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The Internet of Things has significantly improved in different industries, although the 
enormous scale and complexity of IoT systems have faced security risks. To solve this 
problem, intrusion detection systems (IDS) are utilized, which guarantee the security state 
of IoT and protect it from cyber threats efficiently. In the current era, machine learning 
(ML) methodologies have been widely employed for IDS in IoT systems. Still, more work
needs to be done, particularly when handling the functional and physical diversity of IoT
devices. This work proposed a model that integrates with the normalization steps with Three
dense layers CNN. Furthermore, this study employs the two dataset which are UNSW-
NB15, CIC-IDS- 2017. The final selection of model is test on 24 different setting. These
steps are essential to improve the quality of input data and to highlight the effectiveness of
IDS. The proposed model is evaluated using accuracy, F1 score, precision, recall, RMSE,
training accuracy, AUC score, TPR, FPR, specificity, sensitivity, training time and memory
usage.

Keywords: 
CNN, normalization method, pre-
processing, intrusion detection, IoT 

1. INTRODUCTION

One of the main problems with the communication in recent 
days is the IoT, because of many benefits and applications of 
IoT, various researchers have currently sought to overcome the 
obstacles in this area in an effort to attribute the required basis 
for the technology’s rapid growth in real world [1]. Security is 
one of the primary problems with IoT applications, because 
new attack types are emerging intrusion techniques as threats 
are grown [2]. Since, the IDS frequently employs pattern 
analysis to identify attacks as it is thought to be one of the most 
effective security solutions for networking system [3-5]. 

Some researchers have employed ML approaches to 
minimize false alerts in IDS. Based on the characteristics of 
each attack, an IDS identify attacks more precisely by 
adopting the ML topology [6]. The traditional approaches of 
ML, including Decision Trees (DT) [7], Support Vector 
Machines (SVMs) [8], and k-Nearest Neighbors (k-NN) [9], 
for improving the detection accuracy of intrusion but these 
each approaches have its advantages and limitations. The 
foremost objective of utilizing DT is to generate a training 
model that employed to forecast the target variable class by 
applying decision rules obtained from the training data and 
classify the IDS efficiently [10]. 

However, it overfit to training data that leads to worsen the 
performance of Intrusion detection [11]. Because of strong 
generalization abilities and capacity to determine patterns, 
SVM have gained popularity for IDS as it overcomes the 
dimensionality issue. Nevertheless, this approach face 
challenges to apply large training sets owing to its higher 
computational time and space consumption and the primary 
difficulties with SVM falsehood in determining pertinent 

features for anomaly identification while handling high 
computational overhead. 

K-NN is recognized for its simplicity and adaptability. The
algorithm’s non-parametric nature allows it to classify data 
based on proximity to labelled instances, which advantageous 
for dynamic environments where patterns change frequently. 
Despite this, k-NN’s reliance on distance calculations and 
leads to inefficiencies and increased processing time as the 
volume of data scales up [12, 13]. 

To address the limitations of these traditional methods and 
meet the growing demands of IoT security, it is crucial to 
explore advanced DL approaches [14-22] that enhance 
detection accuracy and efficiency [23]. 

This paper tackles three questions. The first question is, is 
the minimal number of layers of CNN sufficient to achieve 
good accuracy? The second question is, does a different pre-
processing phase result in different accuracy? Third question 
is, does minimum number of layer achieved generalization? 

For the first query, the minimal number of dense values with 
different hyperparameters setting to check the accuracy with 
two datasets [24, 25]. 

In response to the second question, it compares the accuracy 
of the different models by comparing the three pre-processing 
phases of each CNN which is most commonly used. For third 
query it will compare the result of different accuracy measure 
to check for generality. 

The rest of the paper is organized into different sections. 
The background work is covered in Section 2. Section 3 covers 
motivations. A more detailed analysis of the model is covered 
in the methodology Section 4. Result and discussion are 
covered in Section 5. The conclusion and future work are 
given in Section 6. 
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2. BACKGROUND WORK 
 
This section explores the what other author have done in 

crucial pre-processing step and the Convolutional Neural 
Network (CNN) architecture.  This will provide insights into 

how the IDS is enhanced and how it can effectively identify 
various threats by implementing machine learning and deep 
learning models. Table 1 shows the various author 
implementation details including advantages and 
disadvantages. 

