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 This article addresses the challenge of 3D digitization using point clouds, an essential 

process for technological trends such as Building Information Modeling (BIM) and digital 

twins. The process of capturing three-dimensional geometries from point clouds generated 

by laser scanning is a costly and time-consuming task. The purpose of the study is to analyze 

how deep learning (DL) models can optimize this process in different types of 

infrastructures (industrial, transportation, construction, and public and social services). To 

this end, a methodology based on a systematic review and a bibliometric analysis of the 

scientific literature indexed in Scopus was employed, examining advanced models such as 

PointNet, PointNet++, ResPointNet++, and datasets like CLOI, PSNet5, and Pipework. The 

results highlight the effectiveness of AI in the automated handling of point clouds, although 

limited documentation was identified in its application to mining infrastructures. In 

conclusion, a DL model and specific datasets for the efficient processing of point clouds in 

the mining sector are identified and recommended, thus contributing to the advancement of 

3D digitization in this sector. 
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1. INTRODUCTION 

 

Scientific research on new digital technology trends in the 

architecture, engineering, and construction (AEC) sector has 

intensified, with Building Information Modeling (BIM) and 

Artificial Intelligence (AI) as leaders [1]. These trends can be 

employed as an essential pillar to drive the development of 

other digital technological trends that have advanced at a 

slower pace, such as digital twins and blockchain. 

Despite the growing demand for digital twin technology in 

the industrial sector, its implementation faces significant 

challenges. One of the main challenges is the efficient 

management of the vast and critical engineering knowledge 

accumulated over decades, which is essential to ensure its 

proper integration and functioning. 

The integration and effective use of this knowledge are 

fundamental to maximizing the potential of digital twins, 

enabling precise simulations and improving timely decision-

making based on historical and real-time data [2]. 

In summary, this article highlights the importance of BIM 

technology, digital twins, and artificial intelligence (AI) as key 

pillars in 3D digitalization. It is crucial to highlight the close 

interdependence between BIM technologies, digital twins, and 

3D digitization. To process BIM or capture existing 

infrastructures in 3D (which may differ from the original 

design), it is essential to use technologies such as point clouds 

or equivalents. However, the processing of point clouds 

requires handling large volumes of data, which demands the 

integration of advanced digital technologies, such as Big Data 

(BD). Likewise, to optimize processing times, it is essential to 

resort to AI. Together, these technologies form an 

interdependent and complex ecosystem. In this context, the 

present article analyzes the advances in 3D digitalization 

driven by AI and proposes recommendations for the 

implementation of optimal models in the mining industry 

sector. 

Currently, numerous industrial projects are still being 

carried out using 2D computer-aided design (CAD) tools, 

which is causing a delay in the migration towards 3D 

digitization for many types of infrastructures. According to [3], 

this shortcoming poses significant challenges in terms of 

design, maintenance, and optimization of infrastructures. The 

use of laser scanning technology for point cloud generation is 

fundamental in the design, repair, and expansion of 

infrastructures. 3D digitization significantly reduces the time 

required to collect data, decreases reliance on personnel, and 

lowers costs, as mentioned in [4]. 

Laser scanning technology is also used to measure and 

document the current conditions of infrastructures. However, 

the files containing these 3D point clouds are large and their 

handling is not straightforward, which highlights the 

importance of point cloud management, as noted in [5]. 

Fortunately, the most viable way to reduce costs and 

associated times is through the automation of the 3D modeling 

process using deep learning models, such as PointNet [6], 

PointNet++ [7], ResPointNet++ [8], or SE-PseudoGrid [9]. 

This is, to our knowledge, the first study on AI-based 3D 

digitization through point cloud processing that incorporates 

infrastructure types and key datasets. Moreover, considering 

the Peruvian context, no scientific works indexed in journals 
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like Scopus have been developed that address the industrial 

infrastructures of the mining sector. Therefore, this work 

provides relevant information, highlighting the models with 

the best performance and the most suitable datasets for mining 

industrial infrastructure. 

The primary aim of this systematic review is to assess the 

technological implications of AI-driven 3D digitization 

through point cloud processing in the infrastructure sector, 

with a particular emphasis on the Peruvian mining context. To 

fulfill this aim, three specific objectives are addressed: (1) To 

evaluate the efficacy of AI models in the processes of point 

cloud segmentation and classification, concentrating on 

diverse categories of infrastructures, including industrial, 

transportation, construction, and utility sectors; (2) To identify 

and assess the most pertinent and accessible data sets related 

to each category of infrastructure, in order to ascertain the 

most appropriate options for the implementation of AI models; 

(3) To investigate and discuss both current and prospective 

applications of 3D digitization, along with the integration of 

deep learning (DL), in enhancing data collection, improving 

model precision, and mitigating costs within the mining sector. 

This research seeks to establish a robust foundation for the 

development of DL-based 3D digitization models that are 

tailored to the unique characteristics of mining infrastructure, 

thereby providing an unprecedented and significant 

contribution to the advancement of this technology within the 

local context. 

 

 

2. METHODOLOGY 

 

To achieve our objective, a systematic literature review was 

conducted using the guidelines and principles defined by 

Kitchenham [10], ensuring the rigor and reproducibility of the 

process. Figure 1 shows the Kitchenham approach, which 

comprises three steps: planning, execution, and reporting. 

 

 
 

Figure 1. Kitchenham methodology 

 

2.1 Planning stage 

 

The objective of the systematic review is to evaluate the 

impact of technological advancement on 3D digitalization 

with AI according to the type of infrastructure. For this, the 

review of works published between the years 2020 and 2024 

was considered. The reason we chose the year 2000 as the 

starting point for our review is the rise in the use of AI. 

This research focuses on the analysis of identification 

machine learning techniques used for the segmentation and 

classification of point clouds according to the type of 

infrastructure, and to achieve this, the questions presented in 

Table 1 must be answered. 

