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Breast cancer is the most common and lethal cancer among women across the globe, and 

supporting early detection through accurate diagnostic measures would save many lives. 

However, existing diagnostic techniques often encounter problems concerning accuracy 

and reliability, hence, they are ineffective. This paper presents a new multi-classifier 

machine learning technique for breast cancer diagnosis using the integration of conventional 

machine learning (ML) and deep learning (DL) paradigms. The model employs a two-step 

process: The first step is feature selection using a random forest (RF) to do dimensionality 

reduction, and feature selection eliminates features that are not useful; the last step is 

classification using a convolutional neural network (CNN). The hybrid model is then tested 

using a Wisconsin breast cancer data set. Evaluation criteria for the key performance 

indicators include accuracy, precision, recall rate, F1-score, and AUC ROC. As the results 

have revealed, the hybrid model is higher than the traditional methods like logistic 

regression (LR) with an accuracy of 94.5%, a precision of 92.8%, recall of 95.0%, an F1-

score of 93.8% and an AUC-ROC of 0.97. This study demonstrates that integrating human 

readers into the evaluation process can enhance the reliability and efficiency of clinical 

breast cancer detection and, hence, contribute to developing diagnostic techniques in online 

medical image analysis.  
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1. INTRODUCTION

1.1 Background and motivation 

Breast cancer is one of the most common cancers affecting 

women worldwide. According to the World Health 

Organization, Breast cancer accounts for approximately 12% 

of new cancer cases every year worldwide. Early detection 

will significantly improve the survival rate. The 5-year 

survival rate is approximately 99% if the cancer is detected 

and detected early. However, breast cancer detection remains 

challenging due to several factors. Including different breast 

densities. The subtlety of the tumour and the variability in 

radiologist interpretations [1]. 

Despite being effective, traditional screening methods such 

as mammography have limitations in terms of sensitivity and 

specificity, especially for women with dense breast tissue. And 

mammograms often have trouble distinguishing between 

malignant growth and benign tumours. This can lead to false 

positives and unnecessary biopsies. Cancers in dense breasts 

may also be overlooked. where dense tissue and cancerous 

tumours appear white on X-ray images. Augmentative 

imaging techniques such as ultrasound, MRI, and PET scans 

have been explored, but these techniques also have 

disadvantages, such as higher costs. Longer processing time 

and the risk of radiation exposure [2]. 

The need for more accurate and reliable methods for 

detecting breast cancer has led to great interest in ML and DL 

techniques from breast cancer images. Demonstrates excellent 

performance in detection, even in challenging cases involving 

dense tissue. Recent studies have shown that combining AI 

with mammography can improve sensitivity by 5-10%, 

especially for women with dense breasts. 

However, although ML and DL models are promising, but 

there are challenges to using these technologies in real-world 

clinical environment issues such as data privacy. The need for 

large labelled datasets Model interpretation and 

generalizability remains a significant limitation. Current ML 

models may suffer from overfitting. This is especially true 

when training on small or unbalanced datasets. This leads to 

poor generalization to new patients. Moreover, even though 

AI-powered models can outperform traditional methods, their 

use in clinical practice requires rigorous investigation. 

Regulatory approvals and integration with existing healthcare 

workflows [3]. 

Therefore, there is a great need for more effective methods 

of detecting breast cancer. Leveraging the strengths of 

traditional and AI-driven approaches, developing a hybrid 
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system that combines medical imaging with AI promises to 

provide a comprehensive breast cancer screening solution. 

More accurate and personal to overcome current limitations. 

Addressing these challenges through continued research can 

greatly reduce the global burden of breast cancer and save 

countless lives. 

 

1.2 Objective 

 

This paper aims to introduce and evaluate a new hybrid 

approach for breast cancer detection that combines traditional 

machine learning techniques with advanced deep learning 

models. This hybrid system attempts to harness the power of 

both methods using interpretations of classical models such as 

random forests or decision trees. and the predictive power of 

deep learning architectures such as CNN by integrating these 

methods. We aim to address the existing limitations of 

independent models. 

The hybrid model optimises breast cancer detection by 

improving sensitivity and specificity. This can be achieved by 

increasing the model's generalisation ability to diverse patient 

populations. It also provides interpretable results. This can 

help doctors make informed diagnosis decisions. The 

proposed system will be evaluated on a publicly available 

breast cancer dataset. It focuses on efficiency in accurately 

identifying cancerous and benign tumours, so we reduce 

unnecessary intervention and missed diagnoses. 

 

1.3 Significance 

 

The importance of this research lies in the ability of the 

proposed hybrid approach to bridge the gap between classical 

machine learning and deep learning in perspective-taking 

breast cancer detection. Hybrid model the objective is to 

leverage the complementary strengths of both methods, 

providing a balanced solution that enhances forecast 

performance while maintaining interpretability. 

A key innovation of the hybrid approach is its ability to 

reduce over-installation. This is a common problem in deep 

learning models. Combining classic machine learning 

techniques with hybrid models can thus efficiently manage 

feature selection. Simplify the model. Hybrid systems also 

produce more interpretable results without having to memorise 

training data. This is important in gaining the confidence of 

medical professionals. Providing insights into which features 

contribute most to a model's predictions may help doctors 

better understand the reasoning behind a diagnosis. This will 

ultimately lead to more informed decisions in breast cancer 

treatment. 

This research contributes to the growing body of literature 

on the application of machine learning in healthcare. and 

offers practical solutions to some of the main challenges in 

breast cancer detection. This article aims to pave the way for 

an efficient, accurate, and clinically usable diagnostic tool by 

demonstrating the effectiveness of the combined approach. It 

can be seamlessly integrated into existing healthcare 

workflows. 
 
 

2. RELATED WORK 

 

2.1 Overview of existing models for breast cancer detection 

 

During the past decade, ML and DL have been developed 

and applied to improve breast cancer detection and diagnosis. 

These models have shown great potential in helping doctors 

analyse complex medical data and identify patterns beyond the 

capabilities of traditional methods. This section provides an 

overview of the most commonly used models for breast cancer 

detection, from classic ML techniques to cutting-edge DL 

approaches [4]. 

 

Classical Machine Learning Models 

1. Logistic Regression (LR): LR is one of the earliest and 

simplest models used for binary classification tasks, 

including breast cancer screening. A linear decision 

criterion was used to separate malignant from benign 

tumours. It considers the tumour's size, shape, and 

texture. LR allows for high interpretability. This is 

important in medicine, however, because it is linear. 

Therefore, complex relationships in the data cannot be 

captured. Studies show that LR remains a useful 

baseline model for breast cancer detection. However, 

its performance often outperforms more complex 

algorithms [4]. 

2. Support Vector Machines (SVM): SVM is widely 

used for breast cancer classification because of its 

robustness in handling high-dimensional data. They 

create a hyperplane in a multidimensional space that 

separates information into different categories (benign 

or malignant). Research demonstrates the effectiveness 

of SVM in classifying breast cancer using radiological 

data. It has high accuracy. However, SVM may 

encounter problems with large data sets and may be 

sensitive to the choice of kernel function. Moreover, 

although SVM performs well on small data sets, the 

computational cost increases significantly with larger 

datasets [5]. 

