
Elevating Intrusion Detection: A CNN Approach with Pre-Processing Enhancements

Anil Patidar , Kailash Chandra Bandhu* , Ratnesh Litoriya

Department of Computer Science and Engineering, Medicaps University, Indore 453331, India

Corresponding Author Email: kailashchandra.bandhu@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300319 ABSTRACT

Received: 15 December 2024
Revised: 21 January 2025
Accepted: 14 March 2025
Available online: 31 March 2025

The Internet of Things has significantly improved in different industries, although the
enormous scale and complexity of IoT systems have faced security risks. To solve this
problem, intrusion detection systems (IDS) are utilized, which guarantee the security state
of IoT and protect it from cyber threats efficiently. In the current era, machine learning
(ML) methodologies have been widely employed for IDS in IoT systems. Still, more work
needs to be done, particularly when handling the functional and physical diversity of IoT
devices. This work proposed a model that integrates with the normalization steps with Three
dense layers CNN. Furthermore, this study employs the two dataset which are UNSW-
NB15, CIC-IDS- 2017. The final selection of model is test on 24 different setting. These
steps are essential to improve the quality of input data and to highlight the effectiveness of
IDS. The proposed model is evaluated using accuracy, F1 score, precision, recall, RMSE,
training accuracy, AUC score, TPR, FPR, specificity, sensitivity, training time and memory
usage.

Keywords:
CNN, normalization method, pre-
processing, intrusion detection, IoT

1. INTRODUCTION

One of the main problems with the communication in recent
days is the IoT, because of many benefits and applications of
IoT, various researchers have currently sought to overcome the
obstacles in this area in an effort to attribute the required basis
for the technology’s rapid growth in real world [1]. Security is
one of the primary problems with IoT applications, because
new attack types are emerging intrusion techniques as threats
are grown [2]. Since, the IDS frequently employs pattern
analysis to identify attacks as it is thought to be one of the most
effective security solutions for networking system [3-5].

Some researchers have employed ML approaches to
minimize false alerts in IDS. Based on the characteristics of
each attack, an IDS identify attacks more precisely by
adopting the ML topology [6]. The traditional approaches of
ML, including Decision Trees (DT) [7], Support Vector
Machines (SVMs) [8], and k-Nearest Neighbors (k-NN) [9],
for improving the detection accuracy of intrusion but these
each approaches have its advantages and limitations. The
foremost objective of utilizing DT is to generate a training
model that employed to forecast the target variable class by
applying decision rules obtained from the training data and
classify the IDS efficiently [10].

However, it overfit to training data that leads to worsen the
performance of Intrusion detection [11]. Because of strong
generalization abilities and capacity to determine patterns,
SVM have gained popularity for IDS as it overcomes the
dimensionality issue. Nevertheless, this approach face
challenges to apply large training sets owing to its higher
computational time and space consumption and the primary
difficulties with SVM falsehood in determining pertinent

features for anomaly identification while handling high
computational overhead.

K-NN is recognized for its simplicity and adaptability. The
algorithm’s non-parametric nature allows it to classify data
based on proximity to labelled instances, which advantageous
for dynamic environments where patterns change frequently.
Despite this, k-NN’s reliance on distance calculations and
leads to inefficiencies and increased processing time as the
volume of data scales up [12, 13].

To address the limitations of these traditional methods and
meet the growing demands of IoT security, it is crucial to
explore advanced DL approaches [14-22] that enhance
detection accuracy and efficiency [23].

This paper tackles three questions. The first question is, is
the minimal number of layers of CNN sufficient to achieve
good accuracy? The second question is, does a different pre-
processing phase result in different accuracy? Third question
is, does minimum number of layer achieved generalization?

For the first query, the minimal number of dense values with
different hyperparameters setting to check the accuracy with
two datasets [24, 25].

In response to the second question, it compares the accuracy
of the different models by comparing the three pre-processing
phases of each CNN which is most commonly used. For third
query it will compare the result of different accuracy measure
to check for generality.

The rest of the paper is organized into different sections.
The background work is covered in Section 2. Section 3 covers
motivations. A more detailed analysis of the model is covered
in the methodology Section 4. Result and discussion are
covered in Section 5. The conclusion and future work are
given in Section 6.

Ingénierie des Systèmes d’Information
Vol. 30, No. 3, March, 2025, pp. 753-762

Journal homepage: http://iieta.org/journals/isi

753

https://orcid.org/0009-0002-6954-8413
https://orcid.org/0000-0002-4337-4198
https://orcid.org/0000-0002-7285-422X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300319&domain=pdf

2. BACKGROUND WORK

This section explores the what other author have done in

crucial pre-processing step and the Convolutional Neural
Network (CNN) architecture. This will provide insights into

how the IDS is enhanced and how it can effectively identify
various threats by implementing machine learning and deep
learning models. Table 1 shows the various author
implementation details including advantages and
disadvantages.

Table 1. Background works

S. No. Author Advantages Disadvantages Accuracy

1. Zhao et al.
[1]

This paper introduces with Lightweight model that
reduces complexity using PCA. Author uses classifier for
expansion and compression, inverse residual structure to

extract features efficiently without needing much
computation.