Table 1. Research questions 

 
RQ Questions 

1 

What are the most relevant applications of integrating 

3D digitization with point clouds and AI for different 

types of infrastructures? 

2 
What available datasets are related to structural 

components of industrial infrastructure? 

3 
What AI models use point clouds for the recognition of 

structural components in industrial infrastructures? 

 

2.2 The implementation stage 

 

Table 2 details the organization of the keywords into four 

blocks. In the first block, words related to technologies such 

as "3D scanning," "laser scanning," and "point cloud" were 

established. In the second block, the keywords related to AI 

and the geometric recognition of objects in point clouds were 

defined as: "object recognition", "object detection", 

"classification", "segmentation", "instance segmentation", 

"semantic segmentation", "part segmentation", "segmented 

point cloud". In the third block, keywords related to AI 

techniques were selected using keywords such as: "Artificial 

intelligence", "machine learning", "deep learning", 

"convolutional neural network". Finally, in the fourth block, 

articles related to the field of application were selected using 

keywords such as: "construction", "structural components", 

"engineering", "infrastructure", "structural elements", 

"industrial plants", "processing plants", "structural parts", 

"infrastructure elements", "infrastructure components", 

"industrial process plant", "pipework components", "industrial 

facilities". This search resulted in the identification of 552 

articles, which underwent a selection process considering the 

inclusion and exclusion criteria, see Table 2 and Section 2.3. 

 

Table 2. Inclusion and exclusion criteria 

 
Criteria Description 

Databases Scopus 

Searching 

Key 
 

Technology 
("3D scanning" OR "laser scanning" OR "point 

cloud") AND 

IA 

(“object recognition " OR "object detection" OR 

"classification " OR "segmentation" OR "instance 

segmentation" OR "semantic segmentation" OR 

"part segmentation” OR “segmented point cloud" 

OR "instance segmentation" OR "semantic 

segmentation" OR "part segmentation” OR 

“segmented point cloud") AND 

Technique 

("artificial intelligence" OR "machine learning" 

OR "deep learning" OR "convolutional neural 

network”) AND 

Application 

("construction" OR "structural components" OR 

"engineering" OR "infrastructure" OR "structural 

elements" OR "industrial plants" OR "processing 

plants" OR “structural parts” OR “infrastructure 

elements” OR “infrastructure components” OR 

“industrial process plant” OR “pipework 

components” OR “industrial Facilities”) 

Inclusion 

Criteria 

The study elaborates on the use of DL for 

geometric recognition of industrial structural 

components. 

Articles published in English. 

Exclusion 

Criteria 

Not Journal- Review or proceeding 

Items over 5 years old 

 

In this systematic review, models and datasets are classified 
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according to the type of infrastructure (transportation, 

construction, industrial, and public and social services). It aims 

to identify trends in the use of AI and 3D digitization for the 

design, construction, and maintenance of industrial 

infrastructures. 

 

2.3 The reporting stage 

 

For the report, a bibliometric analysis was conducted [11], 

for which version 1.16.19 of the VOSviewer Software [12] 

was used; this tool allows for the creation, visualization, and 

analysis of bibliometric networks. The extraction of 

information and its synthesis ensured the updating and 

inclusion of all bibliographic sources and allowed for the 

reduction of complex and abundant information. Particularly, 

in the present article, topics related to 3D digitization, 

semantic segmentation, point clouds, and AI in the context of 

structural components in the field of engineering were 

addressed. 

From the initial set of 522 articles, the selection process was 

carried out considering the inclusion and exclusion criteria, 

resulting in 236 articles. After conducting a complete reading 

of the articles and excluding those that were not relevant 

and/or unavailable for download, the final set consisted of 92 

scientific articles indexed in Scopus. Figure 2 shows the 

described process. 

 

 
 

Figure 2. The selection process of Kitchenham’s approach 

 

Figure 3 shows the most frequent keywords obtained from 

the literature review, highlighting "object detection", 

"semantics", "deep learning", and "point cloud", derived from 

processing 92 articles in VOSviewer. 

 

 
 

Figure 3. Keywords of the review article 

3. RESULTS 

 

This section consists of two subsections: a) articles on 3D 

digitization using point clouds and AI, categorized by 

infrastructure type and annual research trends, and b) countries 

with significant contributions to this research area. This 

systematic classification offers a structured analysis of 

bibliographic distribution patterns, including article types, 

temporal distribution, and geographical origins of the research. 

 

3.1 Distribution of revised articles according to type of 

Infrastructure 

 

The study includes a total of 92 articles, distributed as 

follows: 21 articles related to construction infrastructure, 21 

on industrial infrastructure, 33 on transportation infrastructure, 

and 17 on public and social services infrastructure (ISPS). The 

details about the distribution of these articles can be observed 

in Figure 4. 

 

 
 

Figure 4. Distribution of articles according to type of 

infrastructure 

 

3.2 Distribution of articles by year 

 

Figure 5 illustrates research trends by infrastructure type, 

showing increased interest in Transportation Infrastructure, 

peaking in 2023. In contrast, there are fewer studies related to 

ISPS. Overall, this visualization helps identify temporal 

patterns and assess priorities in medium-term infrastructure 

planning. 

In 2020, just 11 articles were identified, primarily focused 

on construction infrastructure. This number rose to 18 in 2021. 

Research saw significant growth starting in 2022, reaching 22 

articles, and increasing to 25 in 2023. By June 30, 2024, 16 

additional articles were recorded. Data collection for this study 

took place in June 2024, resulting in a total of 92 articles. 