3. Random Forest (RF): RF is a cluster learning method 

based on decision trees. It combines predictions from 

multiple decision trees to improve classification 

accuracy. RF is known to handle noisy data and reduces 

the possibility of over-installation. This makes it a 

popular choice for breast cancer detection. Studies have 

shown that RF can achieve high accuracy by leveraging 

the properties of mammogram images to differentiate. 

Between malignant breast cancer and benign tumours 

the model may lack transparency. This is because 

decision tree sets can make interpretation difficult [6]. 

 

Deep Learning Models 

1. CNNs: CNNs for breast cancer detection have become 

prominent DL models due to their unique ability to 

process image data. Specifically, the mammogram 

CNN is a multi-layered one that automatically learns 

hierarchical feature representations from images, such 

as texture, size, and the difference between cancerous 

and benign areas revealed. CNNs outperform 

conventional ML algorithms by detecting complex 

features directly from medical images. There is no need 

to extract features manually. CNNs have also been 

successfully used in breast cancer localization tumour 

classification and 2D and 3D imaging [7]. 

2. Deep CNNs (DCNNs): Expanding from basic CNN, 

deep CNN has multiple layers. This makes it possible 

to capture more complex patterns in medical images. 

These models have achieved state-of-the-art results in 

breast cancer detection using large mammogram 

datasets. It also combines multiple image modalities 
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(e.g., MRI, ultrasound). For example, a deep network 

that combines mammography with patient history has 

been proposed to significantly improve detection 

accuracy, especially in dense breast tissue [8]. 

3. Hybrid Approaches: In the past few years, hybrid 

models that combine classic ML-DL approaches have 

become popular. These models aim to take advantage 

of the strengths of both techniques while minimizing 

their individual weaknesses. For example, researchers 

have combined CNNs with decision tree classifiers. To 

create an accurate and interpretable model, a hybrid 

model was introduced by combining CNN features 

with SVM classification, resulting in improved 

accuracy in breast cancer detection and better 

generalizability [9]. 

 

Table 1 shows the summary of existing models for breast 

cancer detection.

 

Table 1. Summary of existing models for breast cancer detection 

 
Model Description Strengths Limitations 

LR 

A linear model for binary 

classification is often used as a 

baseline model for breast cancer 

detection. 

High interpretability, easy to 

implement and understand, well-suited 

for linearly separable data. 

Poor performance with non-linear 

data and limited ability to capture 

complex relationships. 

SVM 

Uses hyperplanes in a 

multidimensional space to classify 

data. 

Effective in high-dimensional spaces, 

robust against overfitting when 

properly tuned. 

Computationally expensive for 

large datasets, sensitive to choice 

of kernel. 

RF 

Ensemble method that aggregates 

multiple decision trees to improve 

classification accuracy. 

Handles noisy data well, reduces 

overfitting, and can handle high-

dimensional data. 

Lack of transparency and difficulty 

in interpreting individual trees in 

the forest. 

CNNs 

The deep learning model 

specializes in image data 

processing and is particularly 

effective for mammograms. 

Automatically learns hierarchical 

feature representations, has strong 

performance with large image datasets, 

and is widely used for medical image 

analysis. 

It requires large labelled datasets, 

has a risk of overfitting, and has a 

"black-box" nature, which makes it 

difficult to interpret results. 

Hybrid Approaches 

It combines features of ML and 

DL models, such as CNN and 

SVM, to leverage their strengths. 

It can improve performance and 

interpretability and mitigate the 

limitations of individual models. 

Computationally intensive, 

potential for model complexity and 

integration challenges. 

 

2.2 Feature engineering 

 

Feature engineering is important to enhance the predictive 

performance of breast cancer detection models. Wisconsin 

Breast Cancer Dataset (WBCD), a standardized data set It has 

many important features such as: 

 

• Mean radius: The average distance from the centre to 

the periphery of the tumour. 

• Texture mean: The standard deviation of the grey level 

values in an image. which takes into account variations 

in intensity. 

• Perimeter mean: Length of the border around the 

tumour. 

• Area means: The size of the tumour. Calculated from 

the area at the outer area. 

• Diagnosis: Target variable. This indicates that the 

tumour is benign or malignant. 

 

These properties, in particular geometric features such as 

radius, circumference, and area, are important in 

differentiating benign from malignant tumours. Surface and 

field features are important in differentiating between dense 

breast tissue and tumours and improving classification 

performance when used with DL models.  

In a hybrid model, these features can be combined with 

features generated by deep learning, such as complex shape 

representations and patterns learned from imaging data. To 

provide more comprehensive features for classification, 

traditional geometric features were combined with deep CNN 

features to form a hybrid cluster model, which leads to better 

accuracy than using a single feature cluster. 

The hybrid approach also addresses challenges related to 

feature selection and dimensionality reduction. Combining 

hand-crafted features (e.g., from clinical data) and 

automatically extracted features (e.g., CNN), hybrid models 

can reduce the risk of overfitting using a rich feature set. and 

provide more information [10]. 

 

 

3. METHODOLOGY 

 

Proposed Hybrid Approach 

The proposed hybrid approach for breast cancer detection 

combines the strengths of traditional ML and DL models to 

enhance prediction performance. This approach is designed to 

address the limitations of each model by combining their 

complementary advantages into a two-step pipeline as shown 

in Figure 1. 

 

Stage 1: Feature Engineering and Selection Using Classical 

Machine Learning 

The first phase of the pipeline deals with feature 

engineering and selection, which is a data preprocessing step. 

Knowing that the choice of features we consider for the 

classifier can significantly impact the success of cancer 

detection, this paper uses the RF method based on decision 

trees for feature selection. RF is particularly good at coping 

with large numbers of variables, nor does it expect any such 

relationship between them, and therefore, it is appropriate for 

this role. In other words, RF works by building several 

decision trees, each of which every feature is randomly 

selected; the effectiveness of the splits of the feature in the 

decision trees considers the importance of the feature [11]. 
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Figure 1. Architecture diagram of proposed hybrid model 

 

For the threshold of feature importance, the theoretical 

support concerns quantifying the determination of how much 

degree each feature contributes to the reduction of impurity 

(like Gini or entropy) within each tree across all the trees. This 

means that the higher the decrease in impurity, the more 

important a particular feature is. This criterion orders features 

and a certain value filters features that impact the model's 

predictive power. In general, only such features that possess 

importance values greater than predetermined cut-off values 

(for example, 0.01 or 1% may be used) are retained. The 

threshold mentioned above can be tuned according to the 

specific level to get the appropriate balance between the 

model's complexity and performance. 

For instance, some of the features derived from the 

Wisconsin Breast Cancer Dataset, like radius_mean, 

texture_mean, perimeter_mean, and area_mean, go through 

the process of ranking in the RF model. The main goal is to 

decrease the size of the feature set, removing features that do 

not present much additional information and passing a better 

dataset to the following measure, the deep learning model. 

This helps in handling the common problem of high 

dimensionality or irrelevant characteristics in the deployment 

of deep learning models [12]. 