 
Table 1. Background works 

 
S. No. Author Advantages Disadvantages Accuracy 

1. Zhao et al. 
[1] 

This paper introduces with Lightweight model that 
reduces complexity using PCA. Author uses classifier for 
expansion and compression, inverse residual structure to 

extract features efficiently without needing much 
computation. 

The PCA may lead to loss of 
critical feature as it belongs 

dimensionality reduction and 
which limit to robustness 
evaluation for different 

intrusion types. 

 

2. Saba et al. 
[2] 

Introduces a CNN-based method for anomaly detection in 
IDS, which uses IoT's capabilities to efficiently monitor 

all network traffic. The model is designed to detect 
potential intrusions and unusual traffic behaviour. 

Optimize hyper parameters in 
deep learning that connect to 

model performance. 

99.51% on NID, 
BOT-IOT on 92.85% 

dataset 

3. Liu et al. [3] 
Author combines PSO and Light GBM for effective 

feature selection and for classification. Additionally, this 
model detects Backdoor, Shellcode, Worms attacks. 

High computational cost and 
timing. 

Backdoor rate is 
51.28, where 

Shellcode rates is 
64.47% and 77.78% 
frowarm detection 

4. Abbas et al. 
[4] 

Author combines logistic regression, naive Bayes, and 
decision tree classifiers using a voting mechanism for 

intrusion detection. 
None. 99.67% 

5. Musleh et 
al. [11] 

Systematic evaluation of feature extraction techniques 
using VGG-16 and stacking model. High computational cost. 98.3% 

6. El-Sayed et 
al. [15] 

Author proposes a new approach called PCAP which 
compare seven Algorithm that split into two categories: 

CNN-based models (Two-Layer CNN, Four-Layer CNN, 
VGG16) and standard classifiers (Logistic Regression, 

Support Vector Machine, K-Nearest Neighbours Creative 
image-based malware detection. 

Overhead from PCAP-to-
RGB conversion. 94% 

7. Liu et al. 
[26] 

The paper proposed an IDS Algorithm located on 
network layer of IOT, that use the BPSO Algorithm to 

extract feature from the NSL KDD dataset. 

The disadvantage of anomaly 
detection of the whole 

network layer is missing. 
82.9% 

 
 
3. MOTIVATION 

 
After thoroughly reviewing the paper, it was noted that the 

author employed various machine learning algorithms. 
However, the most approach behind with respect the 
optimization using minimum number of layers that can lead to 
better result and take less memory. Furthermore, high 
computational cost of some model makes less practical to 
implement for others due to resources constrained, 
necessitating the design of an efficient CNN architecture. 
Lastly, many works are limited on the basis of evolution 
matrix, which may not provide the in-depth analysis. To 
address these gaps the propose method solve the 
computational time, memory, and choose the better 
preprocessing phase to get more generalize result. In this work, 
the proposed model is evaluated using confusion matrix score, 
RMSE, training score, training time, memory usage, 
computation time, FPR and TPR. 

 
 

4. METHODOLOGY 
 
The primary objective of this research is to explore the 

impact of preprocessing techniques on the accuracy of 
different Internet of Things (IoT) datasets, mainly when using 
a minimal number of layers in a Convolution Neural Network 
(CNN). The research model comprises the following detailed 

subsections.  
 
4.1 Dataset description 

 
To show the proposed method’s importance, this research 

uses two of the most common datasets, CIC-IDS- 2017 [24] 
and UNSW-NB15 [25]. The first data set contains 82333 data 
and 45 features and second having 191033 rows × 79 columns. 
which are used to evaluate the proposed model and show how 
this affects its performance. This research uses the two 
datasets to evaluate the model’s performance and compare it 
further. 

 
4.2 Proposed model component 

 
The proposed model’s primary components involve 

preprocessing techniques such as one-hot encoding and data 
normalization. One-hot encoding represents categorical data 
in a binary format, while data normalization is employed to 
scale the numerical features. After these preprocessing steps, 
the output of data normalization is further processed using the 
train test split function which break into training dataset and 
testing dataset, facilitating the application of convolutional 
neural networks (CNN). Finally, deep CNN is utilized to 
analyse the dataset, generating both an accuracy matrix and a 
confusion matrix different accuracy to evaluate the model 
performance for both datasets. 
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Figure 1. Flow diagram of proposed method 
 

4.3 One hot encoding 
 
One hot encoding converts a specific feature’s nominal data 

into integer data. Owing to one hot encoding, only one of the 
N states has a value of 1, while other states have a value of 0, 
guaranteeing that only one state of every sample is in the 
activated state. One hot encoding method is applied to the 
nominal data in this dataset. 