 

 
 

Figure 5. Articles distribution by year of publication 
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4. DISCUSSION 

 

Despite the classification of the scientific contribution of 3D 

digitization with AI according to the type of infrastructure, as 

shown in Figure 4 and described in the responses to research 

questions RQ1a-RQ1d, this article extends its development in 

industrial infrastructure, as it is linked to the mining industry. 

RQ1a: What are the most relevant applications of 

integrating 3D digitization through point clouds and AI in 

industrial infrastructures? 

With the aim of answering the question RQ1a, a 

comprehensive literature review was conducted. Table 3 

summarizes the main findings: a) the datasets covering 

industrial infrastructures, among which Pipework, CLOI, and 

PSNet5 stand out; b) the DL models used for training, and c) 

the accuracy of these models. 

 

Table 3. Precision of IA-based 3D digitization models of industrial infrastructures using point clouds 

 
Ref DataSet Year # Semantic Classes Model mAcc 

[13] Pipework 2020 17 

BlindFlange, Cross, Elbow90, Elbow non 90, Flange, Flange WN, 

Olet, OrificeFlange, Pipe, Reducer CONC, ReducerECC, Reducer 

Insert, Safety Valve, Strainer, Tee, Tee Red, Valve. 

PointNet 73.3% 

[14] Semantic3D 2020 8 Terrain, Vegetation, and Building. RDNet+PointNet 94.0% 

[15] CLOI 2020 10 Cylinders, Elbows, Channels, Beams, Angles, Flanges and Valves. CLOI-NET 82.0% 

[16] Ind. building 2021 6 Beam, Ceiling, Column, Floor, Pipe, Wall. CNN-RNN 86.1% 

[17] Pool and Sea 2021 - Pipes and Valves. PointNet 97.2% 

[18] Industrial plants 2021 6 Elbow, Flange, Straight, Tee, Valve and Manometer. PointNet 71.5% 

[19] CLOI 2021 10 Cylinders, Elbows, Channels, I-beams, Angles, Flanges and Valves. SFR-PointNet++ 79.8% 

[20] Civil tunnelling 2021 - Rock Bolt. CFBolt - 

[8] PSNet5 2021 5 Ibeam, Pipe, Pump, Rbeam, Tank. ResPointNet++ 95.0% 

[21] Ind. building 2021 6 Beam, Ceiling, Column, Floor, Pipe, Wall. CRF-MRF 90.0% 

[22] Scaffolds 2022 - Scaffolds. RandLA-Net 90.8% 

[23] 
3DMatch 

ModelNet40 
2022 40 Pipes and Valves. KPConv 96.0% 

[24] Pipe and valve 2022 - Pipes and Valves. DGCNN 88.0% 

[25] Pipelines 2022 - Pipelines. DNN 99.7% 

[9] Pipework 2022 17 
BlindFlange, Cross, Elbow90, Elbow non 90, Flange, Flange WN, 

Olet, OrificeFlange, Pipe, ReducerCONC, Reducer ECC, Reducer 

Insert, Safety Valve, Strainer, Tee, Tee RED, Valve. 

SE-PseudoGrid 97.5% 

[26] 
BIMGeom 

IFCNetCore 
2022 13 

Wall, Slab, Column, Window, Door, Stair, Railing, FlowTerminal, 

FlowSegment, FlowFitting, DistributionControlElement, 

FlowController, and Interior furniture. 

DGCNN 85.0% 

[27] 
Synthetic 

scaffold 
2023 - Scaffolds. RandLA-Net 95.0% 

[28] 
Transmission 

Corridor 
2023 4 Tower, Transmission Line, Ground Wire, Ground. CA-PointNet++ 93.7% 

[29] MFCAD 2024 - CAD models. Mod.PointNet++ 97.7% 

[30] SoftGroup 2024 27 Ground, Support structure, Piping and Scaffolding, etc. DBSCAN 78.1% 

[31] Mock-up plant 2024 9 
Handrail, Pipe, Grating, Equipment, Fire suppression, Light fitting, 

Support, Tank, and Frame. 
Hybrid 92.8% 

 

The advances in the classification and segmentation of 

industrial infrastructures using advanced 3D digitization 

techniques and DL models stand out for their high accuracy in 

identifying structural components. DL models such as 

PointNet and its variants, like PointNet++ and SE-

PseudoGrid, have proven to be very effective, achieving 

accuracies ranging from 71.5% to 99.7%, depending on the 

complexity of the dataset and the number of classes involved. 

For the Pipework dataset (2020), which includes 17 classes 

achieved an accuracy of 73.3% using the PointNet model. In 

the case of the Semantic 3D dataset (2020) and the PointNet-

RDNet model, which was applied in mining terrains, 

classifying 8 classes achieved an accuracy of 94.0%. Another 

significant example is the CLOI dataset (2020), which 

classifies 10 classes of industrial components, achieving 82% 

accuracy with the CLOI-NET model. The PSNet5 dataset 

(2021) excels in the classification of 5 classes of components, 

using the ResPointNet++ model, achieving an accuracy of 

95%. This demonstrates the model's ability to handle the 

identification of industrial elements with high precision. 

On the other hand, the model that combines CNN and RNN 

achieved an accuracy of 86.1%, performance reached in the 

recognition and classification of 6 classes of components. 

Similarly, the DNN model achieved an accuracy of 99.7% in 

the recognition and classification of pipes, standing out over 

the other models. Figure 6 shows the models with an accuracy 

above 95% are shown, a notable example is the SE-

PseudoGrid model, which achieved an outstanding accuracy 

of 97.5%. 

PointNet-based models stand out for their ability to directly 

process cluttered point clouds without the need for 

preprocessing. This approach has proven effective in industrial 

contexts, achieving high accuracy in specific tasks such as 

pipe classification (97.5% with SE-PseudoGrid in [9]). 