The PCA may lead to loss of
critical feature as it belongs

dimensionality reduction and
which limit to robustness
evaluation for different

intrusion types.

2. Saba et al.
[2]

Introduces a CNN-based method for anomaly detection in
IDS, which uses IoT's capabilities to efficiently monitor

all network traffic. The model is designed to detect
potential intrusions and unusual traffic behaviour.

Optimize hyper parameters in
deep learning that connect to

model performance.

99.51% on NID,
BOT-IOT on 92.85%

dataset

3. Liu et al. [3]
Author combines PSO and Light GBM for effective

feature selection and for classification. Additionally, this
model detects Backdoor, Shellcode, Worms attacks.

High computational cost and
timing.

Backdoor rate is
51.28, where

Shellcode rates is
64.47% and 77.78%
frowarm detection

4. Abbas et al.
[4]

Author combines logistic regression, naive Bayes, and
decision tree classifiers using a voting mechanism for

intrusion detection.
None. 99.67%

5. Musleh et
al. [11]

Systematic evaluation of feature extraction techniques
using VGG-16 and stacking model. High computational cost. 98.3%

6. El-Sayed et
al. [15]

Author proposes a new approach called PCAP which
compare seven Algorithm that split into two categories:

CNN-based models (Two-Layer CNN, Four-Layer CNN,
VGG16) and standard classifiers (Logistic Regression,

Support Vector Machine, K-Nearest Neighbours Creative
image-based malware detection.

Overhead from PCAP-to-
RGB conversion. 94%

7. Liu et al.
[26]

The paper proposed an IDS Algorithm located on
network layer of IOT, that use the BPSO Algorithm to

extract feature from the NSL KDD dataset.

The disadvantage of anomaly
detection of the whole

network layer is missing.
82.9%

3. MOTIVATION

After thoroughly reviewing the paper, it was noted that the

author employed various machine learning algorithms.
However, the most approach behind with respect the
optimization using minimum number of layers that can lead to
better result and take less memory. Furthermore, high
computational cost of some model makes less practical to
implement for others due to resources constrained,
necessitating the design of an efficient CNN architecture.
Lastly, many works are limited on the basis of evolution
matrix, which may not provide the in-depth analysis. To
address these gaps the propose method solve the
computational time, memory, and choose the better
preprocessing phase to get more generalize result. In this work,
the proposed model is evaluated using confusion matrix score,
RMSE, training score, training time, memory usage,
computation time, FPR and TPR.

4. METHODOLOGY

The primary objective of this research is to explore the

impact of preprocessing techniques on the accuracy of
different Internet of Things (IoT) datasets, mainly when using
a minimal number of layers in a Convolution Neural Network
(CNN). The research model comprises the following detailed

subsections.

4.1 Dataset description

To show the proposed method’s importance, this research

uses two of the most common datasets, CIC-IDS- 2017 [24]
and UNSW-NB15 [25]. The first data set contains 82333 data
and 45 features and second having 191033 rows × 79 columns.
which are used to evaluate the proposed model and show how
this affects its performance. This research uses the two
datasets to evaluate the model’s performance and compare it
further.

4.2 Proposed model component

The proposed model’s primary components involve

preprocessing techniques such as one-hot encoding and data
normalization. One-hot encoding represents categorical data
in a binary format, while data normalization is employed to
scale the numerical features. After these preprocessing steps,
the output of data normalization is further processed using the
train test split function which break into training dataset and
testing dataset, facilitating the application of convolutional
neural networks (CNN). Finally, deep CNN is utilized to
analyse the dataset, generating both an accuracy matrix and a
confusion matrix different accuracy to evaluate the model
performance for both datasets.

754

Figure 1. Flow diagram of proposed method

4.3 One hot encoding

One hot encoding converts a specific feature’s nominal data

into integer data. Owing to one hot encoding, only one of the
N states has a value of 1, while other states have a value of 0,
guaranteeing that only one state of every sample is in the
activated state. One hot encoding method is applied to the
nominal data in this dataset.

Normalization is a data preprocessing step, where ML
algorithm which is used by using sklearn, to transform
categorial data into numerical values. The main aim is to
normalization and make different features of a dataset
comparable to each other, especially when they have different
scales. This method helps to improve the neural network and
gradient descent. This model uses three commonly used
methods: Z score normalization, min-max normalization, and
PCA. In the first setting, use min-max normalization and then
apply CNN with different hyperparameter settings. Similarly,
use the same hyperparameter settings as above for Z-score
normalization and PCA.

The output of the preprocessing phase is now further fed
into the train test split function to evaluate it into CNN as
shown in Figure 1. This will also be used to evaluate the
model’s performance. The total number of layers used in the
paper is 11, with 3 dense layers, which combine the pooling
layer, flatten layer, and dense layer.

4.4 Investigation tool

The proposed model was conducted using google Colab

with powerful T4 GPU with 12 GB RAM. The proposed
model used the most frequent library called tensorflow and
skit-learn. The proposed model was designed to use minimal
computational resources and it is tested on advanced tool and
use advanced library which give optimum result.