Normalization is a data preprocessing step, where ML 
algorithm which is used by using sklearn, to transform 
categorial data into numerical values. The main aim is to 
normalization and make different features of a dataset 
comparable to each other, especially when they have different 
scales. This method helps to improve the neural network and 
gradient descent. This model uses three commonly used 
methods: Z score normalization, min-max normalization, and 
PCA. In the first setting, use min-max normalization and then 
apply CNN with different hyperparameter settings. Similarly, 
use the same hyperparameter settings as above for Z-score 
normalization and PCA. 

The output of the preprocessing phase is now further fed 
into the train test split function to evaluate it into CNN as 
shown in Figure 1. This will also be used to evaluate the 
model’s performance. The total number of layers used in the 
paper is 11, with 3 dense layers, which combine the pooling 
layer, flatten layer, and dense layer. 

 
4.4 Investigation tool 

 
The proposed model was conducted using google Colab 

with powerful T4 GPU with 12 GB RAM. The proposed 
model used the most frequent library called tensorflow and 
skit-learn. The proposed model was designed to use minimal 
computational resources and it is tested on advanced tool and 
use advanced library which give optimum result. 
 
4.5 Model flow 

 
The first step is to read data from the panda’s library. After 

reading the data, it is passed to one-hot encoding if it has 
categorial features. Following this, the encoded data 
undergoes normalization using three different techniques: Z-
score normalization, which standardizes the data, and Minmax 
normalization, which scales the data between a specified range. 
Lastly, PCA is applied. After the normalization, the dataset is 
split into training and testing sets to facilitate model evaluation, 
and the setting of train test data is 70%-30% split for both 
datasets. 

After the data is prepared, it is passed through a 
convolutional neural network architecture. The first layer of 

the CNN consists of a Conv 1D layer with 64 filters and a 
kernel size of 3, using the ReLU activation function to 
introduce nonlinearity, followed by a max pooling-1D layer 
with a pool size (Different Combination) to down sample the 
data and reduce dimensionality. The second convolutional 
layer consists of a Conv1D with 128 filters and a kernel size 
of 3, again followed by a MaxPooling1D layer with a pool size 
of (Different Combination) for further down sampling. Finally, 
the output of this layer is then flattened into a vector format, 
which is fed into two dense layers. The first dense layer 
contains 128 units, while the second dense layer contains 64 
units, and different settings have different activation functions, 
which are ReLU and tanh. The output layer consists of a 
sigmoid activation function to get the CNN output. Finally, the 
output of CNN goes for model evaluation phase. Lastly, after 
comparison all the model with parameters, we pick one those 
which are best of all the apply imbalanced dataset for both 
datasets. 

 
 

5. RESULT AND DISCUSSION 
 
This section provides an analysis of proposed model which 

aim to find the best normalization method and 
hyperparameters which is more suitable for generalization in 
terms of the IDS system. Therefore, use different models with 
different hyperparameters to assess each model’s accuracy. 
 
5.1 Dataset 1: UNSW-NB15 

 
This work considers first dataset, to check different result 

with different hyperparameters setting. 
 
5.1.1 Min-max normalization with CNN 

The following procedure is applied to implement the 
proposed model. First, data is read from the panda’s library, as 
shown in Figure 2. After reading the data, one hot encoding is 
applied, as shown in Figure 3. The output of one hot encoding 
is fed into Min-Max normalization, as shown in Figure 4. 
Afterward, split the data into train and test parts using the 
sklearn function, as shown in Figure 5. 

 

 
 

Figure 2. Read the dataset 1 
 

 
 

Figure 3. One hot encoding function 
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Figure 4. Minmax function 
 

 
 

Figure 5. Train test split function 
 
Setting 1: Three dense layer CNN with ReLU activation 

function with pool size 2, 3 
The output of the train-test split function is fed into the CNN 

model to train the CNN model. This model combines Conv1D, 
max pooling (Different size), Conv1D, max pooling (Different 
size), and flatten layers, followed by three dense layers 
sequence (128, 64, 1) of setting 1. After training the model, 
confusion matrix in terms of recall, F1 score, accuracy, 
precision, and AUC score, RMSE, TPR, FPR, Specificity, 
Sensitivity as shown in the Table 2. Additional Accuracy 
0.9179 indicate weak generalization and poor generalization 
due to RMSE. 