Furthermore, its lightweight architecture makes it suitable for 

real-time applications. However, it has limitations when 

semantically segmenting complex geometries and lacks 

contextual awareness in large-scale environments, which is 

reflected in lower performances, such as in the studies [13, 18], 

where accuracies were 73.3% and 71.5%, respectively. 

These results show the potential of AI models, such as 

DNN, SE-PseudoGrid, and ResPointNet++ to enhance 

automation in the identification of critical components in 

industrial infrastructures. Clearly, Industrial component 

identification is being increasingly investigated as can be seen 

in Table 3. Pipes and valves are the main structures researched 
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because they are key components in many industrial sectors, 

such as energy, petrochemicals, water management and 

industrial processes, so their research is justified by the critical 

need to monitor, maintain and optimize these systems. The 

high frequency of research on pipelines reflects the importance 

of automating their inspection and management in order to 

prevent failures, leaks or accidents, reducing downtime and 

operating costs. 

 

 
 

Figure 6. IA-based 3D digitization through point cloud 

processing for industrial infrastructure with over 95% 

accuracy 

 

RQ1b: What are the most relevant applications of 

integrating 3D digitization through point clouds and AI in 

transportation infrastructure? 

In the analysis of transportation infrastructures, the results 

of the models in various studies demonstrate remarkable 

effectiveness in the classification and recognition of critical 

components. Figure 7 shows the models that exceed 95% 

accuracy. The SP-Network model achieved an impressive 

accuracy of 99.7%, using the Road infrastructure dataset 

which covers a variety of classes including road surfaces, 

buildings, and traffic signs. Another relevant model is EffNet, 

which achieved an accuracy of 97.7% using the Railway 

dataset that includes: poles, catenaries, and cables. 

In 2024, the KPConv model achieved an accuracy of 99% 

using the Rail3D dataset, demonstrating the ability of current 

models to classify a wide range of elements, from vegetation 

to signals and support structures. This is confirmed by looking 

at the Figure 7 that reports the BrIM model, which achieves an 

accuracy of 97.26% using the Highway bridges dataset, excels 

in identifying essential components such as beams and slabs. 

These results demonstrate notable progress in automating and 

enhancing transportation infrastructure management, which 

optimizes safety and operational efficiency. 

 

 
 

Figure 7. IA-based 3D digitization through point cloud 

processing for transportation infrastructure with over 95% 

accuracy 

 

Automation through the use of IA models can significantly 

improve the efficiency and accuracy of inspections. Table 4 

shows that the high frequency of research into bridges, 

railways, roads and tunnels reflects their critical importance in 

the transportation system and the urgent need to keep these 

infrastructures in good condition. The practical applications of 

this research in predictive maintenance, autonomous 

monitoring, asset management and road safety are marking a 

step towards smarter, safer and more efficient transportation 

systems. Moreover, advancements in technologies for the 

automatic identification of components within transportation 

infrastructure are expected to continue, thereby contributing to 

enhanced quality of life and promoting greater sustainability 

within both public and private transportation sectors. 

 

Table 4. Precision of IA-based 3D digitization models of transportation infrastructures using point clouds 

 
Ref Year DataSet #  Semantic Classes Model mAcc 

[32] 2020 Bridge  4 Background, Pier, Pier Cap, Slab. PointNet++ 94.0% 

[33] 2020 KITTI  3 Car, Pedestrian, Cyclist. RobNet 66.0% 

[34] 2020 Stanford 3D 6 Road surfaces, Buildings, Walls, Traffic Signs, Trees, Streetlights. SP-Network 99.7% 

[35] 2021 Railroad Bridges 10 Pole, Building, Girder, Pier, Ground, Grass, Water, Sky, Car, Road. SfM 80.8% 

[36] 2021 
Infrastructure 

building 
10 

Columns, Culvert1, Culvert2, Culvert3, Sump, Lshaped, Semi-

gravity, Cantilever, Gravity, Wing wall. 
MVCNN 98.0% 

[37] 2021 Girder bridge 6 Abutment, Girder, Pipe, Cross Girder, Deck, Background. PCIS 82.8% 

[38] 2021 Railway 8 
Pole, Catenary wire, Contact wire, Insulator, Dropper, Steady arm, 

Registration Arm, Cantilever. 
EffNet 97.7% 

[39] 2022 Railway infr. 8 
Background,Traffic signs, Informative signs, Traffic lights, Masts, 

Cables, Droppers, Rails. 
C-PointNet++  88.8% 

[40] 2022 Railway Bridge 5 Spandrel Wall, Pier, Abutment, Arch, Hole. BridgeNet 95.7% 

[41] 2022 OCS 9 

Catenary Wire, Steady Arm, Oblique Cantilever, Straight, 

Cantilever, Elastic Catenary Wire, Registration Arm, Dropper, 

Contact Wire. 

PMFR-Net 93.0% 

[42] 2022 Road surface 3 Drivable lane, Driving line, Hatched area. MaskR-CNN 77.8% 

[43] 2022 Railway system 16 

Ground, Rail-bed, Sleeper, Rail, Platform-structural, 

Vegetation,Tree, Building, Catenary-wire, Catenary-pole, Noise-

barrier, Platform-asset, Cantilever, Contact-wire, Dropper. 

Mod. KPConv  82.1% 

[44] 2022 Highway bridges  5 Slab, Girder, Pier cap, Pier, Background. BrIM 97.3% 

[45] 2022 PWMMS-UHA  9 

Bridge Deck, Bridge Abutment, Bridge Pier, Man made terrain, 

Natural terrain, Vegetation, Building, Remaining hardscape, 

Scanning artifact. 

PointNet-GV 80.3% 

[46] 2023 Railway Catenary 14 Unlabelled, Top bar, Pole, Drop post, Top tie, Bracket, Pole Mod.PointNet++ 71% 
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Arches foundation, Steady arm, Contact wire, Stitch wire, Wheel tension 

device, Dropper, Messenger wire support, Insulator. 