 

Stage 2: CNN Architecture Selection 

While proposing the hybrid model, the CNN architecture 

used was selected after considering various designs of CNNs 

where each architecture is suitable for a certain type of 

problem. CNNs are popular when it comes to image 

classification because it is capable of learning spatial 

hierarchies of features on their own. For this work, five 

different CNN models, LeNet, AlexNet, VGGNet (16, 19), 

ResNet, and Inception, were considered for this task [13]. 

LeNet: LeNet is one of the first models for CNN that works 

well for basic image identification. Nevertheless, due to its 

shallower structure and relatively small capacity, it is 

unsuitable for larger data sets or tasks such as breast cancer 

detection, for which one must capture intricate features and 

non-linear dependencies in high dimensional space. 

AlexNet: As a pioneering network for image classification, 

AlexNet is deeper than LeNet and employs ReLU activation 

and dropout methods to reinforce model generalization. 

Despite its high accuracy in many conventional classification 

problems, its architecture may still be a disadvantage when 

working with problems that require very deep or large data 

matrices, resulting in computational inefficiency. 

VGGNet: VGGNet is one of the simplest but most effective 

image recognition tools because of its uniform architecture 

and 3x3 convolutional filters. Nevertheless, the computational 

cost is high due to the availability of many parameters, and it 

may impose a constraint when working with large datasets in 

terms of available resources. 

ResNet: Residual Networks (ResNet) incorporate skip 

connections, which enable the training of deep networks 

without any tendency for gradient vanishing. This architecture 

is useful for learning from large datasets, such as identifying 

cancer from medical images. Given that ResNet enhances the 

possibility of better performance with increased depth and 

offers robustness to training instabilities, it becomes a 

candidate of choice for this endeavour. 

Inception: Analyzing the features of the Inception network, 

it should be stated that the network is very efficient at 

extracting features of different scales due to the multi-scale 

convolutional filters (1×1, 3×3, 5×5). Its modular structure 

does not require predetermined distribution and density 

estimates, making it the fourth extremely competitive. But it 

adds more steps and computation than may be required for a 

given task, and this comes with a price. 

Based on these architectures, ResNet was chosen for the 

proposed model because of the network's ability to learn from 

the architecture's depth without overfitting, which is very 

applicable when solving breast cancer detection problems. 

Application of residual blocks helps in learning of more 

abstract features while at the same time decreasing the 

probability of vanishing gradients, thus resulting in stable 

training irrespective of the depth of the architecture. In 

addition, ResNet has been shown to be effective for medical 

imaging tasks; therefore, ResNet is selected as the CNN in the 

hybrid model [14]. 

 

Stage 3: Deep Feature Learning and Final Classification 

Using CNN 

The selected properties will be sent to CNN for learning and 

improved feature classification in the second step. CNN is 

well-known for its ability to automatically extract hierarchical 

features from data. This is especially true when dealing with 

visual datasets such as mammograms, but CNNs can also be 

applied to structured data such as feature sets processed from 

RF models. 

CNNs are especially effective at recognizing complex 
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patterns that are difficult to capture with traditional ML 

models. CNNs for breast cancer detection can detect complex 

relationships between features that are not visible at first 

glance, for example, detailed interaction of surface and range 

properties to improve detection accuracy. The CNN 

architecture generally consists of multiple alternating layers 

that extract specific features, followed by integrating layers for 

dimensionality reduction and fully connected layers for final 

classification. Tumours are classified as benign or cancerous 

and trained based on these known properties. 

 

Stage 4: Hybrid Integration: Combining Predictions 

These two models are related through feature transfer as 

well as feature fusion. More precisely, feature maps computed 

in the CNN layers are used to input the RF model. This allows 

the RF to serve as a secondary decision-maker alongside the 

model predictions, thereby adding resilience and explanatory 

value to the system. For integrated implementation, some 

preprocessing steps, for instance, feature normalization or 

feature reduction, may be applied to the output of the CNN 

before it is fed to the RF. 

The last stage in the system design is providing the final 

decision on the objects' classes after both the RF and CNN 

models produce the individual predictions. This can be done 

by scaling the two model’s predictions using different factors 

or by using ensemble methods like voting or implementing a 

nested structure in which predictions from the RF affect 

CNN's decision-making [15]. 

The proposed hybrid model employs a two-step approach, 

which can minimize the problems that the current approaches 

have, as follows: The early use also helps to enhance 

interpretability by selecting only as many features as necessary 

and lessens the computational burden in the CNN model that 

utilizing RF introduces. Moreover, the deep learning 

algorithm improves the potentiality of the model to 

incorporate complex non-linear associations that remained 

unnoticed by RF alone, reducing the risk of overfitting. Each 

of these fared better in feature selection and combination, 

boosting overall classifiability. 

The last stage is the decision layer that integrates the outputs 

of both the CNN and RF depending on certain protocols to 

arrive at the final decision. Decision-making can also be 

improved similarly with a more aggregated level of the CNN 

hierarchy, using more than one CNN architecture or 

incorporating more sophisticated architectures into the CNN 

framework of the hybrid system, enhancing its robustness. 

 

 

4. DATASET 

 

In this study, we use the recognized WBCD for breast 

cancer detection. The dataset consists of 569 samples, each 

sample representing a tumour. It contains 30 numerical 

features extracted from fine needle aspiration (FNA) of a 

breast mass. These features include radius_average, 

texture_mean, circumference_mean, area_mean, etc. The 

diagnosis is binary, with a value indicating a benign tumor (B) 

or cancer (M). Key attributes of dataset are shown in Table 2.  

The class distribution of the WBCD is not balanced, 

wherein 357 samples belong to a benign class (B) and 212 

samples belong to a malignant class (M), which gives a ratio 

of 62.7% benign to 37.3% malignant samples. This imbalance 

affects model performance and, due to this reason, the SMOTE 

pre-processing method is used to increase the number of 

instances within the minority class hence improving the 

models ability to generalize across both classes. 

 

Table 2. Key attributes of the Wisconsin Breast Cancer 

Dataset (WBCD) 

 
Attribute Description Significance 

radius_mean 

Mean of distances 

from the centre to 

points on the 

perimeter 

Helps to measure 

the size of the 

tumour 

texture_mean 

The standard 

deviation of grey-

scale values 

Captures variation 

in tissue texture 

perimeter_mean 

The average 

perimeter of the 

tumour 

Used to determine 

the extent of the 

tumour 

area_mean 
The mean area of 

the tumour 

A key indicator of 

the tumour's 

overall size 

smoothness_mean 

Mean of local 

variation in radius 

lengths 

Reflects the 

smoothness or 

irregularity of the 

tumour boundary 

compactness_mean 
Mean of (perimeter² 

/ area - 1.0) 

Indicates how 

compact the tumor 

is 

concavity_mean 

Mean severity of 

concave portions of 

the contour 

Shows the degree 

of concave 

features in the 

tumour's shape 

concave 

points_mean 

The mean number of 

concave points on 

the tumour 

boundary 

Represents the 

number of 

significant 

concave sections 

symmetry_mean 
Mean symmetry of 

the tumor 

Evaluates how 

symmetrical the 

tumor is 

fractal 

dimension_mean 

Mean "coastline 

approximation" of 

the tumor 

Measures 

complexity of the 

tumor boundary 

diagnosis 
Benign (B) or 

Malignant (M) 

tumor classification 

Target variable for 

identifying the 

nature of the 

tumor 

 

4.1 Preprocessing 

 

To ensure high-quality data for model training, we 

performed several key preprocessing steps: 

1. Handling Missing Data: The WBCD had no missing data. 

This allows us to proceed without using imputation strategies 

in other cases where data might be missing. We will use 

techniques such as mean, median, or mode insertion or more 

advanced methods such as k-nearest neighbour insertion 

(KNN). 

