
images [8-11]. In addition, there are also studies on heart 
disease risk factors that affect CADS-RADS scores. Machine 
learning methods used include Random Forest (RF), K- 
Nearest Neighbors (KNN), Support Vector Machines (SVM), 
Neural Network (NN), Decision Tree Classification (DTC) 
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and Linear Discriminant Analysis (LDA) [12]. The machine 
learning model used is a black box model, both in classifying 
images into CAD-RADS scores and in determining heart 
disease risk factors that affect CAD-RADS scores. The 
relationship between input and output cannot be explained.   

The novelty of this study is discussing explainable machine 
learning (EML) models that can explain the results of the black 
box models used. In addition, EDA was carried out using box 
plots to provide an overview of the distribution of data in the 
normal and CAD patient data classes. 

2. METHODOLOGY

This research was conducted in 4 stages, namely data input,
preprocessing, classification, and analysis, as seen in Figure 1. 

Figure 1. Research flow chart 

The data is derived from secondary sources from the UCI 
Machine Learning Repository. The dataset used is the Z-
Alizadeh Sani dataset, which comes from visitors to Shaheed 
Rajaei Cardiovascular, Medical and Research Center [13]. The 
data comprises 303 rows (216 CAD patients and 87 normal) 
with 55 features. These features are grouped into four 
categories, namely: (1) Demographic, (2) symptoms and 
examination, (3) electrocardiogram, and (4) laboratory and 
echo features. The data has two classes, namely class 0, which 
states normal people (not suffering from CAD), and class 1, 
which states data on CAD sufferers. 

The preprocessing performed is the normalization of 
features that have a numerical value greater than 1, such as 
age, height, BMI, and others. So that all features have a value 
between 0 and 1. 

To get an overview of the data distribution in class 0 and 
class 1 data, Exploratory Data Analysis (EDA) was carried 
out. The EDA tool used is a boxplot on features with 
continuous values. In order for the boxplots of features that 
have different values can be plotted on the same image, the 
boxplot is applied to the normalized data. This section 
discusses the measure of data centralization (median), the 
measure of position (quartile), and the measure of data spread 
(distance between quartiles. From the boxplot, it can also be 
seen whether there is data that differs from the others or 

outliers. 
The classification method used is MLP. The architecture of 

the multilayer perceptron used is two hidden layers with 5 
neurons in the first hidden layer and 6 neurons in the second 
hidden layer. The activation function used is Relu. The 
parameters set are random_state = 5, verbose = True, 
learning_rate_init = 0.01, max_iter = 4000, tol = 0.00000001. 
While other parameters are defaulted from sklearn. As much 
as 80% of the data is used as training data, and the rest as 
testing data. 

Several EML techniques will be used in the analysis stage. 
The results of the CAD-RADS score classification using MLP 
already have good performance, as measured by accuracy, F1 
score, sensitivity, specificity or AUC. However, MLP cannot 
explain the influence of each feature on the data class [14]. In 
this study, two EML methods will be used: SHAP and LIME. 

2.1 SHAP 

SHAP aims to explain predictions from data by calculating 
the contribution of each feature to the output class. In the 
SHAP analysis process, the prediction for each instance is 
explained by assessing the contribution of each feature using 
SHapley values, which are derived through the application of 
game theory coalition methods [15, 16]. The SHapley value 
for each feature is calculated by averaging over all possible 
combinations of feature values. These values directly reflect 
the influence of each feature on the prediction. To quantify the 
overall impact of each feature globally, the SHapley values for 
all features in the dataset are averaged. Finally, the feature 
values are sorted in descending order of importance, and a plot 
is generated to visualize the results [17, 18]. 

2.2 LIME 

As the name implies, LIME is an EML method that can 
provide an explanation of the influence of features on certain 
data [19]. This is done by using a model that can be interpreted 
against a data. LIME begins by selecting one particular data to 
be explained. Next, a new dataset is created by randomly 
generating data that is around the data. The class of data that 
has been generated is obtained from the prediction of the black 
box model that has been trained on the training data. This new 
dataset is weighted based on its proximity to the data to be 
interpreted. On this new dataset, a new interpretable model is 
trained [20]. 

