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Colon cancer diagnosis is critical and requires accurate deep learning models to help in 

clinical diagnosis. In this paper, an advanced deep learning model integrating Explainable 

Vision Transformer (EViT) architecture with Selective Kernel Learning (SKL) and Multi-

Objective Differential Evolution (MODE) method has been proposed. The EViT model 

utilizes the capability of vision transformer by incorporating SKL method for dynamic 

selection of optimal kernels to enhance the feature extraction. This process also improves 

the identification of relevant patterns and structures in the tissue samples. Hyperparameter 

optimization is performed using MODE algorithm to improve the model's efficiency and 

interpretability. For preprocessing the input histopathological images of colon cancer non-

local mean filtering method is used enabling precise path extraction and feature 

embeddings. By incorporating MODE algorithm for hyperparameter optimization 

balancing accuracy and reliability ensuring better efficiency of the model. The 

explainability of the model is facilitated by using Gradient Weighted Class Average 

Mapping (GRAD-CAM) and attention maps to improve decision making process. 

Experimentation has been carried out on histopathological images of colon cancer. EViT 

model performs better with an accuracy of 93.2%. The proposed EViT based model not 

only improves accuracy but also enhances the deeper understanding of pathology enhancing 

the clinical diagnosis of colon cancer. 
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1. INTRODUCTION

Colon cancer is observed as a prevalent cancer around the 

globe causing a major threat to the health globally [1]. 

Traditional method of such cancer diagnosis involves an 

invasive approach considering the histopathological analysis 

of biopsies. This approach is expensive and leads to 

inconsistencies. Methods such as colonoscopic screening used 

for predicting colorectal cancer leads to problems such as 

bleeding, colonic perforation and inability to detect all polyps 

[2], Early and proper diagnosis for such disease is important 

to improve patient outcomes and increase the survival rate. 

Survey reveals that the early stage diagnosis of colon cancer 

increases the survival rate of the patient by 90% [3]. However, 

for patients with cancer spread across different organs, the 

survival rate drops accordingly. 

Deep learning models offer a better diagnosis for colon 

cancer using histopathological images by differentiating the 

normal and cancerous tissues. These models focus only on 

high accuracy for diagnosis, interpretability is also important 

to help the healthcare professionals to understand the 

predictions of the model to improve decision making. Recently 

deep learning architectures such as convolutional neural 

networks (CNNs) have been utilized in medical image 

analysis, particularly for diagnosis of critical diseases like 

colon cancer [4]. Nowadays, vision transformer (ViT) based 

deep learning architecture termed as a better alternative than 

CNN is used much in the Computer Vision domain [5]. The 

applications of deep learning methods in healthcare due to 

their “black box” nature lead to limitations such as lack of 

interpretability, limiting clinical adoption, and hindering trust 

in diagnosis [6]. This paper proposed a novel approach to 

enhance the diagnosis of colon cancer utilizing EViT 

architecture through features such as SKL and MODE. EViT 

is a modified version of the standard Vision Transformer 

architecture to capture long range dependencies in image data 

sing self-attention mechanism. SKL method utilizes learnable 

weights termed as gates in each kernel of the convolution layer 

in EViT architecture. This helps the model to suppress the 

channels that are less informative and improve the 

interpretability and efficiency. MODE is an evolutionary 

optimization method utilized to optimize the EViT 

architecture for objectives such as classification accuracy and 

interpretability. Also, developing deep learning models with 

interpretability leads to several benefits such as a better 

understanding of patterns and image features for improving 

classification accuracy. This process helps healthcare 

professionals generate valuable insights, facilitating improved 

diagnostics and better communication between patients and 

healthcare professionals.  

Balancing factors such as accuracy and interpretability 

become a major challenge in medical diagnosis, especially 
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when using deep learning models. Performing optimization for 

accuracy alone can lead to black box models with a lack of 

transparency in predictions. Alternately, focusing on the 

optimization of interpretability will become a challenge for the 

model to handle complex patterns leading to compromise in 

the predictions. The proposed approach can overcome these 

problems by utilizing EViT architecture and MODE by 

formulating interpretability as an objective function. By 

addressing these issues, the proposed EViT based model can 

be used as an efficient tool for accurate diagnosis of colon 

cancer. 

The major work of the proposed system includes the design 

of EViT architecture with SKL approach to improve the 

interpretability of colon cancer diagnosis. The optimization of 

EViT architecture is performed using MODE for classification 

accuracy and interpretability to address the multi-objective 

nature while performing a diagnosis of colon cancer. The 

proposed approach has been evaluated using colon cancer 

dataset with histopathological images. The results were 

promising with high accuracy compared to other state-of-art 

methods. By combining the ViT architecture with the 

technique to enhance interpretability and Multi objective 

optimization, the proposed work contributes for accurate 

diagnosis of colon cancer. 