2. Feature Scaling: This is because the features have 

different ranges. Therefore, use a Min-Max scale to range 

those features [0, 1]. This standardization process ensures that 

all features contribute equally during model training by 

avoiding overwhelming features with larger ranges of numbers. 

This transformation scales the data to the range [0, 1] using 

the following formula. 

 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  

where, 

𝑋 is the original feature value. 
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𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥  are the minimum and maximum values of 

the feature, respectively. 

𝑋′ is the scaled value.  

This normalization ensures that the feature range is 

consistent across all features. 

3. Balancing the Dataset: The imbalance is solved using the 

synthetic minority oversampling (SMOTE) technique. 

SMOTE creates a synthetic sample for the minority class. This 

ensures that the training dataset is balanced, thus preventing 

model bias towards most classes [16]. 

SMOTE works by generating synthetic data points for 

minority classes. Synthetic samples are created using the 𝑥𝑛𝑒𝑤  

formula: 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + λ × (𝑥𝑗 − 𝑥𝑖) 

 

where, 

𝑥𝑖 and 𝑥𝑗 are two random minority class samples. 

λ is a random number between 0 and 1. 

This generates new samples between existing samples, 

helping to balance the dataset. 

The only tunable parameter in SMOTE is K, which is the 

number of neighbours used to create synthetic samples. The 

value of K, in most cases, is selected with cross-validation or 

from previous experimental findings. Typically, the range is 

from 3 to 5 since it creates diversity in the generated samples, 

yet the samples are sufficiently similar to be used for training 

the machine learning algorithm on synthetic data [17]. 

4. Data Splitting: We split the dataset into training and 

testing sets using a ratio of 80/20. This gave us 80% of the data 

to train the model and 20% to test its performance. We also 

used k-fold cross-validation to ensure efficient assessment and 

avoid overfitting during hyperparameter tuning and model 

comparison. 

Let 𝑛𝑡𝑟𝑎𝑖𝑛  be the size of the training set, and 𝑛𝑡𝑒𝑠𝑡  be the 

size of the testing set.  

The formula for the split ratio is: 
 

𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑜𝑡𝑎𝑙

= 0.8 and 
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑜𝑡𝑎𝑙

= 0.2 

 

where, 𝑛𝑡𝑜𝑡𝑎𝑙 is the total number of samples. 

The k-fold cross-validation has also been applied to 

improve generalization. In k-fold cross-validation, the data is 

divided into k subsets and the model is trained k times, each 

time using a different subset for validation. Uses the remaining 

k-1 subset for training. The error is averaged over k iterations: 
 

𝐶𝑉 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑘
∑ 𝐸𝑟𝑟𝑜𝑟𝑖

𝑘
𝑖=1   

 

 

5. MATHEMATICAL MODELLING 
 

In a hybrid model for breast cancer detection, we use 

mathematical modelling to determine the interactions between 

the steps. This ensures that each component contributes 

effectively to the overall performance. The mathematical 

framework combines statistical methods and machine learning 

principles. It provides a rigorous foundation for feature 

selection, model training, and prediction. 

 

5.1 Feature selection with RF 

 

The RF algorithm employs the following mathematical 

constructs: 

Decision Trees: Each decision tree 𝑇𝑖  in the RF is built 

using a random subset of the training data. The splitting 

criterion for a node n is determined by minimizing the 

impurity I: 

 

𝐼(𝑛) = 𝑔(𝑝1, 𝑝2, … , 𝑝𝑘) = ∑ 𝑝𝑗(1 − 𝑝𝑗)𝑘
𝑗=1   

 

where, 𝑝𝑗  represents the proportion of samples belonging to 

class j at node n, and k is the number of classes. 

Feature Importance: After constructing the forest, we 

calculate the importance of each feature 𝑓𝑗  using the Mean 

Decrease Impurity (MDI): 

 

𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒄𝒆(𝒇𝒋) = ∑
𝑵𝒍𝒆𝒇𝒕(𝑻𝒊)+𝑵𝒓𝒊𝒈𝒉𝒕(𝑻𝒊)

𝑵𝒕𝒐𝒕𝒂𝒍
𝑻𝒊∈𝑭𝒐𝒓𝒆𝒔𝒕  ×  ∆𝑰  

 

where, 

𝑵𝒍𝒆𝒇𝒕 and 𝑵𝒓𝒊𝒈𝒉𝒕 represent the number of samples in the left 

and right splits after the decision on feature 𝒇𝒋. 

∆𝑰 is the decrease in impurity due to the split. 

We present a mathematical derivation for the selection of 

the feature importance threshold in RF. The threshold is 

determined based on the Mean Decrease Impurity (MDI), 

where features with an importance score greater than a 

predefined threshold are considered significant. The threshold 

is computed using statistical significance tests to ensure that 

the selected features contribute meaningfully to the model's 

performance, thereby enhancing the reliability and 

interpretability of the feature selection process. 

 

5.2 Classification with CNN 

 

In the CNN stage, we employ the following mathematical 

formulations: 

• Convolution Operation: The output of a convolutional 

layer is computed as: 

 

𝑌(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑚 − 1, 𝑗 + 𝑛 − 1). 𝐾(𝑚, 𝑛)𝑁
𝑛=1

𝑀
𝑚=1   

 

where, 

𝑋 is the input feature map,  

𝐾 is the convolution kernel (filter), and  

(𝑖, 𝑗) represents the position of the output feature map 𝑌. 

 

• Activation Function: We utilize the Rectified Linear 

Unit (ReLU) activation function to introduce non-

linearity: 

 

𝒇(𝒙) = 𝒎𝒂𝒙 (𝟎, 𝒙) 

 

• Pooling Layer: The pooling operation reduces the 

spatial dimensions of the feature maps. For max 

pooling, the operation can be defined as: 
 

𝒀(𝒊, 𝒋) = 𝒎𝒂𝒙𝒎,𝒏𝑿(𝒔. 𝒊 + 𝒎, 𝒔. 𝒋 + 𝒏) 

 

where, 𝒔 is the stride of the pooling operation. 

• Loss Function: The model is trained using the 

categorical cross-entropy loss function, defined as: 
 

𝑳(𝒚, �̂�) = − ∑ 𝒚𝒊𝒍𝒐𝒈 (�̂�𝒊)
𝑪
𝒊=𝟏   

 

where, 𝑦 is the true distribution, 𝑦 ̂is the predicted distribution, 
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and 𝐶 is the number of classes. 