4.5 Model flow

The first step is to read data from the panda’s library. After

reading the data, it is passed to one-hot encoding if it has
categorial features. Following this, the encoded data
undergoes normalization using three different techniques: Z-
score normalization, which standardizes the data, and Minmax
normalization, which scales the data between a specified range.
Lastly, PCA is applied. After the normalization, the dataset is
split into training and testing sets to facilitate model evaluation,
and the setting of train test data is 70%-30% split for both
datasets.

After the data is prepared, it is passed through a
convolutional neural network architecture. The first layer of

the CNN consists of a Conv 1D layer with 64 filters and a
kernel size of 3, using the ReLU activation function to
introduce nonlinearity, followed by a max pooling-1D layer
with a pool size (Different Combination) to down sample the
data and reduce dimensionality. The second convolutional
layer consists of a Conv1D with 128 filters and a kernel size
of 3, again followed by a MaxPooling1D layer with a pool size
of (Different Combination) for further down sampling. Finally,
the output of this layer is then flattened into a vector format,
which is fed into two dense layers. The first dense layer
contains 128 units, while the second dense layer contains 64
units, and different settings have different activation functions,
which are ReLU and tanh. The output layer consists of a
sigmoid activation function to get the CNN output. Finally, the
output of CNN goes for model evaluation phase. Lastly, after
comparison all the model with parameters, we pick one those
which are best of all the apply imbalanced dataset for both
datasets.

5. RESULT AND DISCUSSION

This section provides an analysis of proposed model which

aim to find the best normalization method and
hyperparameters which is more suitable for generalization in
terms of the IDS system. Therefore, use different models with
different hyperparameters to assess each model’s accuracy.

5.1 Dataset 1: UNSW-NB15

This work considers first dataset, to check different result

with different hyperparameters setting.

5.1.1 Min-max normalization with CNN

The following procedure is applied to implement the
proposed model. First, data is read from the panda’s library, as
shown in Figure 2. After reading the data, one hot encoding is
applied, as shown in Figure 3. The output of one hot encoding
is fed into Min-Max normalization, as shown in Figure 4.
Afterward, split the data into train and test parts using the
sklearn function, as shown in Figure 5.

Figure 2. Read the dataset 1

Figure 3. One hot encoding function

755

Figure 4. Minmax function

Figure 5. Train test split function

Setting 1: Three dense layer CNN with ReLU activation

function with pool size 2, 3
The output of the train-test split function is fed into the CNN

model to train the CNN model. This model combines Conv1D,
max pooling (Different size), Conv1D, max pooling (Different
size), and flatten layers, followed by three dense layers
sequence (128, 64, 1) of setting 1. After training the model,
confusion matrix in terms of recall, F1 score, accuracy,
precision, and AUC score, RMSE, TPR, FPR, Specificity,
Sensitivity as shown in the Table 2. Additional Accuracy
0.9179 indicate weak generalization and poor generalization
due to RMSE.

Table 2. Setting 1 of mix-max

Parameters Values

Accuracy 0.9179
Precision 0.9167

Recall 0.9358
F1 Score 0.9262

Specificity 0.8961
Sensitivity 93.58%

RMSE 0.2865
AUC Score 0.9159

False Positive Rate (FPR) 0.1039
True Positive Rate (TPR) 0.9358

Setting 2: Three dense layer CNN with tanh activation

function with pool size 2, 4
Apply same process and after evaluation it is found that the

improved generalization over Setting 1 and low error rate
followed by strong sensitivity indicates balanced performance
and good generalization as shown in the Table 3.

Table 3. Setting 2 of mix-max

Parameters Values

Accuracy 0.9372
Precision 0.9318

Recall 0.9559
F1 Score 0.9437

Specificity 0.9144
Sensitivity 95.59%

RMSE 0.2505
AUC Score 0.9352

False Positive Rate (FPR) 0.0856
True Positive Rate (TPR) 0.9559

Setting 3: Three dense layer CNN with tanh activation

function with pool size 3, 3
Feeding the output to the train-test split function into CNN

model, the accuracy is lower than setting 2 as shown in Table

4.
Setting 4: Three dense layer CNN with ReLU activation

function with pool size 3, 3
The same process is used as above, and the result showed

that setting 4 gives poor precision, generalization and AUC
score as shown in Table 5.

Table 4. Setting 3 of mix-max

Parameters Values

Accuracy 0.9309
Precision 0.9407

Recall 0.9332
F1 Score 0.9369

Specificity 0.9280
Sensitivity 93.32%

RMSE 0.2629
AUC Score 0.9306

False Positive Rate (FPR) 0.0720
True Positive Rate (TPR) 0.9332

Table 5. Setting 4 of mix-max

Parameters Values

Accuracy 0.9164
Precision 0.8888

Recall 0.9692
F1 Score 0.9273

Specificity 0.8518
Sensitivity 96.92%

RMSE 0.2892
AUC Score 0.9105

False Positive Rate (FPR) 0.1482
True Positive Rate (TPR) 0.9692

5.1.2 Z-Score normalization with CNN

The output of one-hot encoding is then fed into Z
normalization. After that, split the data into train and test parts
using the sklearn function. Apply Z-score as shown in Figure
6.