 

 

2. RELATED WORKS 

 

The authors proposed deep learning models with residual 

networks for the detection of intestinal crypts using biopsy 

images. The work highlights the use of deep learning to 

perform tasks such as object detection within a medical 

context. The discussion was not clear in handling image 

variations [7]. The authors analyzed various images related to 

colon cancer diagnosis using deep learning methods [8]. A 

lightweight deep learning framework was introduced for colon 

cancer prediction in real time environment using portable 

endoscopy devices leading to faster diagnosis. The lightweight 

framework design has the possibility of compromising the 

accuracy of prediction [9]. 

A unified framework for interpreting prediction of the 

model has been proposed by the authors focusing on the 

explanation of the model's output using a single instance. The 

framework might not address the problem of generalizing the 

model for unseen data [10]. The authors demonstrated the need 

of transparency in machine learning for disease diagnosis 

applications. The implementation of these solutions in deep 

learning model was not discussed by authors [11]. The authors 

provided a comprehensive review of utilizing Explainable 

Artificial Intelligence (EAI) for healthcare applications. The 

challenge is to select the suitable method based on the 

applications [12]. 

The authors introduced Vision Transformer (ViT) 

architecture for recognizing images and achieved better results 

compared to Convolutional Neural Network based models and 

require only fewer computational resources [13]. The authors 

improved the training efficiency of transformers using mixed 

precision techniques. The computational cost of the ViT 

architecture has been addressed, but the alternate architectures 

efficient for image recognition were not explored [14]. The 

data efficient training procedure has been introduced for image 

transformers. The convolutional neural network with a 

distillation procedure has been proposed [15]. 

This paper provides an overview of the deep learning 

techniques with interpretability for medical image analysis 

[16]. The study [17] reviewed the explainable methods for 

vision transformers, the taxonomy for organizing them, and 

some application scenarios. This work proposes Gradient-

weighted Class Activation Mapping (GRAD-CAM) for 

visualization of high-resolution images applied for image 

classification and captioning [18, 19], which provide an 

extensive survey of the EViT architecture and its applications 

in image classification, object detection and semantic 

segmentation [20].  

Single objective optimization is a time-consuming process 

and does not provide an optimal solution, The authors 

provided a comprehensive survey on the multi objective 

optimization in deep learning for parameter optimization with 

several case studies [21, 22]. Deep learning models plays 

important role in extracting features from images. Multi 

objective optimization algorithm helps in finetuning the 

hyperparameters to increase the accuracy of the model [23]. 

Colon cancer prediction can be performed using deep learning 

architecture such as ResNet, EfficientNet and Convolutional 

Neural Network [24-29]. 

Recently Vision Transformer models have been used in 

medical image analysis considering its ability to outperform 

traditional convolutional models in various applications of 

medical image analysis [30]. ViT models used in breast cancer 

detection from mammography images, the model showed 

efficient performance in detecting malignant lesions [31]. The 

authors proposed a hybrid approach combining ViT and 

Convolutional neural network for better feature extraction. 

The authors applied ViT for skin lesion classification in order 

to handle complex dermatological images effectively [32]. 

Besides these applications the lack of interpretability remains 

a challenge in clinical adoption. Recent studies reveal that the 

methods such as GRAD-CAM and self-attention mechanism 

can be used to enhance the transparency of prediction in ViT 

models [33]. Considering these aspects, the proposed work 

utilizes EViT architecture with SKL and Multi Objective 

Differential Evolution for effective feature extraction leading 

to efficient diagnosis of colon cancer. 

 

 

3. METHODOLOGY 

 

This section outlines the stages used in developing a 

framework for colon cancer diagnosis, from data preparation 

to evaluation of the model. 

 

3.1 Image preprocessing 

 

Image preprocessing techniques are used to remove noise 

from images for better accuracy while performing 

classification tasks. Traditional filtering methods such as 

blurring and sharpening are not sufficient to perform 

classification for histopathological images. Considering this 

fact advanced filtering method termed Non-local Means 

filtering with patch similarity measure has been used to 

remove noise in histopathology image samples of colon 

cancer.  

 

Input: Noisy Image (N), Patch Size(s) 

Output: Denoised Image (M) 

Algorithm 1: 

1. Patch Extraction:  

• Image N divided into overlapping patches with 
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size (s×s) 

• Each patch represented as Sj,k, j,k specifies pixel 

location 

2. For each patch Sj,k 

• Search the image for similar patch (P) 

considering average intensity within a patch 

3. Weight Calculation: 

• Assign a weight w to the similar patch (P) based 

on average intensity difference between Sj,k and 

P. Higher similarity means higher weight 

4. Weighted Averaging: 

• Calculate denoised pixel value 𝑣𝑗,𝑘 by averaging 

the intensity of similar patch P, with weight w 

using formula specified in Eq. (1) 

 

𝑣𝑗,𝑘 = (w ∗ P) + [(1 − w) ∗ 𝐼𝑗,𝑘] (1) 

 

where, Ij,k represents the intensity of noisy pixel at (j,k) 

5. Image Reconstruction: 

• Repeat steps 2-4 for all pixels in the image 

 

Combine denoised pixels 𝑣𝑗,𝑘 to form denoised image (M) 

The algorithm for image preprocessing using Non-local 

Means filtering is specified in Algorithm 1. This method 

performs a search over the entire image to identify similarity 

patches using parameters such as intensity, local features and 

texture and utilizes a weighted averaging approach to 

reconstruct the denoised image. This approach removes noise 

by preserving vital information such as tissue boundaries and 

improves the efficiency of colon cancer classification. 