3. RESULTS AND DISCUSSION

3.1 EDA 

In this section, a descriptive analysis of the data using box-
pot will be conducted. The analysis is conducted on the 
demographic, laboratory, and symptoms and examination data 
categories. The features that are made into box plots are 
features that have continuous numeric values. Because the data 
has been normalized, the box plot of the data in the same 
category can be plotted on the same image. So that the data 
distribution of a feature in the normal class (0) and the CAD 
class (1) can be compared. 

In Figure 2 and Table 1, it can be seen that the age feature 
has a different distribution for normal class data (0) and CAD 
class (1). The median age of CAD patients is much greater than 
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the median of healthy (normal) people, as are the values of 
quartiles 1 and 3. This means that the age feature is suspected 
to be a feature that influences whether someone has CAD or 
not. The Height, Weight, and BMI features have almost 
similar distributions between the normal class and CAD 
patients. In the Age feature, there are 2 outliers in class 0 data, 
this means that there are people who are old but do not have 
CAD. 

From Figure 3, Table 2, and Table 3, it can be seen that the 
FBS (Fasting Blood Sugar), TG (Triglyceride), BUN (Blood 
Urea Nitrogen), and ESR (Erythrocyte Sedimentation Rate) 
features have higher median values for data class 1 (CAD 
patients) compared to data class 0 (normal). Meanwhile, CAD 
patients' HDL (High-Density Lipoprotein) and HB 
(Hemoglobin) features have smaller medians. Meanwhile, the 
LDL (Low-Density Lipoprotein) feature has almost the same 
median value for the normal and CAD data classes. The FBS, 
CR, and TG features of CAD patients have much larger 
interquartile range values than normal people. This shows that 
CAD patients' FBS, CR, and TG values are more spread out. 
Meanwhile, the interquartile range value of the HDL feature 
of CAD patients is smaller than that of normal people. This 
means that the HDL value of CAD patients is more clustered. 
All features in both class 0 and class 1 have outliers. This 
outlier can occur because of a measurement error or because 
there is outlier data. 

Figure 2. Box plot of demographic category features data 

Figure 3. Box plot of laboratory and echo category features 

Figure 4, Table 4, and Table 5 show that the K (potassium) 

and Neut (neutrophil) features of CAD patients have higher 
median values than normal people. Meanwhile, CAD patients' 
Lymp (Lymphocyte) and EF-TTE (ejection fraction) features 
have smaller median values than normal people. The 
Na(sodium), WBC (white blood cell), and PLT (platelet) 
features have almost the same median values for data classes 
0 and class 1. The Na feature for class 0 (normal) has a much 
smaller interquartile range, which means that the value of this 
feature for class 0 tends to be similar. There are many upper 
outliers in the WBC feature for class 1 data. This means that 
some CAD patients have a much larger number of white blood 
cells than their group. 

Figure 5 and Table 6 show that the median BP (Blood 
Pressure) feature of CAD patients is greater than that of 
normal people. There are outliers in both CAD patients and 
normal people. Meanwhile, the PR (Pulse Rate) feature of 
class 0 shows a strange shape, where the median position 
coincides with quartile 1 or quartile 3. To find out, it cannot be 
seen visually. After looking at the numerical calculation, it 
turns out that the median value = quartile 1, which means that 
many data have the same value. There are upper outliers in the 
BP and PR features, which means that some normal people 
and CAD patients have higher BP and PR feature values than 
their group. 