Figure 6. Apply Z-score on dataset

Setting 1: Three dense layer CNN with ReLU activation
function with pool size 2, 3

The same process is used which is given above and setting
4 is applied, and evaluate on Z-Score. The result showed good
generalization, moderate recall, very few false positive and
more generalization as shown in Table 6.

Setting 2: Three dense layer CNN with tanh activation
function with pool size 2, 4

In this setting the performance is better than setting 1, as
shown in Table 7.

Setting 3: Three dense layer CNN with tanh activation
function with pool size 3, 3

In this setting 95.39% accuracy is achieved, which indicates
strong generalization, lowest error among Z-score, Highest
recall and high generalization as shown in Table 8.

Setting 4: Three dense layer CNN with ReLU activation
function with pool size 3, 3

756

The output of this setting gives good performance matrix
but it is lower than setting 3 of Z-Score. Furthermore, RMSE
gives higher error than Setting 3, precision is lower than
Setting 2 and lastly good sensitivity but not highest. It is shown
in Table 9.

Table 6. Setting 1 of Z-Score

Parameters Values

Accuracy 0.9489
Precision 0.9763

Recall 0.9297
F1 Score 0.9524

Specificity 0.9724
Sensitivity 92.97%

RMSE 0.2260
AUC Score 0.9510

False Positive Rate (FPR) 0.0276
True Positive Rate (TPR) 0.9297

Table 7. Setting 2 of Z-Score

Parameters Values

Accuracy 0.9533
Precision 0.9739

Recall 0.9402
F1 Score 0.9567

Specificity 0.9693
Sensitivity 94.02%

RMSE 0.2161
AUC Score 0.9547

False Positive Rate (FPR) 0.0307
True Positive Rate (TPR) 0.9402

Table 8. Setting 3 of Z-Score

Parameters Values

Accuracy 0.9539
Precision 0.9633

Recall 0.9524
F1 Score 0.9578

Specificity 0.9558
Sensitivity 95.24%

RMSE 0.2146
AUC Score 0.9541

False Positive Rate (FPR) 0.0442
True Positive Rate (TPR) 0.9524

Table 9. Setting 4 of Z-Score

Parameters Values

Accuracy 0.9509
Precision 0.9606

Recall 0.9497
F1 Score 0.9551

Specificity 0.9524
Sensitivity 94.97%

RMSE 0.2215
AUC Score 0.9511

False Positive Rate (FPR) 0.0476
True Positive Rate (TPR) 0.9497

5.1.3 PCA normalization with CNN

In the case of PCA, we follow the same procedure as above.
The output of one-hot encoding is fed into PCA, as shown in
the Figure 7.

Setting 1: Three dense layer CNN with ReLU Activation
function with pool size 2, 3

This setting of PCA gives poor generalization, RMSE error
is high and less precise in prediction and low sensitivity, and
moderate generalization, which is shown in Table 10.

Figure 7. Apply PCA on dataset

Table 10. Setting 1 of PCA

Parameters Values
Accuracy 0.9018
Precision 0.9565

Recall 0.8597
F1 Score 0.9055

Specificity 0.9527
Sensitivity 85.97%

RMSE 0.3133
AUC Score 0.9062

False Positive Rate (FPR) 0.0473
True Positive Rate (TPR) 0.8597

Setting 2: Three dense layer CNN with tanh activation

function with pool size 2, 4
The same process is used but setting has changed. In setting

2, it underperforms as compared to other PCA settings due to
poor accuracy, RMSE, F1 score, AUC score which is shown
in Table 11.

Setting 3: Three dense layer CNN with tanh activation
function with pool size 3, 3

This setting gives poor generalization due to accuracy
(0.8965), and poor precision (0.8969), high sensitivity, and
poor balance, which indicate that this setting is not sufficient
to carry forward as shown in Table 12.

Table 11. Setting 2 of PCA

Parameters Values

Accuracy 0.8965
Precision 0.8969

Recall 0.9162
F1 Score 0.9064

Specificity 0.8727
Sensitivity 91.62%

RMSE 0.3217
AUC Score 0.8945

False Positive Rate (FPR) 0.1273
True Positive Rate (TPR) 0.9162

Table 12. Setting 3 of PCA

Parameters Values

Accuracy 0.8867
Precision 0.8711

Recall 0.9307
F1 Score 0.8999

Specificity 0.8335
Sensitivity 93.07%

RMSE 0.3366
AUC Score 0.8821

False Positive Rate (FPR) 0.1665
True Positive Rate (TPR) 0.9307

757

Setting 4: Three dense layer CNN with sigmoid activation
function with pool size 3, 3

The result showed that moderate generalization, medium
recall, and high RMSE is achieved and in conclusion it
performs better among PCA settings, but still poor than Min-
Max or Z-Score normalization method as shown in Table 13.

Table 13. Setting 4 of PCA

Parameters Values

Accuracy 0.8977
Precision 0.9449

Recall 0.8633
F1 Score 0.9023

Specificity 0.9392
Sensitivity (Recall) 86.33%

RMSE 0.3199
AUC Score 0.9013

False Positive Rate (FPR) 0.0608
True Positive Rate (TPR) 0.8633

5.2 Dataset 2: CIC-IDS-2017

This work considers second dataset CIC-IDS-2017 to result

with different hyperparameters settings of min-max, PCA, Z-
score. Firstly, dataset is read from pandas’ library as shown in
Figure 8.