[47] 2023 Railway infr. 7 
Informative signs, Masts, Traffic lights, Traffic signs, Cables, 

Droppers, Rails. 
Hybrid 68.7% 

[48] 2023 Road maintenance 5 Asphalt, Road markings, Road signs, Barriers, other. Hybrid 87% 

[49] 2023 
Semantic3D 

SemanticKITTI 
8 

Contact wires, Catenary wires, Current return wires, Tracks, OCS 

masts, Line foundation, Fences, Others. 
SALAProNet, 95% 

[50] 2023 Railway LIM 7 
Natural greenery, farmland, Bare land, Railway, Road, River, 

Building. 
DBSCAN - 

[51] 2023 Bridge and Tunnel 2 Cement Wall, Bridge. Crack detection. CNN 79.8% 

[52] 2023 Stanford 3D 13 
Beam, Board, Book, Ceil, Chair, Clut, Col. Door, Floor, Sofa, Table, 

Wall, Wind. 
Rnn-PointNet++  86.7% 

[53] 2023 Toronto-3D   8 
Road surface, Road Mrk, Natural, Building, Util. line, Pole, Car, 

Fence. 
SCF-Net - 

[54] 2023 A metro tunnel 6 Cable, Segment, Pipe, Power track, Support, Track. DAPCNet 91.0% 

[55] 2023 PARIS-LILLE-3D 10 
Ground, Road, Building, Pole, Bollard, Tree, Dustbin, Pedestrian, 

Car, Barrier. 
RailSeg 96.6% 

[56] 2023 COCO:Bridge  3 Railing, Abutment, Deck. MaskR-CNN 60.5% 

[57] 2023 STTED 7 
Clutter, Bolt hole, Grouting hole, Longitudinal Joint, Cable,Weak-

current cable, Circumferential joint. 
GL-Net. 73.0% 

[58] 2023 KITT 2 Car, Person. MY3Net 84.2% 

[59] 2024 Highway Bridges 6 Vegetation, Road, Railing, Noise, Barrier, Signs. HSVM 92.0% 

[60] 2024 Tunnel  8 Left wall, Right wall, Roof, Floor, Wires, Belts transport, Air tube. SAM 88.9% 

[61] 2024 Seg2Tunnel 5 Segment, Pipe, Cable, Rail, Walkway. SBP3D 98.6% 

[62] 2024 Rail3D 8 
Ground, Vegetation, Rail, Poles, Wires, Signaling, Fences, 

Installation. 
KPConv 99.0% 

[63] 2024 Bridge-TLS 17 

Assembly abutment, Assembly signbridge, Barrier flexible, Barrier 

railing, Barrier rigid, Beam_girder, Beam piercap, Column pier, 

Footing, Natural_ground, Pipe, Slab deck, Slab paving, Sab 

sidewalk, Stair, Traffic sign, Wall noise barrier. 

VI-Head 89.4% 

[64] 2024 ROADSENSE - Transport, Forest. PointNet++ 82% 

 

RQ1c: What are the most relevant applications of 

integrating 3D digitization through point clouds and AI in 

construction infrastructure? 

In the analysis of construction infrastructures, the results 

from datasets of various studies demonstrate remarkable 

effectiveness in the classification and recognition of critical 

components. Figure 8 shows the models that exceed 90% 

accuracy. For example, a notable result comes from the BIM 

models, where the Hybrid model achieved 90% accuracy in 

classifying essential elements such as beams, columns, walls, 

and doors. This approach is fundamental in the 

implementation of BIM, which facilitates the planning and 

management of construction projects. 

 

 
 

Figure 8. IA-based 3D digitization through point cloud 

processing for construction infrastructure with over 90% 

accuracy 

 

In the case of the U-Net model that used the CrackSeg 

dataset, used for crack detection in pavements, it achieved an 

accuracy of 97.8%, highlighting the importance of computer 

vision techniques in infrastructure maintenance. 

The NVE-DGCNN model showed an accuracy of 96.9% 

with the Bridges dataset, highlighting the effectiveness of 

models in identifying critical structures such as bridges. 

Moreover, in the analysis of metro stations in Beijing, the use 

of PointNet++ achieved an accuracy of 60%, which 

demonstrates that classification in complex environments 

remains an area with significant opportunities for 

improvement. 

Finally, the DGCNN model reported an accuracy of 94.2% 

on the S3DIS dataset, demonstrating a robust ability to identify 

elements within buildings, which is essential for interior space 

management. These results reflect the continuous 

development and application of advanced models in the 

classification of components in the construction sector, 

improving the efficiency in the design and maintenance of 

infrastructures. 

It is well known for the use of BIM models for the 

digitalisation of infrastructures, facilitating project planning, 

resource optimisation and management during construction. 

Then, by integrating machine learning models, it enables the 

detection of possible errors in the design phase and improves 

the accuracy in the execution of works. Table 5 shows that the 

most investigated classes are: pillars, columns and beams, 

which are fundamental components in almost all construction 

infrastructures, since they support structural loads. Therefore, 

automatic inspections of these elements are essential to 

identify cracks, corrosion and other defects that could 

compromise the stability of a building or infrastructure. 

RQ1d: What are the most relevant applications of 

integrating 3D digitization through point clouds and AI in 

ISPS? 

The information presented in Table 6 reflects the 

performance of various models in the classification of 

components within the ISPS category. Over the years, 

remarkable results in terms of accuracy have been observed. 

In 2022, the GFSAE model achieved an accuracy of 95.4%, 

operating on the Semantic 3D dataset which includes 8 classes 
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such as terrain, vehicles, among others. This highlights the 

effectiveness of DL techniques in segmenting complex data in 

urban environments. 