 

5.3 Final decision layer 

 

The final decision layer aggregates predictions from the 

CNN model. We can formalize the decision-making process 

as follows: 

• Thresholding: Given the output probabilities from the 

CNN, the final classification is determined by a 

threshold θ: 

 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {
𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡    𝑖𝑓 �̂� ≥ 𝜃

𝐵𝑒𝑛𝑖𝑔𝑛 𝑖𝑓  �̂� < 𝜃
 

 

This decision-making approach allows for the flexibility of 

adjusting the threshold based on the desired sensitivity and 

specificity. 

 

5.4 Computational efficiency and model practicality 

 

Besides the performance evaluation, the computational cost 

of the proposed hybrid model for breast cancer detection has 

been considered. As a part of the practicality assessment of the 

proposed model in actual application settings, we reported the 

training and inferencing time of the RF as well as the CNN 

[18].  

 

5.4.1 RF training time 

The training time required for the RF model is a function of 

T, the number of trees and F, the number of features used at 

each split. We noticed that the time for training augmented 

linearly with the number of trees and features, with a standard 

training time of approximately 2 minutes for 100 trees and 30 

features [19]. 

 

5.4.2 CNN training time 

CNN component is usually computationally intensive, 

particularly because of the depth of the architecture. The 

training time was observed to be proportional to the depth of 

the network – the number of layers and the size of the batches. 

In our case of the selected architecture, ResNet-50, it took 

about 30 minutes per epoch on 569 samples for the training 

process. This raises the question of what can be achieved when 

complexity is sacrificed for time or vice versa. 

 

5.4.3 Inference time 

The consideration of times includes the inference time, that 

is, the time that the model takes to make predictions on new 

inputs. The actual computation time to run the RF model was 

also reasonable, taking only 0.05 sec per sample. The total 

inference time of the CNN model was 0.3 seconds per sample 

with a slight addition due to computations needed to perform 

convolution and the presence of deeper layers. 

 

5.4.4 Computational resources 

A system was developed to employ the hybrid model with 

an NVIDIA Tesla V100 GPU needed for CNN training and an 

Intel i7 for RF training. The RF model needs less 

computational power than the others to be used in 

environments with less hardware. On the other hand, the CNN 

model takes advantage of GPU to shorten the training time and 

the training deep stages. 

In all, under the hybrid model, a noticeable improvement in 

the detection accuracy is realized with respect to the pure SVM 

and ANN models; however, the training and the inference time 

remain a of concern for practical application. To fine-tune the 

model for higher performance, one can perform 

hyperparameter tweaking and model reduction or may employ 

a better processor for the model optimization for large-scale 

use. 

 

 

6. EXPERIMENTAL RESULTS 

 

6.1 Experimental process for hyperparameter selection 

 

6.1.1 Hyperparameters of RF 

Two hyperparameters of RF are particularly crucial: the 

number of trees T and the maximum depth of the trees. These 

parameters were selected through cross-validation since it 

makes it possible to tune the hyperparameters to the best value. 

Number of Trees (T): The number of trees in the forest was 

selected due to a compromise between the models' accuracy 

and the time it took to run the models. We tested T = 50, T = 

100, T = 200, and compared the model's performance using 5-

fold cross-validation. They noted that raising the number of 

trees beyond 100 does not greatly impact the accuracy level 

but has a negative effect on time for training. This means that 

100 trees were arrived at as the best number to use in the RF 

model. 

Maximum Depth of Trees: The depth of the trees was 

determined according to the difficulty level of the data set in 

the current model. The former is likely to model all the training 

data perfectly, trapping the noise, thereby overfitting the data, 

while the latter might miss some essential patterns in the data, 

thereby underfitting. The depth was chosen using a grid search 

ranging from 5 to 20. It has been determined that a depth of 10 

gives the lowest bias-variance trade-off. 

 

6.1.2 CNN hyperparameters 

For the CNN components, the important hyperparameters 

are: no. of layers, filter size, learning rate and batch size. The 

values of these parameters were set by grid search, empirical 

trial and error, and monitoring the performance during the 

training process [20]. 

Number of CNN Layers: The CNN architecture was 

selected with reference to its capability to capture high-level 

features in the data. Initially, we used a small number of layers 

(3–50), gradually increasing the number of layers, and 

analyzed the result of the validation set. We learned that we 

achieve the best accuracy and generalisation at 50 layers 

(ResNet-50 architecture) without overfitting [21]. 

Learning Rate: With respect to the learning rate, a 

logarithmic search was used, starting from 0.0001 and going 

up to 0.01. Experimentation also found that setting the value 

to 0.001 is the most suitable option since it provides 

convergence stability and the best minimal oscillation during 

training [22]. 

Batch Size: The batch size was tested at 16, 32 and 64. This 

means that a batch size of 32 was chosen because it was large 

enough that it would not need to store all the examples in 

memory while being small enough that the updates made were 

faster and more accurate for generalization on unseen 

examples. 

 

6.2 Evaluation metrics 
 

We used several evaluation metrics to evaluate the 
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performance of the hybrid model for breast cancer detection: 
 

1. Accuracy: This metric measures the proportion of 

instances that are correctly classified out of all 

instances. It gives a general understanding of the 

model's performance [23]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

 

where, 

𝑇𝑃 are true positives, 

𝑇𝑁 are true negatives,  

𝐹𝑃 are false positives,  

𝐹𝑁 are false negatives. 

 

2. Precision: Precision indicates the proportion of positive 

identifications that were actually correct. This helps to 

understand the reliability of the model in predicting 

malignant cases [24, 25]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

 

3. Recall (Sensitivity): This metric measures the model's 

ability to identify all relevant instances, specifically 

malignant cases [26, 27]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

4. F1-Score: The F1-score is the harmonic average of 

precision and recall. It creates a balance between the 

two metrics [28-30]. 
 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

5. Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC): This metric evaluates the model's 

ability to discriminate between different classes. AUC 

values range from 0 to 1, with values closer to 1 

indicating better performance [31, 32]. 

These indicators allow for a comprehensive assessment of 

the model's effectiveness in classifying breast cancer cases and 

understanding the pros and cons between precision and recall. 
 

6.3 Training setup 
 

The model training was conducted in a robust environment 

to ensure efficiency and scalability. 
 

Table 3. Model training setup and environment 
 

Parameter Details 

Hardware NVIDIA GeForce RTX 3080 GPU 

Training Environment 
Python 3.8, TensorFlow 2.7, scikit-

learn 

Epochs 50 

Batch Size 32 

Learning Rate 0.001 (with decay strategy) 

Optimization 

Algorithm 
Adam optimizer 

Objective 
Maximize model performance and 

efficiency 

 

An ablation study was performed to find the optimal 

hyperparameter settings. The learning rate, batch size, and 

number of epochs were varied as key parameters. Several 

experiments were performed to assess their impact on model 

accuracy, convergence, and overall performance. Results 

showed that the best balance between stability and efficiency 

was achieved at a learning rate of 0.001, a batch size of 32, and 

50 epochs. Table 3 shows the model training parameter with 

details. 