Figure 8. Second dataset read from pandas’ library

5.2.1 Min-max normalization with CNN
Setting 1: Three dense layer CNN with ReLU activation

function with pool size 2, 3
Setting 1 of min-max indicates the poor recall limits and

good generalization results as shown in Table 14.

Table 14. Setting 1 of min-max

Parameters Values
Accuracy 0.9943
Precision 0.8068

Recall 0.5946
F1 Score 0.6847

Specificity 0.9985
Sensitivity (Recall) 59.46%

RMSE 0.0755
AUC Score 0.7966

False Positive Rate (FPR) 0.0015
True Positive Rate (TPR) 0.5946

Setting 2: Three dense layer CNN with min-max activation

function with pool size 2, 4
The accuracy 99.47% indicates the model with this setting

indicate good generalization in terms of high precision, weak
recall, and low error. The RMSE 0.073 indicate that the model
of the setting 2 slightly better balance as shown in Table 15.

Setting 3: Three dense layer CNN with tanh activation
function with pool size 3, 3

This work applied setting 3, which revealed the lower
generalization in terms of AUC score and poor performance in
terms of F1 Score, which is shown in Table 16.

Setting 4: Three dense layer CNN with ReLU activation

function with pool size 3, 3
The setting 4 is the best among min-max normalization, due

to best generalization, lowest error, slightly better recall, and
achieve best F1 Score as shown in Table 17.

Table 15. Setting 2 of min-max

Parameters Values

Accuracy 0.9947
Precision 0.8724

Recall 0.5729
F1 Score 0.6916

Specificity 0.9991
Sensitivity (Recall) 57.29%

RMSE 0.073
AUC Score 0.786

False Positive Rate (FPR) 0.0009
True Positive Rate (TPR) 0.5729

Table 16. Setting 3 of min-max

Parameters Values

Accuracy 0.9941
Precision 0.8028

Recall 0.5729
F1 Score 0.6686

Specificity 0.9985
Sensitivity (Recall) 57.29%

RMSE 0.0769
AUC Score 0.7857

False Positive Rate (FPR) 0.0015
True Positive Rate (TPR) 0.5729

Table 17. Setting 4 of min-max

Parameters Values

Accuracy 0.9949
Precision 0.8787

Recall 0.5946
F1 Score 0.7093

Specificity 0.9991
Sensitivity (Recall) 59.46%

RMSE 0.0713
AUC Score 0.7969

False Positive Rate (FPR) 0.0009
True Positive Rate (TPR) 0.5946

5.2.2 Z-Score normalization with CNN

The output of one-hot encoding is then fed into Z
normalization, as shown in the Figure 6.

Setting 1: Three dense layer CNN with ReLU activation
function with pool size 2, 3

In this setting the accuracy was 99.56%, which achieved
good generalizations and lower RMSE, and AUC 0.801, but
the recall value is 0.6025, which is lower as shown in Table
18.

Setting 2: Three dense layer CNN with tanh activation
function with pool size 2, 4

From the above process, the different settings are used
where RMSE is higher than setting 1, but the precision 0.9511
is effective which indicates that it may be considered for final
result which is shown in Table 19.

Setting 3: Three dense layer CNN with tanh activation
function with pool size 3, 3

Based on setting 3 of Z-score, the AUC Score of setting 3
indicates the lower generalization than Setting 2. But high
precision which is 0.9511, but recall limits its effectiveness in

758

this setting as shown in Table 20.
Setting 4: Three dense layer CNN with ReLU activation

function with pool size 3, 3
This setting is the best among of all z-score of datasets 2.

Which means good AUC score, high precision, and F1 score
is best balance among the above setting as shown in Table 21.

Table 18. Setting 1 of Z-score

Parameters Values

Accuracy 0.9956
Precision 0.9348

Recall 0.6025
F1 Score 0.7327

Specificity 0.9996
Sensitivity (Recall) 60.25%

RMSE 0.0662
AUC Score 0.801

False Positive Rate (FPR) 0.0004
True Positive Rate (TPR) 0.6025

Table 19. Setting 2 of Z-score

Parameters Values

Accuracy 0.9955
Precision 0.9511

Recall 0.5797
F1 Score 0.7203

Specificity 0.9997
Sensitivity (Recall) 57.97%

RMSE 0.067
AUC Score 0.7897

False Positive Rate (FPR) 0.0003
True Positive Rate (TPR) 0.5797

Table 20. Setting 3 of Z-score

Parameters Values

Accuracy 0.9954
Precision 0.935

Recall 0.5797
F1 Score 0.7157

Specificity 0.9996
Sensitivity (Recall) 57.97%

RMSE 0.0677
AUC Score 0.7896

False Positive Rate (FPR) 0.0004
True Positive Rate (TPR) 0.5797

Table 21. Setting 4 of Z-score

Parameters Values

Accuracy 0.9955
Precision 0.9198

Recall 0.6025
F1 Score 0.728

Specificity 0.9995
Sensitivity (Recall) 60.25%

RMSE 0.067
AUC Score 0.801

False Positive Rate (FPR) 0.0005
True Positive Rate (TPR) 0.6025

5.2.3 PCA normalization with CNN

The output of one-hot encoding is then fed into PCA, as
shown in the Figure 7.