Likewise, in 2022, the U-Net 3D model achieved an 

impressive accuracy of 96.9% with the dataset City center of 

Stuttgart, Germany, demonstrating its ability to distinguish 

between various urban elements such as buildings and 

vegetation. In 2023, the D-Net model achieved an accuracy of 

97.6% with the US Highway dataset, correctly identifying 

various objects, including buildings and electrical cables. 

Figure 9 shows the IA-based 3D digitization through point 

cloud processing for ISPS with over 90% accuracy, as it can 

be seen the model MIF-PointNet++ offer a 98% of mAcc. 

These results underscore the progress in the use of advanced 

models for the identification and classification of components 

in ISPS, which could have a significant impact on the planning 

and management of these vital resources. The continuous 

improvement in the accuracy of these models suggests 

progress towards automation and optimization in urban 

infrastructure. 

Evidently, urban buildings are the basic element in any city, 

and therefore 3D modelling of buildings is essential for urban 

planning, asset management and land use determination. The 

sector classes urban buildings, vegetation and natural elements 

are the most frequent in Table 6. The use of 3D models in 

public infrastructure allows urban planners to create accurate 

digital maps of urban areas, facilitating decision making on 

land use, construction areas, green areas and road 

infrastructure. 

 

 
 

Figure 9. IA-based 3D digitization through point cloud 

processing for ISPS with over 90% accuracy 

 

Table 5. Precision of IA-based 3D digitization models of construction infrastructures using point clouds 

 
Ref Year DataSet # Semantic Classes Model mAcc 

[65] 2020 
Motorway 

Monorail 
6 Piers, Roads, Vegetation, Terrain, Vehicles, Background. DCNN 97.8% 

[66] 2020 BIM models. 7 Beams, Columns, Walls, Pipes, Doors, Windows, Railings. Hybrid  90.0% 

[67] 2020 
Annunziata 

viaduct 
11 Bridges, Viaducts. Mask-RCNN - 

[68] 2020 BIM models. - BIM. ICP 91.4% 

[69] 2021 CrackSeg - Pavement. U-Net 97.8% 

[70] 2021 S3DIS - - CorDet 80.5% 

[71] 2022 TUMCMS S3DIS 5 Ceiling, Wall, Floor, Windows, Door. 
Point 

Transformer 
81.9% 

[72] 2022 ShapeNet S3DIS 16 
Airplane, Bag, Cap, Car, Chair, Earphone, Guitar, Knife, Lamp, 

Laptop, Motor, Mug, Pistol, Rocket, Skateboard, Table. 
PointNet++  88.0%    

[73] 2022 5 Datasets 3 Cranes, Scaffolds, Fromwork. AlexNet 90.7% 

[74] 2022 Digimap 5 Flat, Hip, Gable, Cross-hip, Mansard roofs. CNN 95.4% 

[26] 2022 Industrial  13 

Wall, Slab, Column, Window, Door, Stair, Railing, FlowTerminal, 

FlowSegment, FlowFitting, DistributionControlElement, 

FlowController, FurnishingElement. 

GCNs 83.0% 

[75] 2023 Synthetic  4 Columns, Beams, Slabs, Walls. PCCR-Net 97.5% 

[76] 2023 Interior trades 4 Tiling, Waterproofing, Boarding, Background. PointNet++ 92.0% 

[77] 2023 Subway stations  
Non-paying Areas, Paying Areas, Entrances and exits, Platform 

Levels, Tracks, Accessible Elevators, and Escalators, Stairs. 
PointNet++ 60.0% 

[78] 2023 S3DIS 5 Columns, Beams, Walls, Floors, Ceilings. DGCNN 94.2% 

[79] 2023 
Sungkyunkwan 

University 
9 Wall, Window, Curtain, Duct, Vent, Coping, Door, Colon, Balcony. RandLA-Net, 98.9% 

[80] 2024 ScanNetv2 5 
Apartment, Bathroom, Bedroom, Living room, Classroom, Conference 

room, Comp. cluster. 
GCN 90.5% 

[81] 2024 Bridges 5 Bridges. 
NVE-

DGCNN 
96.9% 

[82] 2024 ScanNet- S3DIS 6 Beam, Ceiling, Column, Door, Floor, Wall, Window. ConPro-NET 81.0% 

[83] 2024 2 Datasets 6 
Concrete, Formwork, Reinforcement Steel, Steel Structure, Wall Tiles, 

and Floor Tiles. 
Mask-RCNN - 

[84] 2024 S3DIS 12 
Ceiling, Floor, Wall, Beam, Column, Windows, Door, Table, Chair, 

Sofa, Book case, Board, Clutter. 
PointNet++ 60.0% 

 

Table 6. Precision of IA-based 3D digitization models of ISPS using point clouds 

 
Ref Year DataSet # Semantic Classes Model mAcc 

[85] 2020 ISPRS 3D 9 
Powerline, Low vegetation, Impervious surface, Car, 

Fence/Hedge, Roof, Facade, Shrub, and Tree. 
DANCE-Net 71.2% 

[86] 2021 Urban outdoor 6 Car, Bush, Tree, Ground, Streetlight, and Building. KBA 75.0% 

[87] 2021 
Suburban European 

city 
11 

Natural ground, Low vegetation, High vegetation, Buildings, 

Traffic roads, Wire-Structure, Connectors, Vehicles, Poles, 
RandLA-Net 81.9% 
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Hardscape, Barriers, Pavements 

[88] 2021 Jujube orchard 2 Branches, Trunks. SPGNet 89.0% 

[89] 2021 
Buildings of the city of 

Shenzhen 
3 Building, Tree canopy, Terrain. 