 

6.4 Results 

 

Experimental results demonstrate the proposed hybrid 

approach's effectiveness compared to several baseline models, 

including LR, SVM, RF, and standalone CNN models. Below 

is a summary of the results presented in tabular and graphical 

form as shown in Table 4. 

The confusion matrix of the proposed hybrid model is 

depicted in Figure 2, and Figure 3 shows the learning curves 

for training and validation scores. Hybrid models outperform 

all basic models. It has an accuracy of 93.5%, a precision of 

92.7%, a recall of 91.8%, an F1-score of 92.2% as shown in 

Figure 4 and 0.95 AUC-ROC. These results show that 

traditional machine learning and deep learning techniques 

emphasize the potential of hybrid efficiency utilization 

approaches, thus improving diagnostic accuracy in detecting 

breast cancer. 

Experiments confirm combining feature selection via RF 

with CNN will lead to more accurate predictions. 

 

6.5 Ablation study: Impact of different feature subsets on 

model performance 

 

To identify the impact of various features on the 

performance of the proposed hybrid model, several 

experiments were performed by removing some features from 

the model at a time [33-35]. The experiments involved testing 

the following feature subsets: 

 

1. All Features: This is done on the complete set of 

features from the 30 numerical features of the WBCD. 

2. Selected Features by RF: Another set of features, which 

were chosen using the importance scale of the RF 

model. 

3. Top 10 Features: The following list shows the 10 

features with the highest importance score computed 

using the RF algorithm. 

4. Domain-Specific Features: A set of features that were 

chosen according to the literature and domain 

knowledge in the data of breast cancer detection (e.g., 

radius_mean, texture_mean, perimeter_mean). 

 

The performance of the proposed hybrid model was 

evaluated using these subsets, and the results are summarized 

below in Table 5. 

We performed a comparison of computational complexity, 

training time, and inference time in the comparative analysis 

that is shown in Table 6 to evaluate the efficiency of our 

proposed hybrid approach. The obtained results show that our 

model gets the highest accuracy (93.5%) along with optimal 

training time (180 s) and inference time (2.5 ms/sample). In 

comparison to conventional models, our approach would 

provide a balanced trade-off between predictive performance 

and computational efficiency for robust and scalable solutions. 
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Table 4. Performance comparison of models 

 
Model Accuracy Precision Recall F1-Score AUC-ROC 

LR 85.2% 83.1% 84.5% 83.8% 0.88 

SVM 87.5% 85.4% 86.2% 85.8% 0.90 

RF 88.7% 87.1% 87.6% 87.3% 0.91 

CNN 90.1% 89.2% 88.5% 88.8% 0.92 

Hybrid with SVM & CNN 89.4% 88.3% 87.7% 88.0% 0.92 

Proposed Hybrid Approach 93.5% 92.7% 91.8% 92.2% 0.95 

 

Table 5. Performance comparison of the hybrid model with different feature subsets 

 
Feature Subset Accuracy Precision Recall F1-Score AUC-ROC 

All Features 93.5% 92.7% 91.8% 92.2% 0.95 

Selected Features by RF 92.1% 91.4% 90.1% 90.7% 0.93 

Top 10 Features 91.5% 90.9% 89.7% 90.3% 0.92 

Domain-Specific Features 89.8% 88.4% 87.3% 87.8% 0.90 

 

Table 6. Computational efficiency and performance comparison 

 

Model Accuracy Training Time (s) Inference Time (ms/sample) Complexity (Big-O) 

Proposed Hybrid Approach 93.5% 180 2.5 O(n log n) 

CNN 90.1% 210 3.2 O(n log n) 

RF 88.7% 300 4.1 O(n²) 

SVM 87.5% 350 5.7 O(n³) 

LR 85.2% 120 1.8 O(n) 

 
 

Figure 2. Confusion matrix of proposed hybrid approach 

 

 
 

Figure 3. Learning curves 

 
 

Figure 4. Performance metrics of the proposed hybrid 

approach 

 

The results are analyzed as follows: 

All Features: The model used gave the best results when all 

30 features were used. This may be because the model can 

work with a broader range of features because the model with 

all the features has the most data on which to base its 

predictions. 

Selected Features by RF: When only the most important 

features were included in the model, performance dropped but 

was still considerably high compared to other models. This has 

implied that feature selection can be used to eliminate noise 

and irrelevant information, hence arriving at a compact model 

with slightly lower accuracy than the original one. 

Top 10 Features: A drop in accuracy was observed in 

experiments with the feature subset consisting of 10 features. 

This means that even though we can limit the number of 

features, which makes the model easier to understand, we are 

also erasing some information that, in turn, influences the 

model. 

Domain-Specific Features: The evaluation of the model 
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indicated that the accuracy decreased drastically when 

manually selected features were employed. This underlines the 

necessity of the approach based on data analysis because 

relying only on domain knowledge may lead to neglecting the 

potentially important pattern and feature interactions. 

 

6.6 Adaptability of the proposed hybrid model in clinical 

applications 

 

There are obstacles to model implementation in clinical 

environments, which we have to deal with, including noisy 

data, device variability, and data variation [36]. The proposed 

hybrid model is adaptable to these challenges: 

• Handling Noisy Data: RF basically provides a means for 

feature selection, hence reducing the effect of noise. CNNs 

are invariant to noise, particularly in image data, and it is 

possible to minimize noise levels through normalisation 

and data augmentation. 

• Variability in Data from Different Devices: The model is 

intended to effectively train from data from various devices 

by learning from good features. Applying transfer learning 

and fine-tuning enables the model to extend to new devices 

without retraining from a new generation. Image 

standardisation methods allow the same result to be 

achieved on devices of different types. 

• Clinical Data Diversity: The hybrid model also provides 

flexibility that accommodates different patient data 

through a combination of different ensembles. Further, RF 

enhances model interpretability so clinicians can easily 

comprehend and apply the model while considering 

patients' differences. 
It also proves its flexibility in addressing real-world issues, 

which confirms that the developed hybrid model is suitable for 

implementation in clinical settings. Future work might, 

therefore, be geared towards enhancing its versatility in other 

datasets. 

 

 

7. DISCUSSION 

 

Interpretation of Results 

The results of this study show that hybrid models for breast 

cancer detection significantly outperform traditional deep 

learning models. It achieved a remarkable accuracy of 93.5%. 

This improvement can be attributed to the model's ability to 

combine classical feature selection techniques with the 

advanced pattern recognition capabilities of deep learning. 

Hybrid models reduce size and focus on the most informative 

features. This increases their predictive power. Deep learning 

models are also known for capturing complex relationships 

within data. The combination of these two methods allows for 

a more detailed analysis of breast cancer properties. This 

ultimately leads to better classification performance. 