Histogram equalization is also performed to enhance the 

contrast to increase the visibility of the tissue features for the 

deep learning model during colon cancer classification. This 

process is performed by stretching the distribution of pixel 

intensities across the entire range of grayscale images. This 

process also addresses stain variations by normalizing the 

intensity distributions. 

 

3.2 Colon cancer classification using EViT architecture 

 

The proposed Enhanced Vision Transformer (EViT) 

architecture specified in Figure 1 addresses the challenge of 

traditional deep learning model being black box in nature 

lacking transparency. This helps in healthcare applications, 

particularly in cancer diagnosis to enhance interpretability. 

EViT architecture is the modified version of vision 

transformer utilized for the diagnosis of colon cancer through 

its capacity for hierarchical feature representation. This 

architecture uses self-attention mechanism to model long 

range dependencies across histopathological images. This 

enhancement reduces the computational complexity by 

utilizing sparse attention mechanism allowing effective 

processing of high dimensional data. This feature is introduced 

in token interactions in order to improve speed and memory 

efficiency during attention computation. Also, the hierarchical 

feature extraction process across various scales enables 

efficient localization of cancerours regions. 

EViT architecture uses attention maps to address black box 

problem by providing explanations for their classification. 

These maps highlight the image regions that the model focuses 

allowing the healthcare professionals to understand the models 

decision in identifying whether cancerous or non-cancerous. 

Also, this architecture provides early detection insights for 

researchers by analyzing the image features that the EViT 

architecture prioritizes. This process helps to identify the 

visual patterns associated with colon cancer leading to better 

diagnosis.  

The shortcomings of the model can also identify which 

helps to identify the areas of improvement or to address the 

biases in training data. Also, histopathological images are 

complex in nature to signify cancerous and non-cancerous 

samples which can be overcome by EViT architecture 

focusing on specific regions required in such scenarios. The 

tasks such as processing histopathological images and 

performing feature extraction are carried out by the Vision 

Transformer architecture. Metaformer block is used in the 

architecture to enhance the performance of transformer 

encoder. The method such as SKL has been utilized to enhance 

the feature extraction process concentrating on the informative 

region of the image. 

The initial component specified in the EViT architecture is 

used to preprocess the input images using denoising method 

mentioned in Figure 1. Then normalization is applied to scale 

the images to a standard range to ensure the quality of image 

input and to improve convergence during training process. The 

denoised image of size h×w×c (height×width×channel), where 

channel is 3 for RGB, is considered for patch extraction and 

embeddings, discussed in detail in the sub-section (3.3).  

 

 
 

Figure 1. EViT architecture for colon cancer diagnosis 
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During this process patch size is defined for example, P×P, 

then a grid of non-overlapping images will be performed. Each 

patch is flattened using a vector of size P2×c. During the 

process of embedding flattened patches into a format through 

linear projection that the transformer model can process. The 

CLS token is then added to the patch embeddings and then 

positional encoding is added to provide positional information. 

SKL is applied to the sequence of embeddings to select 

relevant kernels. This process selects the most relevant 

features dynamically based on the input data. This method is 

The components of transformer encoder with metaformer 

block are specified in Figure 2. The patch embedding 

component divides the histopathological images into patches 

and converts them into lower dimensional vectors suitable for 

processing by transformer encoder. This process is performed 

through an embedding function preferably linear projection 

that divides image into patches. SKL uses pre-trained kernels 

to emphasize the image features related to colon cancer, 

particularly textures and shapes.  

 

 
 

Figure 2. Transformer encoder architecture with metaformer 

block 

 

Multi head self attention mechanism is used to capture the 

dependencies between tokens in the enhanced feature map. 

Also, it analyzes the image patches enhanced by the meta 

former block. During this process the patch embeddings 

transformed into query (Q), key (K) and value (V) matrices 

and then attention score is calculated as specified in Eqs. (2) 

and (3). 

 

𝑄 = 𝑋𝑤𝑞 , 𝐾 = 𝑋𝑤𝑘 , 𝑉 = 𝑋𝑤𝑣 (2) 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑘𝑇

√𝑑𝑘

) 𝑉 (3) 

 

where, wq, wk, wv forms learnable weight matrices for query, 

key and value, dk represents the dimensionality of key vectors. 

Concatenation of attention heads is performed and linear 

transformation is applied as in Eq. (4). 

 

𝑀𝐻𝐴(𝑄, 𝐾. 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2 … ℎℎ)𝑤𝑦 (4) 

 

where, hi=Attention(Qi,Ki,Vi) and wy forms learnable output 

weight matrix. Channel gating mechanism is used to activate 

channels in the feature map. This mechanism is applied as in 

Eq. (5) to enhance the feature maps. 