 
Table 2. Setting 1 of mix-max 

 
Parameters Values 

Accuracy 0.9179 
Precision 0.9167 

Recall 0.9358 
F1 Score 0.9262 

Specificity 0.8961 
Sensitivity 93.58% 

RMSE 0.2865 
AUC Score 0.9159 

False Positive Rate (FPR) 0.1039 
True Positive Rate (TPR) 0.9358 

 
Setting 2: Three dense layer CNN with tanh activation 

function with pool size 2, 4 
Apply same process and after evaluation it is found that the 

improved generalization over Setting 1 and low error rate 
followed by strong sensitivity indicates balanced performance 
and good generalization as shown in the Table 3.  

 
Table 3. Setting 2 of mix-max 

 
Parameters Values 

Accuracy 0.9372 
Precision 0.9318 

Recall 0.9559 
F1 Score 0.9437 

Specificity 0.9144 
Sensitivity 95.59% 

RMSE 0.2505 
AUC Score 0.9352 

False Positive Rate (FPR) 0.0856 
True Positive Rate (TPR) 0.9559 

 
Setting 3: Three dense layer CNN with tanh activation 

function with pool size 3, 3 
Feeding the output to the train-test split function into CNN 

model, the accuracy is lower than setting 2 as shown in Table 

4. 
Setting 4: Three dense layer CNN with ReLU activation 

function with pool size 3, 3 
The same process is used as above, and the result showed 

that setting 4 gives poor precision, generalization and AUC 
score as shown in Table 5. 

 
Table 4. Setting 3 of mix-max 

 
Parameters Values 

Accuracy 0.9309 
Precision 0.9407 

Recall 0.9332 
F1 Score 0.9369 

Specificity 0.9280 
Sensitivity 93.32% 

RMSE 0.2629 
AUC Score 0.9306 

False Positive Rate (FPR) 0.0720 
True Positive Rate (TPR) 0.9332 

 
Table 5. Setting 4 of mix-max 

 
Parameters Values 

Accuracy 0.9164 
Precision 0.8888 

Recall 0.9692 
F1 Score 0.9273 

Specificity 0.8518 
Sensitivity 96.92% 

RMSE 0.2892 
AUC Score 0.9105 

False Positive Rate (FPR) 0.1482 
True Positive Rate (TPR) 0.9692 

 
5.1.2 Z-Score normalization with CNN 

The output of one-hot encoding is then fed into Z 
normalization. After that, split the data into train and test parts 
using the sklearn function. Apply Z-score as shown in Figure 
6. 
 

 
 

Figure 6. Apply Z-score on dataset 
 

Setting 1: Three dense layer CNN with ReLU activation 
function with pool size 2, 3 

The same process is used which is given above and setting 
4 is applied, and evaluate on Z-Score. The result showed good 
generalization, moderate recall, very few false positive and 
more generalization as shown in Table 6. 

Setting 2: Three dense layer CNN with tanh activation 
function with pool size 2, 4 

In this setting the performance is better than setting 1, as 
shown in Table 7. 

Setting 3: Three dense layer CNN with tanh activation 
function with pool size 3, 3 

In this setting 95.39% accuracy is achieved, which indicates 
strong generalization, lowest error among Z-score, Highest 
recall and high generalization as shown in Table 8. 

Setting 4: Three dense layer CNN with ReLU activation 
function with pool size 3, 3 
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The output of this setting gives good performance matrix 
but it is lower than setting 3 of Z-Score. Furthermore, RMSE 
gives higher error than Setting 3, precision is lower than 
Setting 2 and lastly good sensitivity but not highest. It is shown 
in Table 9. 