Setting 1: Three dense layer CNN with ReLU activation
function with pool size 2, 3

Finally, the last phase of dataset 2 is used. In first setting 1,
this setting is best among the above PCA setting 2, 3, 4 due to
high precision, best recall, and excellent balance of F1 Score
as shown in Table 22.

Setting 2: Three dense layer CNN with tanh activation
function with pool size 2, 4

In this setting 2, the parameters indicate this an excellent
generalization, second best in PCA. Additionally, F1 Score
indicate good balance and RMSE is slightly higher error than
setting 1, which is shown in Table 23.

Table 22. Setting 1 of PCA

Parameters Values

Accuracy 0.9956
Precision 0.932

Recall 0.6208
F1 Score 0.7452

Specificity 0.9995
Sensitivity (Recall) 62.08%

RMSE 0.0664
AUC Score 0.8102

False Positive Rate (FPR) 0.0005
True Positive Rate (TPR) 0.6208

Table 23. Setting 2 of PCA

Parameters Values

Accuracy 0.9955
Precision 0.9375

Recall 0.604
F1 Score 0.7347

Specificity 0.9996
Sensitivity (Recall) 60.40%

RMSE 0.0674
AUC Score 0.8018

False Positive Rate (FPR) 0.0004
True Positive Rate (TPR) 0.6040

Table 24. Setting 3 of PCA

Parameters Values

Accuracy 0.9954
Precision 0.9326

Recall 0.604
F1 Score 0.7332

Specificity 0.9995
Sensitivity (Recall) 60.40%

RMSE 0.0676
AUC Score 0.8018

False Positive Rate (FPR) 0.0005
True Positive Rate (TPR) 0.6040

Table 25. Setting 4 of PCA

Parameters Values

Accuracy 0.9949
Precision 0.842

Recall 0.6258
F1 Score 0.718

Specificity 0.9988
Sensitivity (Recall) 62.58%

RMSE 0.0715
AUC Score 0.8123

False Positive Rate (FPR) 0.0012
True Positive Rate (TPR) 0.6258

Setting 3: Three dense layer CNN with tanh activation

759

function with pool size 3, 3
For the setting 3 in PCA phase of dataset 2, the overall value

indicate that it is weaker than Setting 1 and 2 but still good.
Furthermore, recall (60.40%) is same as Setting 2 and F1 score
73.32% is slightly lower than setting 2 as shown in Table 24.

Setting 4: Three dense layer CNN with sigmoid activation
function with pool size 3, 3

Finally, the last one which is setting 4, this setting gives
weakest generalization among PCA setting but recall is
balanced as shown in Table 25.

From the above setting of both dataset 1 and dataset 2. The
Z-score setting 3 have best accuracy (95.39%), low RMSE
(0.2146), high precision (96.33%), and high recall (95.24%).
And For Dataset 2 the best setting is (PCA, setting 1) which
shows strong accuracy (99.56%), low RMSE (0.0664), high
precision (93.20%), and best recall (62.08%). And in
conclusion, which one should pick among those? In that case,
Z-Score setting 3 is used because due to balanced performance
across all metrics which makes suitable for all other
application like intrusion detection even on the basis of both
precision and recall are critical factor.

5.3 Memory and time usage

This section discussed the different normalization method

of PCA, Z score, Min-Max with respect to two datasets are as
follows.

Table 26. Dataset 1 training time and memory usage

Model Setting Training Time (s) Memory Usage

(MiB)
Z-Score Setting 1 157.33 1271.28
Z-Score Setting 2 187.39 1281.83
Z-Score Setting 3 104.62 1249.21
Z-Score Setting 4 102.34 1266.54

Min-Max Setting 1 159.11 1317.90
Min-Max Setting 2 144.47 1353.68
Min-Max Setting 3 101.85 1329.94
Min-Max Setting 4 123.12 1396.12

PCA Setting 1 94.71 1190.85
PCA Setting 2 67.05 1208.55
PCA Setting 3 42.55 1231.015
PCA Setting 4 50.71 1256.05

Table 27. Dataset 2 training time and memory usage

Model Setting Training Time (s) Memory Usage
(MiB)

Min-Max Setting 1 474.63 1586.74
Min-Max Setting 2 446.63 1726.32
Min-Max Setting 3 368.08 1639.22
Min-Max Setting 4 397.86 1680.63
Z-Score Setting 1 503.53 1608.5
Z-Score Setting 2 506.7 1782.68
Z-Score Setting 3 387.33 1665.37
Z-Score Setting 4 385.23 1638.32

PCA Setting 1 117.01 1666.37
PCA Setting 2 126.79 1724.15
PCA Setting 3 94.98 1734.71
PCA Setting 4 99.57 1777.37

Dataset 1: This section includes total 12 setting of dataset

1, to check the training time and memory usage which is
shown in Table 26.