𝑧𝑔𝑡 = σ(𝑤𝑔𝑡Z + 𝑏𝑔𝑡) (5) 

 

where, σ forms sigmoid function, wgt and bgt are learnable 

parameters and zgt forms gating weights. 

Feed forward network is used to apply non-linear 

transformations to the features as in Eq. (6). Residual 

connections and layer normalization are applied to stabilize 

training and improve gradient flow as in Eq. (7).  

 

𝐹𝐹𝑁(𝑥) = 𝑅𝑒𝐿𝑈(𝑋𝑤1 + 𝑏1)𝑤2 + 𝑏2 (6) 

 

where, w1 and w2 forms weight vectors and b1 and b2 form bias 

vectors of the feed forward network. 

 

𝑌 = (
𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑𝑣(𝑋) + 𝜖
) ∗ 𝛾 + 𝛽 (7) 

 

where, mean(X) forms mean value of the input, std(X) forms 

the standard deviation of the input X, ϵ forms a small constant 

to avoid divide by zero error, γ, β forms learnable scaling and 

shifting parameters. The special token termed as class (CLS) 

token representing the entire sequence is used for 

classification task. Explainable classification head maps the 

class (CLS) token to output classes and then provides 

interpretability through linear transformations applied to the 

CLS token. Softmax function is used to produce probability 

distribution over classes using the technique Grad-CAM 

(Gradient weighted Class Activation Mapping). This method 

is a visualization technique used by the proposed EViT based 

model to make classification decisions. During training, the 

EViT architecture learns to extract features from images to 

differentiate from cancerous and healthy tissues.  

Grad-CAM is then applied to a specific image to understand 

the models decision by focusing on the final layer of the model 

containing softmax function. During forward pass the image is 

divided into patches and positional encodings are added. Then 

SKL is applied to select appropriate features. The transformed 

embeddings passed through the transformer encoder with 

metaformer block using multi-head self attention, channel 

gating and feed forward network. The feature maps from SKL 

are selected to compute Grad-CAM through predicted class 

score with respect to these feature maps using Eq. (8). 

 
𝑑𝑦𝑐

𝑑𝑚𝑓
 (8) 

 

where, yc forms the class score for colon cancer and mf 

specifies the feature map f for the selected convolution layer.  

Then average the gradients to get importance of weights for 

each feature map f as specified in Eq. (9). 

 

𝐷𝑓
𝑐 =

1

𝑧𝑖

∑𝑖

𝑑𝑦𝑐

𝑑𝑚𝑖,𝑗
𝑓

 (1) 

 

where, 𝑚𝑓
𝑐 specifies importance weight for feature map f and 

class c. z represents number of pixels in the feature map and 

𝑚𝑖,𝑗
𝑓

 represents element at position (i,j) in feature map mf. 

Compute the weighted sum of the feature weight using 

importance weight as in Eq. (10), where Gc provides heatmap 

of class c, ReLU represents rectified linear unit activation. 

 

𝐺𝑐 = 𝑅𝑒𝐿𝑈(∑𝑘 𝐷𝑓
𝑐𝑚𝑓) (10) 
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Upsample the heatmap to the original image size as in Eq. 

(11). This output reveals the important region in the image 

highlighting the abnormal tissues which helps in generating 

meaningful visual representation helping in colon cancer 

diagnosis. 

 

𝐺𝑈𝑐 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐺𝑐 ) (11) 

 

3.3 Optimal kernel selection using SKL 

 

SKL introduces the adaptive kernel selection mechanism 

into the model. This feature ensures that the model captures 

features across different spatial resolutions which are 

important for detecting patterns in colon cancer images. This 

method utilizes parallel convolutional pathways with varying 

sizes of kernel and integrates their outputs through attention 

mechanism in order to prioritize the most relevant scale. This 

mechanism focuses on features of interest considering the 

biological vision systems. Also, SKL enhances the ability of 

the model to detect fine-grained details and global patterns 

through feature aggregation process. SKL is used to 

dynamically combine different convolutional kernels to 

enhance feature representation. A kernel refers to a 

convolutional filter applied to a feature map to extract relevant 

features improving the learning process. Kernels are trained to 

detect features such as edges and textures. Multiple kernels are 

used to capture diverse features. The algorithm for SKL is 

specified in Algorithm 2. 

 

Input: Feature Map (X) (h×w×c), Convolutional kernels 

{k1,k2…,kn) 

Output: Feature Map (M) 

Algorithm 2: 

1. Apply Convolutional Kernels 

• Apply convolutional kernels ki to feature map X to 

produce set of features Xi as mentioned in Eq. (12). 

 

𝑋𝑖 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑖) ∀𝑖 ∈ {1,2, … , n} (12) 

 

2. Global Information Aggregation 

• Apply Global Average Pooling to each feature map 

𝑋𝑖 to produce global descriptor 𝑑𝑖 as in Eq. (13). 