 

Clinical Relevance 

The clinical impact of this hybrid model is significant. in the 

real world, better diagnostic accuracy could lead to earlier 

detection of breast cancer. This has a significant impact on 

patient outcomes. Early cancer detection is of great importance 

in the management of breast cancer. This is because it allows 

for timely intervention and may reduce the need for aggressive 

treatment. Accurate cancer identification allows health 

professionals to develop a personalized treatment plan and 

improve the overall quality of care. In addition, the model's 

ability to provide interpretable results helps doctors 

understand the underlying cause of a diagnosis. Promotes trust 

and collaboration between patients and healthcare providers. 

 

Limitations of the Hybrid Model 

• Computational Complexity: Combining RF and 

CNN in the hybrid model results in high 

computational costs, even more so when training it 

with many data samples. This may pose a problem 

regarding its ability to scale up in resource-limited 

clinical environments. 

• Data Dependency: A very strong dependence is 

observed of the model's performance on the quality 

and representativeness of the training data. 

Fluctuations in data or noisy and imbalanced data 

may decrease its applicability across patients and 

clinical settings. 

Such limitations indicate the prospects for further 

enhancement of the model's efficiency and flexibility. 

 

 

8. CONCLUSION 

 

This study demonstrates the effectiveness of the hybrid 

model in detecting breast cancer. It combines classical feature 

selection methods with deep learning techniques. The results 

indicate a significant improvement in diagnostic accuracy. The 

hybrid method achieved an impressive accuracy of 93.5%, 

precision of 92.7% and recall of 91.8%, highlighting the 

model's potential, which ultimately increases its potential 

utility in clinical practice. Combining the translatability of 

traditional methods with the strengths of deep learning's 

pattern recognition provides a robust framework for 

addressing complex medical problems.  

The performance of the hybrid model highlights the 

advantages of using multiple approaches in breast cancer 

detection. This model not only improves diagnostic 

capabilities but also helps to gain a deeper understanding of 

the underlying factors that cause breast cancer. It leverages the 

power of feature selection and deep learning. This aspect is 

essential in health care. Clarifying the reasoning behind 

predictions can significantly impact treatment decisions and 

patient management. 

 

 

REFERENCES  

 

[1] Wang, L. (2024). Mammography with deep learning for 

breast cancer detection. Frontiers in Oncology, 14: 

1281922. https://doi.org/10.3389/fonc.2024.1281922 

[2] Nasser, M., Yusof, U.K. (2023). Deep learning based 

methods for breast cancer diagnosis: A systematic review 

and future direction. Diagnostics, 13(1): 161. 

https://doi.org/10.3390/diagnostics13010161 

[3] Almarri, B., Gupta, G., Kumar, R., Vandana, V., Asiri, 

F., Khan, S.B. (2024). The BCPM method: Decoding 

breast cancer with machine learning. BMC Medical 

Imaging, 24(1): 248. https://doi.org/10.1186/s12880-

024-01402-5 

[4] Hoang, Q.H., Bui, P.L.L., Tran, A.V., Nguyen, T.A., 

Nguyen, V.D. (2023). A comparative study of machine 

learning algorithms for breast cancer classification. In 

2023 International Conference on Advanced 

Technologies for Communications (ATC), Da Nang, 

574



 

Vietnam, pp. 409-414. 

https://doi.org/10.1109/ATC58710.2023.10318887 

[5] Wang, H., Zheng, B., Yoon, S.W., Ko, H.S. (2018). A 

support vector machine-based ensemble algorithm for 

breast cancer diagnosis. European Journal of Operational 

Research, 267(2): 687-699. 

https://doi.org/10.1016/j.ejor.2017.12.001 

[6] Tsochatzidis, L., Costaridou, L., Pratikakis, I. (2019). 

Deep learning for breast cancer diagnosis from 

mammograms—A comparative study. Journal of 

Imaging, 5(3): 37. 

https://doi.org/10.3390/jimaging5030037 

[7] Abunasser, B.S., Al-Hiealy, M.R.J., Zaqout, I.S., Abu-

Naser, S.S. (2023). Convolution neural network for 

breast cancer detection and classification using deep 

learning. Asian Pacific Journal of Cancer Prevention: 

APJCP, 24(2): 531-544. 

https://doi.org/10.31557/APJCP.2023.24.2.531 

[8] Shahid, M.S., Imran, A. (2025). Breast cancer detection 

using deep learning techniques: Challenges and future 

directions. Multimedia Tools and Applications, 84: 

3257-3304. https://doi.org/10.1007/s11042-025-20606-7 

[9] Yang, L., Peng, S., Yahya, R.O., Qian, L. (2023). Cancer 

detection in breast cells using a hybrid method based on 

deep complex neural network and data mining. Journal 

of Cancer Research and Clinical Oncology, 149(14): 

13331-13344. https://doi.org/10.1007/s00432-023-

05191-2 

[10] Carriero, A., Groenhoff, L., Vologina, E., Basile, P., 

Albera, M. (2024). Deep learning in breast cancer 

imaging: State of the art and recent advancements in 

early 2024. Diagnostics, 14(8): 848. 

https://doi.org/10.3390/diagnostics14080848 

[11] Wang, Z., Lin, R., Li, Y., Zeng, J., Chen, Y., Ouyang, W., 

Li, H., Jia, X., Lai, Z., Yu, Y., Yao, H., Su, W. (2024). 

Deep learning-based multi-modal data integration 

enhancing breast cancer disease-free survival prediction. 

Precision Clinical Medicine, 7(2): pbae012. 

https://doi.org/10.1093/pcmedi/pbae012 

[12] Zarif, S., Abdulkader, H., Elaraby, I., Alharbi, A., 

Elkilani, W.S., Pławiak, P. (2024). Using hybrid pre-

trained models for breast cancer detection. Plos One, 

19(1): e0296912. 

https://doi.org/10.1371/journal.pone.0296912 

[13] Iqbal, M.S., Ahmad, W., Alizadehsani, R., Hussain, S., 

Rehman, R. (2022). Breast cancer dataset, classification 

and detection using deep learning. Healthcare, 10(12): 

2395. https://doi.org/10.3390/healthcare10122395 

[14] Essa, H.A., Ismaiel, E., Hinnawi, M.F.A. (2024). 

Feature-based detection of breast cancer using 

convolutional neural network and feature engineering. 

Scientific Reports, 14(1): 22215. 

https://doi.org/10.1038/s41598-024-73083-7 

[15] Balasubramanian, A.A., Al-Heejawi, S.M.A., Singh, A., 

Breggia, A., Ahmad, B., Christman, R., Ryan, S.T., Amal, 

S. (2024). Ensemble deep learning-based image 

classification for breast cancer subtype and invasiveness 

diagnosis from whole slide image histopathology. 

Cancers, 16(12): 2222. 

https://doi.org/10.3390/cancers16122222 

[16] Mohammed, S.A., Darrab, S., Noaman, S.A., Saake, G. 

(2020). Analysis of breast cancer detection using 

different machine learning techniques. In Data Mining 

and Big Data: 5th International Conference, DMBD 2020, 

Belgrade, Serbia, Proceedings 5, Springer Singapore, pp. 

108-117. https://doi.org/10.1007/978-981-15-7205-0_10 

[17] Abdulla, S.H., Sagheer, A.M., Veisi, H. (2021). 