Dataset 2: This section includes total 12 setting of dataset
2, to check the training time and memory usage which is
shown in Table 27.

From all above settings, Z-score setting 1 has less memory
as compared to PCA but the disadvantage is that time of PCA
is faster than Z-score.

5.4 Evaluation of model performance on imbalanced
datasets

After running the Z score setting 3 on dataset 1. It applied

on two dataset and check on imbalanced ratio and how to
tackle the attacks in IDS.

Figures 9 and 10 show the imbalanced ratio, which is used
in further evaluation. After the evaluation the dataset 1 and
dataset 2 parameters value are shown in Tables 28 and 29. In
first dataset as the attack ratio increase the model recall value
is increased as shown in Table 28 which indicate better
detection ratio. For second dataset the accuracy maintains even
though apply first setting of dataset 2. Also, AUC score is high
which indicate model has potential to identify threat easily.
Additionally, a visualization graph is depicted for dataset 1
and dataset 2 in Figures 9 and 10.

Figure 9. First dataset performance metrics

760

Figure 10. Second dataset performance metrics

Table 28. Dataset 1 performance metrics

Metric Attack
Ratio: 0.05

Attack
Ratio: 0.1

Attack
Ratio: 0.2

Accuracy 93.54% 93.95% 94.59%
Precision 99.73% 99.68% 99.27%

Recall
(Sensitivity) 88.47% 89.26% 90.82%

F1 Score 93.76% 94.18% 94.86%
AUC Score 99.37% 99.35% 99.33%

RMSE 0.2295 0.2157 0.2004

Table 29. Dataset 2 performance metrics

Metric Attack
Ratio: 0.05

Attack
Ratio: 0.1

Attack
Ratio: 0.2

Accuracy 98.55% 95.67% 95.74%
Precision 38.69% 18.02% 18.16%

Recall
(Sensitivity)

80.67% 95.57% 95.04%

F1 Score 52.30% 30.32% 30.50%
AUC Score 99.11% 98.99% 98.97%

RMSE 0.0985 0.1534 0.1592

6. CONCLUSIONS AND FUTURE SCOPE

IDS enhances network security by identifying threats and

malicious activity in computer systems. We propose a model
that improves the IDS system by integrating normalization and
only three dense layers of CNN. Aim of work to demonstrate
how a 3-layer CNN would work effectively with the
combination of normalization methods to enhance network
security. After applying 24 parameters settings it is observed
that the Z-score setting 3 has the best option to choose for
model evaluation on the basis of F1 score, precision, recall,
accuracy, RMSE, AUC Score and learning curve accuracy.
The future scope of the proposed model with 3 dense layer
include testing on large dataset and decrease the computational
cost in terms of time and memory with these settings.

REFERENCES

[1] Zhao, R., Gui, G., Xue, Z., Yin, J., Ohtsuki, T., Adebisi,

B., Gacanin, H. (2021). A novel intrusion detection
method based on lightweight neural network for Internet
of Things. IEEE Internet of Things Journal, 9(12): 9960-
9972. https://doi.org/10.1109/JIOT.2021.3069234

[2] Saba, T., Rehman, A., Sadad, T., Kolivand, H., Bahaj,
S.A. (2022). Anomaly-based intrusion detection system
for IoT networks through deep learning model.
Computers and Electrical Engineering, 99: 107810.
https://doi.org/10.1016/j.compeleceng.2022.107810

[3] Liu, J., Yang, D., Lian, M., Li, M. (2021). Research on
intrusion detection based on particle swarm optimization
in IoT. IEEE Access, 9: 38254-38268.
https://doi.org/10.1109/ACCESS.2021.3062376

[4] Abbas, A., Khan, M.A., Latif, S., Ajaz, M., Shah, A.A.,
Ahmad, J. (2022). A new ensemble-based intrusion
detection system for Internet of Things. Arabian Journal
for Science and Engineering, 47: 1805-1819.
https://doi.org/10.1007/s13369-022-06399-4

[5] Mehedi, S.T., Anwar, A., Rahman, Z., Ahmed, K., Islam,
R. (2022). Dependable intrusion detection system for IoT:
A deep transfer learning-based approach. IEEE
Transactions on Industrial Informatics, 19(1): 1006-1017.
https://doi.org/10.1109/TII.2022.3185875

[6] Sarhan, M., Layeghy, S., Portmann, M. (2021). Feature
analysis for machine learning-based IoT intrusion
detection. arXiv preprint, arXiv:2108.12732.
https://arxiv.org/abs/2108.12732

[7] Bouke, M.A., Abdullah, A., ALshatebi, S.H., Abdullah,
M.T. (2022). E2IDS: An enhanced intelligent intrusion
detection system based on decision tree algorithm.
Journal of Applied Artificial Intelligence, 3(1): 1-16.
https://doi.org/10.48185/jaai.v3i1.450

[8] Tally, M.T., Amintoosi, H. (2021). A hybrid method of
genetic algorithm and support vector machine for
intrusion detection. International Journal of Electrical &
Computer Engineering, 11(1): 1-12.
https://doi.org/10.11591/ijece.v11i1.12345

[9] Pathak, A., Pathak, S. (2020). Study on decision tree and
KNN algorithm for intrusion detection system.
International Journal of Engineering Research &
Technology, 9(5): 376-381.