 

𝑑𝑖 = 𝐺𝐴𝑃(𝑋𝑖) =
1

ℎ𝑥𝑤
∑ℎ𝑒=1

ℎ ∑𝑤𝑒=1
𝑤 𝑋𝑖(ℎ, 𝑤, 𝑐) 

∀𝑐 ∈ {1,2, … , n} 
(13) 

 

3. Concatenate Global Descriptors 

• Concatenate the global descriptors from all feature 

map to form a single vector as in Eq. (14). 

 

𝑑 = concat(𝑑1, 𝑑2, … 𝑑𝑘) (14) 

 

4. Compute Importance Weights 

• Pass the concatenated weight d through fully 

connected layers to derive importance weights w as 

in Eq. (15). 

 

w = 𝐹𝐶2 (𝑅𝑒𝐿𝑈(𝐹𝐶1(𝑑))) (15) 

 

5. Softmax Normalization 

• Normalize the importance weights using softmax 

function to ensure they sum to 1 as in Eq. (16). 

𝑤𝑠𝑜𝑓𝑡,𝑖 =
exp (𝑤𝑖)

∑ exp (𝑤𝑗)
𝑘

𝑗=1

 (16) 

 

6. Re-weight Feature Maps 

• Multiply feature map by its normalized importance 

weights as in Eq. (17). 

 

𝑀𝑖 = 𝑤𝑠𝑜𝑓𝑡,𝑖 ∗ 𝑋𝑖 (17) 

 

7. Combine Re-weighted Feature Maps 

• Add the re-weighted feature maps to produce final 

output feature map as in Eq. (18). The dimension of 

output feature map will be h×w×c. 

 

𝑀 = ∑ 𝑀𝑖

𝑘

𝑖=1

 (18) 

 

3.4 Hyperparameter optimization using MODE 

 

MODE method is utilized for the optimization of 

hyperparameters balancing multiple objectives like 

computational efficiency, accuracy and generalization. 

MODE method explores pareto-optimal solution space to 

ensure that the model achieves balance between competing 

performance metrics. This method uses differential evolution 

method by incorporating multi objective differential evolution 

in order to maintain diversity in solution space ensuring better 

optimization. MODE is used to optimize the hyperparameter 

and feature selection to balance multiple objectives like 

accuracy and interpretability. This method uses the approach 

of evolutionary algorithm to improve the candidate solutions. 

Also, this method maximizes the accuracy and minimizes the 

complexity of the model by balancing the multiple objectives 

and identifying the best tradeoffs. The hyperparameters of 

model building such as learning rate, patch size, number of 

layers can be optimized using this method to enhance the 

efficiency of EViT model. The histopathological images of 

colon cancer dataset used to train the EViT architecture with 

different hyperparameter configurations.  

The hyperparameters to be optimized includes: patch size, 

transformer encoder layers, self-attention heads, learning rate 

and drop-out rate. This method is well suited for optimizing 

problems with multiple objective functions. This process 

involves generating and iterating candidate solutions by 

updating the population based on pareto dominance. The 

algorithm for MODE to optimize hyperparameters is specified 

in Algorithm 3. 

 

Input:  

Objective Functions: O1(x), O2(x),…Om(x) 

Population Size: N 

Scaling Factor: S 

Crossover Probability: CP 

Stopping Criteria: Maximum number of generations 

GEmax 

Output: Pareto front,optimal parameter set for pareto front 

solutions 

Algorithm 3: 

Initialization 

• Generate an initial population of size N with random 

parameter vectors as specified in Eq. (19). 
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𝑃 = (𝑦1, 𝑦2, … , 𝑦𝑁) (19) 

 

Evaluation 

• Evaluate each individual in the population for all 

objective functions as in Eq. (20). 

 

𝑓(𝑦𝑖) = 𝑓1(𝑦𝑖), 𝑓2(𝑦𝑖), … 𝑓𝑚(𝑦𝑖) (20) 

 

While stopping criteria not met 

a.  Mutation 

• For each individual 𝑦𝑖 generate mutant vector mi as in 

Eq. (21). 

 

𝑚𝑖 = 𝑦𝑟1 + 𝐹. (𝑦𝑟2 − 𝑦𝑟3) (21) 

 

where r1, r2, r3 form distinct random indices. 

b. Crossover 

• Create a trial vector vi by combining mi and yi as in 

Eq. (22). 

 

𝑣𝑖 = {
𝑚𝑖𝑗 , 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑝

𝑦𝑖𝑗 ,        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (22) 

 

c. Selection 

• Evaluate the trial vector 𝑚𝑖 as in Eq. (23). 

 

𝑓(𝑚𝑖) = 𝑓1(𝑚𝑖), 𝑓2(𝑚𝑖), … 𝑓𝑚(𝑚𝑖) (23) 

 

• Update population based on pareto dominance as in 

Eq. (24). 