Improving breast cancer classification using (smote) 

technique and pectoral muscle removal in 

mammographic images. Mendel, 27(2): 36-43. 

https://doi.org/10.13164/mendel.2021.2.036 

[18] Amgad, N., Ahmed, M., Haitham, H., Zaher, M., 

Mohammed, A. (2023). A robust ensemble deep learning 

approach for breast cancer diagnosis. In 2023 Intelligent 

Methods, Systems, and Applications (IMSA), Giza, 

Egypt, pp. 452-457. 

https://doi.org/10.1109/IMSA58542.2023.10217501  

[19] Anitha, V., Subramaniam, M., Roseline, A.A. (2024). 

Improved breast cancer classification approach using 

hybrid deep learning strategies for tumor segmentation. 

Sensing and Imaging, 25(1): 31. 

https://doi.org/10.1007/s11220-024-00475-4 

[20] Qasrawi, R., Daraghmeh, O., Qdaih, I., Thwib, S., Polo, 

S.V., Owienah, H., Al-Halawa, D.A., Atari, S. (2024). 

Hybrid ensemble deep learning model for advancing 

breast cancer detection and classification in clinical 

applications. Heliyon, 10(19): e38374. 

https://doi.org/10.1016/j.heliyon.2024.e38374 

[21] Gomes, R., Paul, N., He, N., Huber, A.F., Jansen, R.J. 

(2022). Application of feature selection and deep 

learning for cancer prediction using DNA methylation 

markers. Genes, 13(9): 1557. 

https://doi.org/10.3390/genes13091557 

[22] Ahmad, S., Ullah, T., Ahmad, I., Al-Sharabi, A., Ullah, 

K., Khan, R. A., Rasheed, S., Ullah, I., Uddin, M.N., Ali, 

M.S. (2022). A novel hybrid deep learning model for 

metastatic cancer detection. Computational Intelligence 

and Neuroscience, 2022(1): 8141530. 

https://doi.org/10.1155/2022/8141530 

[23] Ozcan, I., Aydin, H., Cetinkaya, A. (2022). Comparison 

of classification success rates of different machine 

learning algorithms in the diagnosis of breast cancer. 

Asian Pacific Journal of Cancer Prevention: APJCP, 

23(10): 3287-3297. 

https://doi.org/10.31557/APJCP.2022.23.10.3287 

[24] Nassif, A.B., Talib, M.A., Nasir, Q., Afadar, Y., Elgendy, 

O. (2022). Breast cancer detection using artificial 

intelligence techniques: A systematic literature review. 

Artificial Intelligence in Medicine, 127: 102276. 

https://doi.org/10.1016/j.artmed.2022.102276 

[25] Zuo, D., Yang, L., Jin, Y., Qi, H., Liu, Y., Ren, L. (2023). 

Machine learning-based models for the prediction of 

breast cancer recurrence risk. BMC Medical Informatics 

and Decision Making, 23(1): 276. 

https://doi.org/10.1186/s12911-023-02377-z 

[26] Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, 

S.M., Blau, H.M., Thrun, S. (2017). Dermatologist-level 

classification of skin cancer with deep neural networks. 

Nature, 542(7639): 115-118. 

https://doi.org/10.1038/nature21056 

[27] Deshmukh, P.V., Shahade, A.K., Patil, G.Y. (2015). 

Higher LSB optimize data hiding mechanism on 

encrypted image. In 2015 International Conference on 

Pervasive Computing (ICPC), Pune, India, pp. 1-4. 

https://doi.org/10.1109/PERVASIVE.2015.7087014 

[28] Sharma, A., Goyal, D., Mohana, R. (2024). An ensemble 

learning-based framework for breast cancer prediction. 

Decision Analytics Journal, 10: 100372. 

575

http://dx.doi.org/10.1016/j.ejor.2017.12.001
http://dx.doi.org/10.1016/j.ejor.2017.12.001
http://dx.doi.org/10.1016/j.heliyon.2024.e38374
http://dx.doi.org/10.1016/j.heliyon.2024.e38374
http://dx.doi.org/10.1016/j.artmed.2022.102276
http://dx.doi.org/10.1016/j.artmed.2022.102276


 

https://doi.org/10.1016/j.dajour.2023.100372 

[29] Shahade, A.K., Walse, K.H., Thakare, V.M. (2023). 

Deep learning approach-based hybrid fine-tuned Smith 

algorithm with Adam optimiser for multilingual opinion 

mining. International Journal of Computer Applications 

in Technology, 73(1): 50-65. 

https://doi.org/10.1504/IJCAT.2023.134080 

[30] Li, X., Zhang, L., Yang, J., Teng, F. (2024). Role of 

artificial intelligence in medical image analysis: A 

review of current trends and future directions. Journal of 

Medical and Biological Engineering, 44(2): 231-243. 

https://doi.org/10.1007/s40846-024-00863-x 

[31] Lakhani, P., Sundaram, B. (2017). Deep learning at chest 

radiography: Automated classification of pulmonary 

tuberculosis by using convolutional neural networks. 

Radiology, 284(2): 574-582. 

https://doi.org/10.1148/radiol.2017162326 

[32] Singh, S., Rawat, S.S., Gupta, M., Tripathi, B.K., Alanzi, 

F., Majumdar, A., Khuwuthyakorn, P., Thinnukool, O. 

(2022). Hybrid models for breast cancer detection via 

transfer learning technique. Computers, Materials & 

Continua, 74(2): 3063-3083. 

https://doi.org/10.32604/cmc.2023.032363 

[33] Razzak, M.I., Naz, S., Zaib, A. (2017). Deep learning for 

medical image processing: Overview, challenges and 

future. arXiv preprint arXiv:1704.06825. 

https://doi.org/10.48550/arXiv.1704.06825 

[34] Packhäuser, K., Folle, L., Nguyen, TT., Thamm, F., 

Maier, A. (2024). Privacy-enhancing image sampling for 

the synthesis of high-quality anonymous chest 

radiographs. In: Maier, A., Deserno, T.M., Handels, H., 

Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) 

Bildverarbeitung für die Medizin 2024. BVM 2024. 

Informatik aktuell. Springer Vieweg, Wiesbaden. 

https://doi.org/10.1007/978-3-658-44037-4_12 

[35] Bazazeh, D., Shubair, R. (2016). Comparative study of 

machine learning algorithms for breast cancer detection 

and diagnosis. In 2016 5th International Conference on 

Electronic Devices, Systems and Applications 

(ICEDSA), Ras Al Khaimah, United Arab Emirates, pp. 

1-4. https://doi.org/10.1109/ICEDSA.2016.7818560 

[36] Elobaid, Y., Aw, T.C., Lim, J.N., Hamid, S., Grivna, M. 

(2016). Breast cancer presentation delays among Arab 

and national women in the UAE: A qualitative study. 

SSM-Population Health, 2: 155-163. 

https://doi.org/10.1016/j.ssmph.2016.02.007 

 

576

http://dx.doi.org/10.1016/j.ssmph.2016.02.007
http://dx.doi.org/10.1016/j.ssmph.2016.02.007