DeepLabv3- 

PointNet++ 
83.3% 

[90] 2021 
Highway in Shenzhen, 

China 
7 

Transversal slow belt (TSB), VSB, Meshline, Zebra crossing, 

Arrow, Solid line, and Dotted line. 
DFPN 69.1% 

[91] 2022 Semantic3D 8 
Man-made terrain, Natural terrain, High vegetation, Low 

vegetation, Building, Hardscape, Scanning artifacts, Cars. 
GFSAE 95.4% 

[92] 2022 Paris-Lille-3D 7 
Cars, Trees, Traffic poles, and Small objects (Pedestrians, 

Bicycles, and E-bicycles). 
PGVNet 94.8% 

[93] 2022 
City center of 

Stuttgart, Germany 
5 Ground, Building, Low Points, Bridges, Vegetation. U-Net-style 3D 96.9% 

[94] 2022 
LASDU,US3D, 

ISPRS 3D,GML 
24 

Ground, Building, Tree, Low veg, Artifact ground, High veg, 

Building, Water, Bridge Power, Low, Imper, Car, Fence, Roof, 

Facade, Shrub, Tree 

Ground, Building, Car, Tree, Low veg 

VD-LAB 76.0% 

[95] 2023 
USGS 

ISPRS 
7 

Steeply sloping terrain, Dense vegetation, Buildings with 

vegetation, Train stations, Multistory buildings with 

courtyards, Quarries (with fracture lines). 

MIF-

PointNet++ 
98.0% 

[96] 2023 DALES 4 Buildings, Vegetation, Ground, Background. Hybrid 77.3% 

[97] 2023 US Highway 8 
Buildings, Cars, Powerlines, Vegetation, Asphalt Road, Poles, 

Billboards, and Sidewalk. 
D-Net 97.6% 

[98] 2023 
Two complex Chinese 

urban Scenes 
10 

Ground, Building, Tree, Light, Parterre, Pedestrian, Fence, 

Pole, Car, others. 
Hybrid 88.1% 

[99] 2023 SensatUrban 11 
Ground, Vegetation, Building, Wall, Bridge, Parking, Traffic, 

Street, Car, Footpath and Water. 
TSANet 83.4% 

[100] 2024 
Hong Kong China. 

Lille, France. 
5 Others, Ground, Building, Vegetation, Pole-like. GeoBIM 86.9% 

[101] 2024 SensatUrban 9 
Ground, High vegetation, Buildings, Walls, Parking, Traffic 

Roads, Street furniture, Cars, Footpath. 
RandLA-Net 62.0% 

 

Table 7. Most used dataset for 3D digitization with AI for 

industrial infrastructure 

 
Dataset Year Application Type Points Class 

CLOI 

[15] 
2020 Five industrial 

Indoor 

scene 
14 M 10 

Pipework 

[13] 
2020 

Industrial 

process plant 

Object-

based 
110 M 17 

PSNet5 

[8] 
2021 

Four different 

industrial 

scenes 

Indoor 

scene 
80 M 5 

 

In the case of digitalisation of vegetation and natural spaces 

in cities, it can be used to manage urban biodiversity, plan the 

renewal of green areas and ensure that cities are more 

sustainable. It also allows us to assess the environmental 

impact of infrastructure and develop mitigation strategies for 

the changing effects of climate. 

RQ2: What available datasets are related to structural 

components of industrial infrastructure?  

Currently, the availability of public datasets, which 

encompass structural components in industrial infrastructure, 

is significantly limited due to the high costs associated with 

the acquisition and labeling of these data [15]. The datasets 

presented in Table 7 are the most relevant resources available 

for industrial infrastructure. 

Pipework [13]: It is a repository specifically designed for 

semantic segmentation tasks of 3D point clouds in the context 

of industrial components, particularly focused on the 

segmentation and classification of pipes and their associated 

elements within industrial facilities, such as factories or 

processing plants. For the creation of this dataset, a terrestrial 

laser scanning (TLS) was conducted at a petroleum refinery 

plant. Pipework comprises a total of 4647 shapes grouped into 

17 classes, which together encompass 110 million points 

addressing various industrial components. 

CLOI [15]: It is a dataset designed for semantic 

segmentation and large-scale object classification, with a 

specific focus on industrial components and large structures in 

manufacturing environments or industrial plants. It is one of 

the most extensive TLS collections of industrial plants, this 

dataset was carried out in five industrial facilities, three were 

warehouses, one was a petrochemical plant, and the fifth was 

an oil refinery. CLOI consists of 12125 shapes grouped into 

10 classes, covering 140 million points that address industrial, 

indoor, and outdoor situations. These classes include electrical 

conduits, straight pipes, circular hollow sections, elbows, 

channels, solid bars, beams, angles, flanges, and valves. This 

dataset provides a detailed and comprehensive representation 

of industrial infrastructure, making it a valuable tool for 

applications that require precise analysis of industrial 

environments. 

PSNet5 [8]: It is a well-known public dataset that presents 

a collection of 3D point clouds of industrial components. 

PSNet5 was built using a TLS, selecting four industrial 

scenarios from water treatment plants in Hong Kong, which 

include Chiller House (CH), On-Site Chlorine Generation 

(OSCG), Sludge Press House (SPH), and Wash-water 

Recovery Tank. (WRT2). The four scenes used are mainly 

composed of elements such as pipes, pumps, beams, and other 

industrial categories. This dataset consists of 5 classes with a 

total of 80 million points. The large amount of training data is 

sufficient to train DL models and fully leverage their 

capability in perceiving three-dimensional data of industrial 

structural components. 

The most representative datasets for this case study are 

CLOI, Pipework, and PSNet5. These datasets were generated 

using TLS, which includes RGB features. To classify the 

classes, a 3D semantic segmentation was performed, with 

classes related to structural components. 