 

(𝑣𝑖)
𝑐+1 = {

𝑚𝑖, 𝑖𝑓 𝑚𝑖  𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦𝑖

𝑦𝑖 ,                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (24) 

 

d. Update Pareto Front 

• Maintain a set of non dominated solutions 

representing current pareto front. 

e. Increment generation counter as in Eq. (25). 

 

𝑐 = 𝑐 + 1 (25) 

 

Return 

• The pareto front, set of non-dominated solutions 

Optimal parameter set y for the solutions in the pareto front. 

 

The proposed system has been evaluated using metrics like 

accuracy, precision, recall and F1-score. The accuracy 

measure is used to find the ratio of correctly classified samples 

indicating the overall correctness of the model as specified as 

in Eq. (26). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑅𝑃 + 𝑇𝑅𝑁

𝑇𝑅𝑃 + 𝑇𝑅𝑁 + 𝐹𝐴𝑃 + 𝐹𝐴𝑁
 (26) 

 

where, TRP, TRN represents true positives and true negatives, 

FAP and FAN represents false positives and false negatives. 

The metric precision representing the ratio of true positive 

prediction over all positive predictions measures how many of 

the predicted positive cases are correct as in Eq. (27). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑅𝑃

𝑇𝑅𝑃 + 𝐹𝐴𝑃
 (27) 

 

The evaluation metric recall also termed as sensitivity 

provides the ratio of true positive predictions to all actual 

positive cases reflecting the model's ability to identify positive 

cases as in Eq. (28). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑅𝑃

𝑇𝑅𝑃 + 𝐹𝐴𝑁
 (28) 

 

The metric F1-Score represents mean of precision and recall 

used to evaluate the performance when the dataset is 

imbalanced as in Eq. (29). 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (29) 

 

 

4. RESULTS AND DISCUSSION 

 

The performance of the proposed work has been evaluated 

using histopathological image dataset of colon cancer 

containing high resolution images of cancerous and non-

cancerous tissues. The input image samples consist of 

histopathological images with two classes such as Colon-ACA 

and Colon-N. Colon-ACA termed as colon adenocarcinoma 

represents the cancerous tissues in colon lining. Colon-N 

represents the normal tissues without abnormalities. These 

images can be used to distinguish the normal and cancerous 

tissues. The dataset consists of 500 images in total with two 

classes of 250 images of Colon-N tissues and 250 images of 

Colon-ACA and then augmented to 10,000 images [29]. 

Figure 3 specifies the sample images of these two classes. 

 

 
 

Figure 3. Sample histopathological images of colon cancer 

dataset 

 

 
 

Figure 4. Reconstructed image after noise removal using 

non-local mean filtering 

 

The input images were preprocessed with non-local mean 

filtering method to remove noise in the input image. This 

process enhances the performance of the feature extraction and 

classification process. The original image with noise and 
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reconstructed image using non-local mean filtering along with 

difference image highlighting the removal of noise during this 

process is specified in Figure 4. 

After preprocessing the images were divided as smaller 

patches and embedded into lower dimensional space suitable 

for vision transformer. This process is to ensure that the local 

features are captured effectively. The patch extraction process 

is specified in Figure 5.  

 

 
 

Figure 5. Patch extractions of colon cancer histopathological 

images 

 

Table 1. Layered architecture of EViT for colon cancer 

diagnosis 

 
No. Layer (Type) Output Shape Param # 

0 Conv2d-1 [-1, 768, 14, 14] 590592 

1 Dropout-2 [-1, 197, 768] 0 

2 
MultiheadAttention-

3 

[[-1, 197, 768], [-1, 2, 

2]] 
0 

3 LayerNorm-4 [-1, 197, 768] 1536 

4 Linear-5 [-1, 197, 3072] 2362368 

5 GELU-6 [-1, 197, 3072] 0 

6 Linear-7 [-1, 197, 768] 2360064 

7 Dropout-8 [-1, 197, 768] 0 

8 LayerNorm-9 [-1, 197, 768] 1536 

9 EViTLayer-10 [-1, 197, 768] 0 

10 
MultiheadAttention-

11 

[[-1, 197, 768], [-1, 2, 

2]] 
0 

11 LayerNorm-12 [-1, 197, 768] 1536 

12 Linear-13 [-1, 197, 3072] 2362368 

13 GELU-14 [-1, 197, 3072] 0 

14 Linear-15 [-1, 197, 768] 2360064 

15 Dropout-16 [-1, 197, 768] 0 

16 LayerNorm-17 [-1, 197, 768] 1536 

17 EViTLayer-18 [-1, 197, 768] 0 

18 
MultiheadAttention-

19 

[[-1, 197, 768], [-1, 2, 

2]] 
0 

19 LayerNorm-20 [-1, 197, 768] 1536 

20 Linear-21 [-1, 197, 3072] 2362368 

21 GELU-22 [-1, 197, 3072] 0 

22 Linear-23 [-1, 197, 768] 2360064 

23 Dropout-24 [-1, 197, 768] 0 

 

The layered architecture of the proposed EViT is specified 

in Table 1. The type of layer include convolution layer for 

feature selection of initial input images and the drop-out layer 

is used for regularization. The multihead self attention 

mechanism is used to process the inputs and it is considered as 

a key component of the transformer. The layernorm 

component is used to normalize the activation between the 

layers. Fully connected layer is specified as linear and GELU 

(Gaussian error linear unit) activation function is utilized for 

non-linearity. EViT layers are the custom layers incorporating 

in the attention and feedforward mechanism. The numbers 

after each layer, e.g. ([-1, 197, 3072]) represents the shape of 

the output tensor for layer operation. 