 
Table 6. Setting 1 of Z-Score 

 
Parameters Values 

Accuracy 0.9489 
Precision 0.9763 

Recall 0.9297 
F1 Score 0.9524 

Specificity 0.9724 
Sensitivity 92.97% 

RMSE 0.2260 
AUC Score 0.9510 

False Positive Rate (FPR) 0.0276 
True Positive Rate (TPR) 0.9297 

 
Table 7. Setting 2 of Z-Score 

 
Parameters Values 

Accuracy 0.9533 
Precision 0.9739 

Recall 0.9402 
F1 Score 0.9567 

Specificity 0.9693 
Sensitivity 94.02% 

RMSE 0.2161 
AUC Score 0.9547 

False Positive Rate (FPR) 0.0307 
True Positive Rate (TPR) 0.9402 

 
Table 8. Setting 3 of Z-Score 

 
Parameters Values 

Accuracy 0.9539 
Precision 0.9633 

Recall 0.9524 
F1 Score 0.9578 

Specificity 0.9558 
Sensitivity 95.24% 

RMSE 0.2146 
AUC Score 0.9541 

False Positive Rate (FPR) 0.0442 
True Positive Rate (TPR) 0.9524 

 
Table 9. Setting 4 of Z-Score 

 
Parameters Values 

Accuracy 0.9509 
Precision 0.9606 

Recall 0.9497 
F1 Score 0.9551 

Specificity 0.9524 
Sensitivity 94.97% 

RMSE 0.2215 
AUC Score 0.9511 

False Positive Rate (FPR) 0.0476 
True Positive Rate (TPR) 0.9497 

 
5.1.3 PCA normalization with CNN 

In the case of PCA, we follow the same procedure as above. 
The output of one-hot encoding is fed into PCA, as shown in 
the Figure 7.  

Setting 1: Three dense layer CNN with ReLU Activation 
function with pool size 2, 3 

This setting of PCA gives poor generalization, RMSE error 
is high and less precise in prediction and low sensitivity, and 
moderate generalization, which is shown in Table 10. 

 

 
 

Figure 7. Apply PCA on dataset 
 

Table 10. Setting 1 of PCA 
 

Parameters Values 
Accuracy 0.9018 
Precision 0.9565 

Recall 0.8597 
F1 Score 0.9055 

Specificity 0.9527 
Sensitivity 85.97% 

RMSE 0.3133 
AUC Score 0.9062 

False Positive Rate (FPR) 0.0473 
True Positive Rate (TPR) 0.8597 

 
Setting 2: Three dense layer CNN with tanh activation 

function with pool size 2, 4 
The same process is used but setting has changed. In setting 

2, it underperforms as compared to other PCA settings due to 
poor accuracy, RMSE, F1 score, AUC score which is shown 
in Table 11.  

Setting 3: Three dense layer CNN with tanh activation 
function with pool size 3, 3 

This setting gives poor generalization due to accuracy 
(0.8965), and poor precision (0.8969), high sensitivity, and 
poor balance, which indicate that this setting is not sufficient 
to carry forward as shown in Table 12. 

 
Table 11. Setting 2 of PCA 

 
Parameters Values 

Accuracy 0.8965 
Precision 0.8969 

Recall 0.9162 
F1 Score 0.9064 

Specificity 0.8727 
Sensitivity 91.62% 

RMSE 0.3217 
AUC Score 0.8945 

False Positive Rate (FPR) 0.1273 
True Positive Rate (TPR) 0.9162 

 
Table 12. Setting 3 of PCA 

 
Parameters Values 

Accuracy 0.8867 
Precision 0.8711 

Recall 0.9307 
F1 Score 0.8999 

Specificity 0.8335 
Sensitivity 93.07% 

RMSE 0.3366 
AUC Score 0.8821 

False Positive Rate (FPR) 0.1665 
True Positive Rate (TPR) 0.9307 
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Setting 4: Three dense layer CNN with sigmoid activation 
function with pool size 3, 3 

The result showed that moderate generalization, medium 
recall, and high RMSE is achieved and in conclusion it 
performs better among PCA settings, but still poor than Min-
Max or Z-Score normalization method as shown in Table 13. 

 
Table 13. Setting 4 of PCA 

 
Parameters Values 

Accuracy 0.8977 
Precision 0.9449 

Recall 0.8633 
F1 Score 0.9023 

Specificity 0.9392 
Sensitivity (Recall) 86.33% 

RMSE 0.3199 
AUC Score 0.9013 

False Positive Rate (FPR) 0.0608 
True Positive Rate (TPR) 0.8633 

 
5.2 Dataset 2: CIC-IDS-2017 

 
This work considers second dataset CIC-IDS-2017 to result 

with different hyperparameters settings of min-max, PCA, Z-
score. Firstly, dataset is read from pandas’ library as shown in 
Figure 8. 

 

 
 

Figure 8. Second dataset read from pandas’ library 
 

5.2.1 Min-max normalization with CNN 
Setting 1: Three dense layer CNN with ReLU activation 

function with pool size 2, 3 
Setting 1 of min-max indicates the poor recall limits and 

good generalization results as shown in Table 14. 
 