Figure 4. Box plot of laboratory and echo category features 

Figure 5. Box plot of symptoms and examination category 
features data 
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Table 1. Quartile 1, quartile 2, and quartile 3 values of age, weight, height, and BMI features for class 0 and 1 data 

Quartiles Age Weight Height BMI 
CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 

Q1 0.30 0.43 0.25 0.24 0.38 0.38 0.28 0.28 
Q2 0.39 0.56 0.38 0.35 0.52 0.52 0.39 0.37 
Q3 0.50 0.70 0.47 0.46 0.67 0.64 0.58 0.49 

Table 2. Quartile 1, quartile 2, and quartile 3 values of FBS, CR, TG, and LDL features for class 0 and 1 data 

Quartiles FBS CR TG LDL 
CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 

Q1 0.07 0.08 0.24 0.24 0.05 0.06 0.33 0.28 
Q2 0.09 0.12 0.29 0.29 0.07 0.09 0.39 0.38 
Q3 0.12 0.24 0.35 0.41 0.10 0.15 0.51 0.48 

Table 3. Quartile 1, quartile 2, and quartile 3 values of HDL, BUN, ESR, and HB features for class 0 and 1 data 

Quartiles HDL BUN ESR HB 
CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 

Q1 0.17 0.19 0.13 0.15 0.04 0.10 0.40 0.36 
Q2 0.27 0.24 0.20 0.22 0.12 0.17 0.52 0.48 
Q3 0.32 0.31 0.28 0.30 0.20 0.32 0.62 0.61 

Table 4. Quartile 1, quartile 2, and quartile 3 values of K, Na, WBC, and Lymph features for class 0 and 1 data 

Quartiles K Na WBC Lymph 
CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 

Q1 0.22 0.28 0.43 0.36 0.15 0.15 0.40 0.36 
Q2 0.31 0.36 0.46 0.46 0.24 0.24 0.51 0.46 
Q3 0.36 0.42 0.54 0.54 0.33 0.37 0.62 0.60 

Table 5. Quartile 1, quartile 2, and quartile 3 values of Neut, PLT, and EF-TTE features for class 0 and 1 data 

Quartiles Neut PLT EF-TTE 
CAD 0 CAD 1 CAD 0 CAD 1 CAD 0 CAD 1 

Q1 0.33 0.37 0.22 0.22 0.78 0.56 
Q2 0.46 0.49 0.27 0.26 0.89 0.68 
Q3 0.58 0.63 0.32 0.31 0.89 0.86 

Table 6. Quartile 1, quartile 2, and quartile 3 values of BP 
and PR features for class 0 and 1 data 

Quartiles BP PR 
CAD 0 CAD 1 CAD 0 CAD 1 

Q1 0,20 0,30 0,33 0,33 
Q2 0,30 0,40 0,33 0,40 
Q3 0,40 0,50 0,50 0,50 

3.2 Classification 

Table 7 shows the classification results on raw data. The 
best results are obtained when using demographic features, 
both in terms of accuracy, F1 score, and AUC. If normalization 
is first performed on features that have values greater than 1, 
better results are obtained, as seen in Table 8. The accuracy 
value changes from 0.77 to 0.87, the F1 score changes from 
0.66 to 0.83, and the AUC value changes from 0.83 to 0.92. 

Based on the accuracy value, the features that produce the 
best value are the symptom and examination features. While 
from the F1 score and AUC values, the best features are all 
features. 

Different results are obtained for each evaluation metric if 
the outlier values are removed from the features. As seen in 
Table 9, the accuracy value after outlier removal decreases. 
Meanwhile, the F1 score value varies; some increase and some 
decrease, and so does the AUC value. From the AUC-ROC 

curve in Figure 6, it can be seen that the symptom and 
examination features and all features can separate very well 
between class 0 and class 1. 

Table 7. Classification results using several feature groups 
without normalization 

No Feature Accu F1 
Score AUC Sens Spec 

1 Dem 0.77 0.66 0.83 0.89 0.4 
2 ECG 0.76 0.43 0.78 1 0 

3 Symp and 
exam 0.75 0.66 0.79 0.85 0.47 

4 Lab and echo 0.71 0.50 0.55 0.89 0.13 
5 All feature 0.75 0.43 0.5 1.0 0 

Note: Dem: Demographic, ECG: Electrocardiogram, Symp and exam: 
Symptoms and examination, Lab and echo: Laboratory and echo, Accu: 
Accuracy, Sens: Sensitivity, Spec: Specificity. 