Gradient Weighted Class Activation Mapping (GRAD-

CAM MAP) is utilized in deep learning to enhance the 

interpretability of convolutional neural networks and 

transformer architectures. It highlights the influential regions 

of the image which helps in decision making process of the 

model. This method computes the gradient score of the output 

class considering the feature maps of the convolutional layer. 

The proposed system uses Grad-CAM map to highlight the 

critical regions of the input images that contribute much in the 

colon cancer diagnosis by the model.  

The Grad-CAM heatmap generated by the proposed system 

is specified in Figure 6. By highlighting the affected tissues 

that help in diagnosis, the output of the model becomes 

interpretable to healthcare professionals. 

Including SKL with EViT architecture in the proposed 

system demonstrated improvement in the classification of 

colon cancer. This process is performed through the generation 

SKL feature map specified in Figure 7. This map provides 

insights about the utilization of the critical regions by the 

model to make predictions accurately. 

 

 
 

Figure 6. Grad-CAM map visualization for histopathological 

images of colon cancer 

 

 
 

Figure 7. SKL feature map generated by the mode 
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The explainability component of the proposed system is 

included through the generation of attention map to highlight 

the critical regions to improve the accuracy of predictions. The 

attention map generated by the model specified in Figure 8 

highlights the significant features such as anomalies of the 

cells indicating cancer. This component also contributes to the 

transparency in predicting the colon cancer. 

The proposed EViT based model utilizes Multiobjective 

Differential Evolution (MODE) method to optimize the 

hyperparameters to enhance the models performance. MODE 

method effectively searches the hyperparameter space to 

identify optimal values to improve the accuracy of predictions. 

Table 2 specifies the range of hyperparameter and optimal 

values selected by MODE method. 

The performance of the proposed system is measured using 

different metrics specified in Table 3 and the graph is specified 

in Figure 9. 

The proposed EViT based model for colon cancer diagnosis 

achieves an accuracy of 93.2% which is better than the CNN, 

ResNet, EfficientNet, DenseNet and Vision Transformer 

models as specified in Table 3. The precision score of the 

proposed model is 92.4% which is higher than other existing 

architectures specified in Table 3. This represents that the 

proposed model reduces false positive rates efficiently which 

is important for medical diagnosis. The recall score of the 

proposed model is 91% which is better than other existing 

models specified in Table 3 indicating that the proposed model 

is effective in detecting colon cancer cases reducing the risk of 

incorrect diagnosis. The F1-Score of the proposed EViT model 

is also better highlighting the overall effectiveness of the 

proposed system in handling both positive and negative 

samples. The results specified in Table 3 reveal that the EViT 

based model with SKL and MODE algorithm performs well 

with an accuracy of 93.2% compared to existing state-of-art 

methods [24-28].  
 

 
 

Figure 8. Attention map generated by the proposed model 
 

 
 

Figure 9. Performance metrics of the proposed model 

compared with existing methods 

 

The confusion matrix of the proposed model revealing the 

accuracy of classifying cancerous and non-cancerous samples 

is specified in Figure 10. The enhanced accuracy and 

interpretability of the proposed model help medical 

practitioners for accurate diagnosis of colon cancer. 

 

Table 2. Hyperparameters, possible and optimized values using MODE 

 

Hyperparameter Description Possible Values / Range Optimized Value 

EViT 

Batch Size Patch Size of each image {8, 16, 32} 16 

Embedding Dimension Dimension of the embedding space {128, 256, 512, 768, 1024} 768 

Number of Layers Number of transformer layers {6, 8, 10, 12, 14} 10 

Number of Heads Number of attention heads {4, 8, 12, 16} 12 

Feed-Forward Network Dimension Dimension of the feed-forward network {512, 1024, 2048, 3072, 4096} 3072 

Dropout Rate Dropout rate {0.1, 0.2, 0.3, 0.4, 0.5} 0.1 

Learning Rate Learning rate for the optimizer {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.001 

Batch Size Number of samples per gradient update {16, 32, 64, 128, 256} 64 

Weight Decay Regularization parameter {0.00001, 0.0001, 0.001, 0.01, 0.1} 0.0001 

SKL 

Kernel Sizes Sizes of the kernels used {3, 5, 7, 9} [3, 5, 7] 

Number of Kernels Number of different kernel sizes used {1, 2, 3, 4} 3 

MODE 

Population Size Number of individuals in the population {20, 30, 40, 50, 60} 50 

Crossover Probability Probability of crossover {0.6, 0.7, 0.8, 0.9, 1.0} 0.9 

Differential Weight Scaling factor for the differential mutation {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 0.8 