Table 14. Setting 1 of min-max 
 

Parameters Values 
Accuracy 0.9943 
Precision 0.8068 

Recall 0.5946 
F1 Score 0.6847 

Specificity 0.9985 
Sensitivity (Recall) 59.46% 

RMSE 0.0755 
AUC Score 0.7966 

False Positive Rate (FPR) 0.0015 
True Positive Rate (TPR) 0.5946 

 
Setting 2: Three dense layer CNN with min-max activation 

function with pool size 2, 4  
The accuracy 99.47% indicates the model with this setting 

indicate good generalization in terms of high precision, weak 
recall, and low error. The RMSE 0.073 indicate that the model 
of the setting 2 slightly better balance as shown in Table 15. 

Setting 3: Three dense layer CNN with tanh activation 
function with pool size 3, 3 

This work applied setting 3, which revealed the lower 
generalization in terms of AUC score and poor performance in 
terms of F1 Score, which is shown in Table 16.  

Setting 4: Three dense layer CNN with ReLU activation 

function with pool size 3, 3 
The setting 4 is the best among min-max normalization, due 

to best generalization, lowest error, slightly better recall, and 
achieve best F1 Score as shown in Table 17. 

 
Table 15. Setting 2 of min-max 

 
Parameters Values 

Accuracy 0.9947 
Precision 0.8724 

Recall 0.5729 
F1 Score 0.6916 

Specificity 0.9991 
Sensitivity (Recall) 57.29% 

RMSE 0.073 
AUC Score 0.786 

False Positive Rate (FPR) 0.0009 
True Positive Rate (TPR) 0.5729 

 
Table 16. Setting 3 of min-max 

 
Parameters Values 

Accuracy 0.9941 
Precision 0.8028 

Recall 0.5729 
F1 Score 0.6686 

Specificity 0.9985 
Sensitivity (Recall) 57.29% 

RMSE 0.0769 
AUC Score 0.7857 

False Positive Rate (FPR) 0.0015 
True Positive Rate (TPR) 0.5729 

 
Table 17. Setting 4 of min-max 

 
Parameters Values 

Accuracy 0.9949 
Precision 0.8787 

Recall 0.5946 
F1 Score 0.7093 

Specificity 0.9991 
Sensitivity (Recall) 59.46% 

RMSE 0.0713 
AUC Score 0.7969 

False Positive Rate (FPR) 0.0009 
True Positive Rate (TPR) 0.5946 

 
5.2.2 Z-Score normalization with CNN 

The output of one-hot encoding is then fed into Z 
normalization, as shown in the Figure 6.  

Setting 1: Three dense layer CNN with ReLU activation 
function with pool size 2, 3 

In this setting the accuracy was 99.56%, which achieved 
good generalizations and lower RMSE, and AUC 0.801, but 
the recall value is 0.6025, which is lower as shown in Table 
18. 

Setting 2: Three dense layer CNN with tanh activation 
function with pool size 2, 4 

From the above process, the different settings are used 
where RMSE is higher than setting 1, but the precision 0.9511 
is effective which indicates that it may be considered for final 
result which is shown in Table 19. 

Setting 3: Three dense layer CNN with tanh activation 
function with pool size 3, 3  

Based on setting 3 of Z-score, the AUC Score of setting 3 
indicates the lower generalization than Setting 2. But high 
precision which is 0.9511, but recall limits its effectiveness in 
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this setting as shown in Table 20. 
Setting 4: Three dense layer CNN with ReLU activation 

function with pool size 3, 3 
This setting is the best among of all z-score of datasets 2. 

Which means good AUC score, high precision, and F1 score 
is best balance among the above setting as shown in Table 21. 