[10] Saheed, Y.K., Abiodun, A.I., Misra, S., Holone, M.K.,
Colomo-Palacios, R. (2022). A machine learning-based

761

intrusion detection for detecting Internet of Things
network attacks. Alexandria Engineering Journal, 61(12):
9395-9409. https://doi.org/10.1016/j.aej.2022.09.123

[11] Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A.,
Mohammad, R.M. (2023). Intrusion detection system
using feature extraction with machine learning
algorithms in IoT. Journal of Sensor and Actuator
Networks, 12(2): 29.
https://doi.org/10.3390/jsan12020029

[12] Syamsuddin, I., Barukab, O.M. (2022). SUKRY:
Suricata IDS with enhanced kNN algorithm on
Raspberry Pi for classifying IoT botnet attacks.
Electronics, 11(5): 737.
https://doi.org/10.3390/electronics11050737

[13] Aslam, M., Ye, D., Tariq, A., Asad, M., Hanif, M., Ndzi,
D., Chelloug, S.A., Elaziz, M.A., Al-Qaness, M.A.A.,
Jilani, S.F. (2022). Adaptive machine learning based
distributed denial-of-services attacks detection and
mitigation system for SDN-enabled IoT. Sensors, 22(7):
2697. https://doi.org/10.3390/s22072697

[14] Verma, A., Ranga, V. (2020). Machine learning based
intrusion detection systems for IoT applications.
Wireless Personal Communications, 111(4): 2287-2310.
https://doi.org/10.1007/s11277-019-06986-8

[15] El-Sayed, R., El-Ghamry, A., Gaber, T., Hassanien, A.E.
(2021). Zero-day malware classification using deep
features with support vector machines. In Proceedings of
the 10th International Conference on Intelligent
Computing and Information Systems (ICICIS), pp. 1-8.
https://doi.org/10.1109/ICICIS.2021.9634967

[16] Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya,
A.Y., Ranjan, R. (2019). A hybrid deep learning-based
model for anomaly detection in cloud datacenter
networks. IEEE Transactions on Network and Service
Management, 16(3): 924-935.
https://doi.org/10.1109/TNSM.2019.2927886

[17] Savic, M., Lukic, M., Danilovic, D., Bodroski, Z.,
Bajovic, D., Mezei, I., Vukobratovic, D., Skrbic, S.,
Jakovetic, D. (2021). Deep learning anomaly detection
for cellular IoT with applications in smart logistics. IEEE
Access: Practical Innovations, Open Solutions, 9: 59406-
59419. https://doi.org/10.1109/ACCESS.2021.3072916

[18] Gopali, S., Siami Namin, A. (2022). Deep learning-based
time-series analysis for detecting anomalies in Internet of
Things. Electronics, 11(19): 3205.
https://doi.org/10.3390/electronics11193205

[19] Otoum, Y., Liu, D., Nayak, A. (2022). DL‐IDS: A deep
learning-based intrusion detection framework for
securing IoT. Transactions on Emerging
Telecommunications Technologies, 33(3): e3803.
https://doi.org/10.1002/ett.3803

[20] Apostol, I., Preda, M., Nila, C., Bica, I. (2021). IoT
botnet anomaly detection using unsupervised deep
learning. Electronics, 10(16): 1876.
https://doi.org/10.3390/electronics10161876

[21] Ullah, I., Ullah, A., Sajjad, M. (2021). Towards a hybrid
deep learning model for anomalous activities detection in
Internet of Things networks. IoT, 2(3): 428-448.
https://doi.org/10.3390/iot2030022

[22] Awajan, A. (2023). A novel deep learning-based
intrusion detection system for IoT networks. Computers,
12(2): 34. https://doi.org/10.3390/computers12020034

[23] Khan, A.R., Kashif, M., Jhaveri, R.H., Raut, R., Saba, T.,
Bahaj, S.A. (2022). Deep learning for intrusion detection
and security of Internet of Things (IoT): Current analysis,
challenges, and possible solutions. Security and
Communication Networks, 2022(1): 4016073.
https://doi.org/10.1155/2022/4016073

[24] Kaggle. (2025). CICIDS 2019 Dataset.
https://www.kaggle.com/datasets/tarundhamor/cicids-
2019-dataset?select=UDPLag_data_2_0_per.csv.

[25] Moustafa, N., Slay, J. (2015). UNSW-NB15: A
comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set). In 2015
military communications and information systems
conference (MilCIS), Canberra, ACT, Australia, pp. 1-6.
https://doi.org/10.1109/MilCIS.2015.7348942

[26] Liu, J., Yang, D., Lian, M., Li, M. (2021). Research on
classification of intrusion detection in internet of things
network layer based on machine learning. In 2021 IEEE
International Conference on Intelligence and Safety for
Robotics (ISR), Tokoname, Japan, pp. 106-110.
https://doi.org/10.1109/ISR50024.2021.9419529

762

	1. Introduction