Number of Generations Number of generations {50, 75, 100, 125, 150} 100 

 
Table 3. Performance of the proposed EViT+SKL+MODE model 

 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CNN 89 87 85 86 

ResNet 91 90 88 89 

EfficientNet 91.5 90.5 90 90.3 

DenseNet 92 91 90.4 90.7 

Vision Transformer- (ViT) 92.3 91 90.6 90.8 

Proposed System (EViT-SKL-MODE) 93.2 92.4 91 91.7 
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Figure 10. Confusion matrix for the proposed model 

 

The proposed EViT model for colon cancer detection was 

evaluated through training and validation accuracy based on 

the number of epochs is specified in Figure 11. The graph 

reveals that the accuracy increases over the number of epochs. 

The consistent performance shows the effectiveness of the 

model. 

 

 
 

Figure 11. Testing and validation accuracy over number of 

epochs for the proposed system 

 

The validation loss over the number of epochs specified in 

Figure 12 reveals that there was a gradual decrease in loss over 

epochs revealing the effective learning of the model. The loss 

curve not only reveals that the model is learning well but also 

generalizes effectively for new data. The performance of the 

proposed EViT based model is compared with existing 

methods for predicting colon cancer as specified in Figure 12. 

The results reveal that the proposed EViT+SKL+MODE 

method is better compared to the existing methods such as 

CNN,ResNet,DenseNet, EfficientNet and Vision transformer 

based models. 

The Receiver Operating Characteristic (ROC) curve of the 

proposed system specified in Figure 13 evaluates the ability of 

the model to differentiate between cancerours and non-

cancerous tissues. The curve plots the true positive rate and 

false positive rate across thresholds. The steeper curve 

indicates that the model performs well. 

 

 
 

Figure 12. Validation loss of the proposed model over 

number of epochs 

 

 
 

Figure 13. ROC curve for the proposed model 

 

 

5. CONCLUSION AND FUTURE WORK 

 

In this paper, the advanced model for prediction of colon 

cancer has been proposed by combining EViT architecture 

with SKL and MODE. The proposed methods show accuracy 

of accuracy of 93.2% outperforming the state-of-art methods. 

The utilization of SKL helps the model select optimal kernels 

for feature extraction, enhancing the capability of the model to 

identify important features. The MODE algorithm optimizes 

the hyperparameters specified in Table 2 ensuring the 

performance of the model by balancing between accuracy and 

interpretability. Also, the use of GRAD-CAM and Attention 

map generated by the proposed model specified in Figure 9 

provides valuable insights making the model transparent and 

interpretable for clinical applications. Further, the utilization 

of advanced image pre-processing techniques like non-local 

mean filtering with patch similarity measure enhanced the 

image quality and feature extraction contributing to the better 

performance of the model. The model’s explainability feature 

helps medical practitioners to identify the critical regions that 

contribute much to the occurrence of colon cancer. This 
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process facilitates better decision-making in clinical 

environment. Also, the proposed work has an impact on 

patient outcomes through early and accurate diagnosis of 

colon cancer. The significance of the proposed work extends 

beyond the technical advancements on clinical practices. The 

proposed model provides a reliable tool to healthcare 

providers for making informed diagnoses to improve patient 

outcomes. The innovation of the proposed work lies in the 

explainability features through GRAD-CAM and attention 

maps. These methods offer transparency by highlighting the 

regions of interest which helps medical practitioners to gain 

deeper insights into the diagnosis of colon cancer. The 

adoption of preprocessing methods such as non-local mean 

filtering with patch similarity enhances feature extraction and 

image clarity improving the performance of the proposed 

model. 

Future work will focus on including more diverse samples 

and further larger datasets across different population 

considering histopathological image variations. There is also a 

potential to explore other types of cancers with the same 

architecture considering different image modalities and 

datasets. Implementing continuous learning mechanism will 

help the model to update and improve with new data, 

maintaining better performance. There will be a challenge 

deploying the model in real-time clinical settings considering 

the optimization of speed and efficiency without 

compromising the accuracy of the model. Integrating 

multimodal data such as histopathological images with genetic 

information has the possibility of enhancing the accuracy of 

diagnosis providing deeper insights about the disease. 
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NOMENCLATURE 

 

P Patch 

w Weight 

Q, K, V Query, Key, Value 

X Mean 

G Heatmap of Class c 

GU Upsample of Heatmap 

GAP Globa Average Pooling 

d Global Descriptor 

FC Fully Connected 

P Population 

Z Gating Weights 

W,b Learnable Parameter 

FFN Feed Forward Network 

ReLU Residual Connection 

TRP,TRN True Positive, True Negative 

FAP,FAN False Positive, False Negative 

 

Greek symbols 

 

σ Sigmoid function 

γ, β  Learnable scaling and shifting parameters 

ϵ Constant 
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