Table 8 Classification results using several feature groups 
with normalization 

No Feature Accu F1 
Score AUC Sens Spec 

1 Dem 0.8 0.75 0.79 0.91 0.56 
2 ECG 0.76 0.43 0.78 1 0 

3 Symp and 
exam 0.87 0.83 0.91 0.95 0.67 
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4 Lab and 
echo 0.71 0.67 0.69 0.72 0.67 

5 All feature 0.85 0.83 0.92 0.88 0.78 

Table 9. Classification results using several feature groups 
with outlier removal 

No Feature Accu F1 
Score AUC Sens Spec 

1 Dem 0.7996 0.76 0.79 0.897 0.6 

2 
Symp and 

exam 0.82 0.76 0.76 0.88 0.64 

3 
Lab and 

echo 0.69 0.64 0.73 0.72 0.6 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 6. AUC-ROC curve of CAD classification problem 
using features (a) Symptoms and examination (b) All feature 

(c) Laboratory and echo (d) Demographic (e) ECG

3.3 Feature important 

The classification results, as seen in Table 7, Table 8, and 
Table 9, only show the overall system performance. The 
SHAP value needs to be calculated to determine which 
features are most influential in determining the data class.  

(a) 
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(b) 

 
Figure 7. Average SHAP values of demographic features (a) 
age feature is not grouped (b) age feature is grouped into old 

(age > 58 years) and young (age ≤ 58 years) 
 

 
 

Figure 8. Beeswarm SHAP plot of demographic features 
 
In Figure 7(a), age is the most influential demographic 

feature in determining the data class, followed by HTN 
(hypertension), DM (diabetes mellitus), and active smokers 
(current smokers). 

Figure 7(a) shows that the influence of gender 
(male/female) is insignificant in influencing the data class. If 
the age feature is grouped into old (age > 58 years) and young 
(age ≤ 58 years), the average SHAP value graph is obtained as 
in Figure 7(b). The solid red bar chart indicates patients over 
58 years old, and the red and white shaded color bar chart 
indicates patients ≤ 58 years old. Of the 46 testing data, 20 
people are old, and 26 are young. From this age division, old 
or young does not have much effect on the data class. In the 
HTN (hypertension), DM (diabetes mellitus), and active 
smoker (current smoker) features, the young age group has 
more influence in determining whether someone has CAD or 
not. 

The SHAP value of each testing data can be seen in Figure 
8, a point represents testing data, and the color indicates the 
value of the feature. Low feature values are indicated by the 

color blue; the thicker the blue color, the smaller the feature 
value; conversely, the red color indicates a high feature value; 
the thicker the red color, the greater the feature value. The 
point's color changes gradationally for features with 
continuous values such as age, weight, height, and BMI. 
Meanwhile, features that have Boolean values (0 or 1), such as 
DM, HTN, current smoker, FH (family history), gender (male 
and female), DLP (Dyslipidemia), Obesity, Airway Disease, 
Thyroid Disease, and CHF (congestive heart failure) the dot 
color is only dark red (if the feature has a value of 1) or dark 
blue (if the feature has a value of 0. 

The age feature shows that the higher the age, the more 
positive the SHAP value, meaning that high age has a positive 
effect on the model output, or the higher the age, the greater 
the possibility of someone suffering from CAD. For the DM, 
HTN, and current smoker features, it can be seen that the red 
dot is on the right, and the blue dot is on the left. This means 
that patients with an attribute value of 1 (DM, HTN, current 
smoker is yes) have a high probability of suffering from CAD. 
 