 
Table 18. Setting 1 of Z-score 

 
Parameters Values 

Accuracy 0.9956 
Precision 0.9348 

Recall 0.6025 
F1 Score 0.7327 

Specificity 0.9996 
Sensitivity (Recall) 60.25% 

RMSE 0.0662 
AUC Score 0.801 

False Positive Rate (FPR) 0.0004 
True Positive Rate (TPR) 0.6025 

 
Table 19. Setting 2 of Z-score 

 
Parameters Values 

Accuracy 0.9955 
Precision 0.9511 

Recall 0.5797 
F1 Score 0.7203 

Specificity 0.9997 
Sensitivity (Recall) 57.97% 

RMSE 0.067 
AUC Score 0.7897 

False Positive Rate (FPR) 0.0003 
True Positive Rate (TPR) 0.5797 

 
Table 20. Setting 3 of Z-score 

 
Parameters Values 

Accuracy 0.9954 
Precision 0.935 

Recall 0.5797 
F1 Score 0.7157 

Specificity 0.9996 
Sensitivity (Recall) 57.97% 

RMSE 0.0677 
AUC Score 0.7896 

False Positive Rate (FPR) 0.0004 
True Positive Rate (TPR) 0.5797 

 
Table 21. Setting 4 of Z-score 

 
Parameters Values 

Accuracy 0.9955 
Precision 0.9198 

Recall 0.6025 
F1 Score 0.728 

Specificity 0.9995 
Sensitivity (Recall) 60.25% 

RMSE 0.067 
AUC Score 0.801 

False Positive Rate (FPR) 0.0005 
True Positive Rate (TPR) 0.6025 

 
5.2.3 PCA normalization with CNN 

The output of one-hot encoding is then fed into PCA, as 
shown in the Figure 7.  

Setting 1: Three dense layer CNN with ReLU activation 
function with pool size 2, 3 

Finally, the last phase of dataset 2 is used. In first setting 1, 
this setting is best among the above PCA setting 2, 3, 4 due to 
high precision, best recall, and excellent balance of F1 Score 
as shown in Table 22. 

Setting 2: Three dense layer CNN with tanh activation 
function with pool size 2, 4 

In this setting 2, the parameters indicate this an excellent 
generalization, second best in PCA. Additionally, F1 Score 
indicate good balance and RMSE is slightly higher error than 
setting 1, which is shown in Table 23. 

 
Table 22. Setting 1 of PCA 

 
Parameters Values 

Accuracy 0.9956 
Precision 0.932 

Recall 0.6208 
F1 Score 0.7452 

Specificity 0.9995 
Sensitivity (Recall) 62.08% 

RMSE 0.0664 
AUC Score 0.8102 

False Positive Rate (FPR) 0.0005 
True Positive Rate (TPR) 0.6208 

 
Table 23. Setting 2 of PCA 

 
Parameters Values 

Accuracy 0.9955 
Precision 0.9375 

Recall 0.604 
F1 Score 0.7347 

Specificity 0.9996 
Sensitivity (Recall) 60.40% 

RMSE 0.0674 
AUC Score 0.8018 

False Positive Rate (FPR) 0.0004 
True Positive Rate (TPR) 0.6040 

 
Table 24. Setting 3 of PCA 

 
Parameters Values 

Accuracy 0.9954 
Precision 0.9326 

Recall 0.604 
F1 Score 0.7332 

Specificity 0.9995 
Sensitivity (Recall) 60.40% 

RMSE 0.0676 
AUC Score 0.8018 

False Positive Rate (FPR) 0.0005 
True Positive Rate (TPR) 0.6040 

 
Table 25. Setting 4 of PCA 

 
Parameters Values 

Accuracy 0.9949 
Precision 0.842 

Recall 0.6258 
F1 Score 0.718 

Specificity 0.9988 
Sensitivity (Recall) 62.58% 

RMSE 0.0715 
AUC Score 0.8123 

False Positive Rate (FPR) 0.0012 
True Positive Rate (TPR) 0.6258 

 
Setting 3: Three dense layer CNN with tanh activation 
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function with pool size 3, 3 
For the setting 3 in PCA phase of dataset 2, the overall value 

indicate that it is weaker than Setting 1 and 2 but still good. 
Furthermore, recall (60.40%) is same as Setting 2 and F1 score 
73.32% is slightly lower than setting 2 as shown in Table 24. 

Setting 4: Three dense layer CNN with sigmoid activation 
function with pool size 3, 3 

Finally, the last one which is setting 4, this setting gives 
weakest generalization among PCA setting but recall is 
balanced as shown in Table 25. 

From the above setting of both dataset 1 and dataset 2. The 
Z-score setting 3 have best accuracy (95.39%), low RMSE 
(0.2146), high precision (96.33%), and high recall (95.24%). 
And For Dataset 2 the best setting is (PCA, setting 1) which 
shows strong accuracy (99.56%), low RMSE (0.0664), high 
precision (93.20%), and best recall (62.08%). And in 
conclusion, which one should pick among those? In that case, 
Z-Score setting 3 is used because due to balanced performance 
across all metrics which makes suitable for all other 
application like intrusion detection even on the basis of both 
precision and recall are critical factor. 

 
5.3 Memory and time usage 

 
This section discussed the different normalization method 

of PCA, Z score, Min-Max with respect to two datasets are as 
follows. 