 
(a) 

 
(b) 

 
Figure 9. (a) Average SHAP values of laboratory and echo 
features, (b) SHAP beeswarm plot of laboratory and echo 

features 
 

Figure 9(a) shows that the PLT (platelet) feature is the most 
influential feature of the Laboratory and echo category 
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features in determining the data class. From Figure 9(b), it can 
be seen that low platelet values positively affect the output, or 
low platelet values indicate that someone is suffering from 
CAD. The next most influential feature of the laboratory and 
echo group is the WBC (white blood cell) feature, or the 
number of white blood cells per milliliter, ranging from 3700 
-18,000. From Figure 9(b), it can be seen that high white blood
cell counts positively affect data class 1.

Figure 10(a) shows that the 5 features that have the most 
influence on determining the data class from the symptom and 
examination feature category are typical chest pain, followed 
by atypical, dyspnea, function class, and BP features. From 
Figure 10(b), it can be concluded that a high typical chest pain 
value (valued 1 or typical chest pain = yes) positively affects 
the output. In other words, patients with certain chest pain 
symptoms indicate that they have CAD. Meanwhile, the 
opposite applies to the Atypical and Dyspnea attributes; 
attributes with a 0 (no) positively affect the output. 

(a) 

(b) 

Figure 10. (a) Average SHAP values of symptom and 
examination features, (b) SHAP beeswarm plot of symptom 

and examination features 

3.4 Local analysis 

Local analysis aims to explain a particular data point. Test 
data #10, #20, #30, and #51 are taken. 

Figure 11 shows LIME's explanation of testing data #10. 

According to LIME, the testing data class is the Cath class, 
with a probability of 0.58. The features that influence this 
testing data to enter the CATH class are BMI, which has a 
value of 24.49; CHF, which has a value of 0; CRF, which has 
a value of 0; and Thyroid disease, which has a value of 0. Age, 
height, gender, and current smokers negatively influence Cath. 

Figure 12 shows the LIME results of the 51st testing data in 
the Normal class. The features that influence this testing data 
to enter the normal class are BMI, which is 26.26, Current 
smoking, which is 0 (does not smoke), and Male gender. The 
Age, HTN, height, DM, and CHF features support the Cath 
class data entry. 

Figure 11. LIME’s tabular explanation for observation #10 
(CATH) 

Figure 12. LIME’s tabular explanation for observation #51 
(Normal) 

To see the consistency of LIME prediction results on certain 
testing data, LIME was run 10 times for testing data #10, #20, 
#30, and #51. Table 10 shows the results of running LIME for 
data #10 10 times. As did the influential features, the predicted 
probability values for the normal and Cath classes varied in 
each LIME run. Only in the 6th, 7th, and 8th runs were the 
predicted probability values for the class produced the same 
value, but the influential features were different. Although the 
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predicted probability values for the normal and Cath classes 
differed, testing data #10 was still classified as the Cath class 
(class 1). From the 10 LIME runs, the BMI feature appeared 
the most, influencing data #10 to enter the Cath class. 

Table 11 shows the results of running LIME 10 times on 
testing data #51. In addition to the different prediction 
probability values for each run, different classification results 
were also obtained on the 8th and 9th runs. Testing data #51 is 
recognized as the Cath class, while in other runs, it is 

recognized as the normal class. The most influential features 
in determining the class for testing data #51 are also more 
varied. 

In Table 12 and Table 13, it can be seen that the features 
that influence the test data to enter a class vary for each LIME 
run. The changing results for each run of LIME on a particular 
testing data set are caused by randomly generating new 
datasets around the testing data to be explained. 

 
Table 10. Results of 10 runs of LIME from testing data #10 

 
No Prediction Probabilities The Two Most Influential Features Normal Cath 
1 0.36 0.64 BMI = 24.49, Airways diseases = 0 
2 0.45 0.55 Female = 0 (male), CVA = 0 
3 0.44 0.56 BMI = 24.49, Weight = 75 
4 0.27 0.73 Height = 175, Weight = 75 
5 0.47 0.53 BMI = 24.49, Weight = 75 
6 0.42 0.58 BMI = 24.49, CHF = 0 
7 0.42 0.58 BMI = 24.49, CVA = 0 
8 0.42 0.58 CVA = 0, Ex-smoker = 0 
9 0.37 0.63 BMI = 24.49, CVA = 0 

10 0.31 0.69 Curent smoker = 1, Male = 1 
 

Table 11. Results of 10 runs of LIME from testing data #51 
 

No Prediction Probabilities The Two Most Influential Features Normal Cath 
1 0.66 0.34 BMI = 26.26, Current smoker = 1 
2 0.57 0.43 BMI = 26.26, Weight = 75 
3 0.53 0.47 Obesity = 0, CRF = 0 
4 0.63 0.37 Female = 0 (male), Thyroid diseases = 0 
5 0.65 0.35 CRF = 0, DLP = 0 
6 0.58 0.42 CHF = 0, CVA = 0 
7 0.69 0.31 CVA = 0, CHF = 0 
8 0.29 0.71 Thyroid diseases = 0, Airway diseases = 0 
9 0.43 0.57 Age = 38, Height = 169 

10 0.61 0.39 CHF = 0, Female = 0 (male) 
 

Table 12. Results of 10 runs of LIME from testing data #20 
 

No Prediction Probabilities The Two Most Influential Features Normal Cath 
1 0.49 0.51 WBC = 4100, CRF = 0 
2 0.38 0.62 PLT = 161, Q Wave = 0 
3 0.29 0.71 PLT= 161 
4 0.27 0.73 CHF = 0, CVA = 0 
5 0.28 0.72 Age = 65, Weight = 78 
6 0.34 0.66 CHF = 0, CVA = 0 
7 0.3 0.7 CHF = 0 
8 0.3 0.7 Nonanginal = 0, FH = 0 
9 0.3 0.7 Age = 65, Weight = 78 

10 0.3 0.7 Age = 65, Weight = 78 
 
 

Table 13. Results of 10 runs of LIME from testing data #30 
 

No Prediction Probabilities The Two Most Influential Features Normal Cath 
1 0.26 0.74 Nonanginal = 0, Q Wave = 0 
2 0.29 0.71 Age = 80, Weight = 60 
3 0.31 0.69 Age = 80, Weight = 60 
4 0.32 0.68 St Depression = 0, Atypical = 0 
5 0.3 0.7 LowTHAng = 0, CHF = 0 
6 0.32 0.68 CHF = 0, Weak Pheriperal Pulse = 0 
7 0.27 0.73 HDL = 49, BMI = 19.82 
8 0.31 0.69 Age = 80, Weight = 60 
9 0.3 0.7 Systolic Murmur = 0, FH = 0 

10 0.29 0.71 Age = 80, Weight = 60 
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3.5 Discussion 

Applying EML to classify CAD-RADS scores based on 
heart disease risk factors has been successfully carried out. 
The classification results show quite good system 
performance, both measured by accuracy, F1 score, AUC, 
sensitivity, and Specificity. The most influential features in 
determining the data class can be determined using the SHAP 
value. This result is better than the traditional machine 
learning method (black box model), which can only determine 
model performance but cannot determine which features have 
the most influence on determining data class. However, local 
analysis to determine the most influential features of a 
particular data set is not very good. This is indicated by the 
inconsistent LIME results between the results of running the 
program. This will be a challenge if this method is applied to 
real-world settings. 

4. CONCLUSION

This paper has discussed the relationship between heart
disease risk factors and CAD-RADS scores. It starts by 
performing EDA on the feature categories. The EDA results 
provide an initial picture of the features that influence the 
classification. For classification purposes, the highest 
performance is achieved when using all features. The features 
that most influence class determination can be determined 
using SHAP. LIME can be used to create a model that can be 
interpreted from the black box model on a particular testing 
data. From the results of the local analysis, it can be seen that 
the results obtained vary for each run of LIME. Both from the 
results of the probability of predicting normal and CAD 
classes, as well as from the most influential features. This 
occurs because of the random process of generating data 
around the data to be explained. Various sampling techniques 
can be studied for further research that minimizes variation 
between LIME runs. 
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