 
Table 26. Dataset 1 training time and memory usage 

 
Model Setting Training Time (s) Memory Usage 

(MiB) 
Z-Score Setting 1 157.33 1271.28 
Z-Score Setting 2 187.39 1281.83 
Z-Score Setting 3 104.62 1249.21 
Z-Score Setting 4 102.34 1266.54 

Min-Max Setting 1 159.11 1317.90 
Min-Max Setting 2 144.47 1353.68 
Min-Max Setting 3 101.85 1329.94 
Min-Max Setting 4 123.12 1396.12 

PCA Setting 1 94.71 1190.85 
PCA Setting 2 67.05 1208.55 
PCA Setting 3 42.55 1231.015 
PCA Setting 4 50.71 1256.05 

Table 27. Dataset 2 training time and memory usage 
 

Model Setting Training Time (s) Memory Usage 
(MiB) 

Min-Max Setting 1 474.63 1586.74 
Min-Max Setting 2 446.63 1726.32 
Min-Max Setting 3 368.08 1639.22 
Min-Max Setting 4 397.86 1680.63 
Z-Score Setting 1 503.53 1608.5 
Z-Score Setting 2 506.7 1782.68 
Z-Score Setting 3 387.33 1665.37 
Z-Score Setting 4 385.23 1638.32 

PCA Setting 1 117.01 1666.37 
PCA Setting 2 126.79 1724.15 
PCA Setting 3 94.98 1734.71 
PCA Setting 4 99.57 1777.37 

 
Dataset 1: This section includes total 12 setting of dataset 

1, to check the training time and memory usage which is 
shown in Table 26.  

Dataset 2: This section includes total 12 setting of dataset 
2, to check the training time and memory usage which is 
shown in Table 27.  

From all above settings, Z-score setting 1 has less memory 
as compared to PCA but the disadvantage is that time of PCA 
is faster than Z-score. 

 
5.4 Evaluation of model performance on imbalanced 
datasets 

 
After running the Z score setting 3 on dataset 1. It applied 

on two dataset and check on imbalanced ratio and how to 
tackle the attacks in IDS. 

Figures 9 and 10 show the imbalanced ratio, which is used 
in further evaluation. After the evaluation the dataset 1 and 
dataset 2 parameters value are shown in Tables 28 and 29. In 
first dataset as the attack ratio increase the model recall value 
is increased as shown in Table 28 which indicate better 
detection ratio. For second dataset the accuracy maintains even 
though apply first setting of dataset 2. Also, AUC score is high 
which indicate model has potential to identify threat easily. 
Additionally, a visualization graph is depicted for dataset 1 
and dataset 2 in Figures 9 and 10. 

 

 
 

Figure 9. First dataset performance metrics 
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Figure 10. Second dataset performance metrics 
 

Table 28. Dataset 1 performance metrics 
 

Metric Attack 
Ratio: 0.05 

Attack 
Ratio: 0.1 

Attack 
Ratio: 0.2 

Accuracy 93.54% 93.95% 94.59% 
Precision 99.73% 99.68% 99.27% 

Recall 
(Sensitivity) 88.47% 89.26% 90.82% 

F1 Score 93.76% 94.18% 94.86% 
AUC Score 99.37% 99.35% 99.33% 

RMSE 0.2295 0.2157 0.2004 
 

Table 29. Dataset 2 performance metrics 
 

Metric Attack 
Ratio: 0.05 

Attack 
Ratio: 0.1 

Attack 
Ratio: 0.2 

Accuracy 98.55% 95.67% 95.74% 
Precision 38.69% 18.02% 18.16% 

Recall 
(Sensitivity) 

80.67% 95.57% 95.04% 

F1 Score 52.30% 30.32% 30.50% 
AUC Score 99.11% 98.99% 98.97% 

RMSE 0.0985 0.1534 0.1592 
 
 

6. CONCLUSIONS AND FUTURE SCOPE 
 
IDS enhances network security by identifying threats and 

malicious activity in computer systems. We propose a model 
that improves the IDS system by integrating normalization and 
only three dense layers of CNN. Aim of work to demonstrate 
how a 3-layer CNN would work effectively with the 
combination of normalization methods to enhance network 
security. After applying 24 parameters settings it is observed 
that the Z-score setting 3 has the best option to choose for 
model evaluation on the basis of F1 score, precision, recall, 
accuracy, RMSE, AUC Score and learning curve accuracy.  
The future scope of the proposed model with 3 dense layer 
include testing on large dataset and decrease the computational 
cost in terms of time and memory with these settings. 
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