RQ3: What AI models use point clouds for the 

recognition of structural components in industrial 

infrastructures? 
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To address this research question, a thorough review of DL-

based models intended for semantic segmentation of point 

clouds was conducted, considering publications from recent 

years. Attention has been given to the approaches developed 

and applied in the context of structural components in 

infrastructures. 

Figure 10 shows the taxonomy of DL models with an 

emphasis on applications with 3D point clouds. In this figure, 

three main categories can be observed: 3D shape classification, 

3D point cloud segmentation, and 3D object detection-

tracking.  

 

 
 

Figure 10. Taxonomy of DL methods for 3D point cloud 

segmentation [102] 

 

3D point cloud segmentation requires comprehension of 

global geometric structures and the specific details of 

individual points. Based on the level of granularity, 3D point 

cloud segmentation methods can be categorized into three 

subtypes: semantic segmentation (scene level), instance 

segmentation (object level), and part segmentation (part level) 

[102]. The approach to semantic segmentation of point clouds 

is to separate them into several subsets based on the semantic 

meaning of the points, where four specific methods stand out: 

the projection-based method, the discretization-based method, 

the point-based method, and the hybrid-based method. 

This research focuses on the point-based method, which is 

subdivided into several approaches. One of the main ones is 

the so-called Pointwise MLP; these point-based methods 

perform learning directly on the irregular point cloud. These 

clouds lack a defined order and structure, which makes 

difficult the direct application of standard Convolutional 

Neural Networks (CNNs), originally designed for data 

organized in regular grids. This limitation was overcome in 

2017 with the introduction of the PointNet model [6], which 

was designed to process unstructured 3D point clouds without 

requiring conversion to a structured grid or voxel 

representation, then this contribution has served as a reference 

for various segmentation methods. 

In general, most existing DL-based point cloud 

segmentation applications, especially those implemented in 

the field of industrial structural components, have opted for 

point-based methods. In what follows, a brief description of 

the most commonly used and most accurate models, according 

to the literature review is described. 

PointNet [6]: Pointnet is a novel type of neural network that 

directly consumes unordered point clouds, which also takes 

care of the permutation invariance of points in the point cloud. 

Pointnet can do object classification, part segmentation, and 

semantic parsing. The main feature of Pointnet is the network 

is robust with respect to input perturbation and corruption. 

Also, the network can learn to summarize a shape by a sparse 

set of key points. 

PointNet++ [7]: is a hierarchical network that applies 

Pointnet recursively on a nested portioning of the input point 

cloud. It proposes novel set learning layers to adaptively 

combine features from multiple scales from varying densities. 

Similar to CNNs, Pointnet++ extracts local features from a 

small neighborhood and further grouping into larger units and 

processes to produce higher level features. This process is 

recursive until we obtain the feature of the whole point set. 

ResPointNet++ [8]: ResPointNet++ is a model for industrial 

point clouds, which significantly improves the performance of 

DL-based methods for industrial point cloud segmentation. 

Through the implementation of the ResPointNet++, it is 

feasible to effectively segment large-scale industrial LiDAR 

point clouds by using a neural architecture with deep residual 

settings.  

SE-PseudoGrid [9]: The SE-PseudoGrid architecture 

enhances the network's ability to differentiate and classify 3D 

objects, excelling in industrial and robotics applications. SE-

PseudoGrid model, called SE-LAO, extracts descriptive 

features from the point cloud during the process of learning the 

representation of these clouds. The integration of the SE 

mechanism and the PseudoGrid model contributed to a more 

effective approach for classification. The model architecture is 

composed of two components, the encoder and the header. The 

encoder uses a shared fully connected (FC) layer, generating 

feature embeddings. Through SE layers and residual blocks 

(RB), the encoder learns significant local structures. Then, a 

series of SE-LAO and SE-RB layers are applied to extract 

local geometric structures from each point.  

The precision of a model is also measured by metrics such 

as Mean Overall Accuracy (mOA) and Mean Intersection over 

Union (mIoU). These metrics are commonly expressed in 

percentage terms and are widely used to evaluate the 

performance of models in point cloud processing with AI in a 

3D digitization process, see Table 8. 

Table 8 presents the Pipework, CLOI, and PSNet5 datasets. 

These datasets are related to the case study and are available 

to the academic community. The Pipework dataset was first 

used in 2020. The study [14] proposed a DL-based method to 

retrieve pipe component catalogs to support the reconstruction 

of a 3D CAD model of a process plant with point clouds. The 

data retrieval system identifies the type of pipe components, 

searches for and extracts data from the catalog, and performs 

post-processing of the catalog data. The authors applied the 

PointNet model, obtaining the following metrics: mOA of 

79.9%, mAcc of 73.6%, and mIoU of 60.8%, with their 

respective mIoU per class presented in Table 5. 

In the study [15], the CLOI dataset was used to evaluate DL 

classification models along with their new model CLOI-NET. 

They achieved superior results compared to other models, 

reaching the following metrics: mOA of 83%, mAcc of 59%, 

and mIoU of 45.1%, with the respective mIoU per class 

presented in Table 8. 

In the study [19], the CLOI dataset was used to evaluate DL 

classification models along with their new model SFR-
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PointNet++. The authors achieved superior results compared 

to other models, reaching the following metrics: mOA of 72%, 

mAcc of 50%, and mIoU of 38.1%, with the respective mIoU 

per class presented in Table 3. 

The study [8] used the PSNet5 dataset to evaluate DL 

classification models along with their new model 

ResPointNet++. They obtained superior results compared to 

other models, achieving the following metrics: mOA of 94% 

and mIoU of 87.3%, with the respective mIoU per class 

presented in Table 8. 

The pipework dataset was used to evaluate DL classification 

models along with their new SE-PseudoGrid model [9], and it 

achieved superior results compared to other models, reaching 

the following metrics: mOA of 96.2%, mAcc of 97.5%, and 

mIoU of 96.5%, with the respective mIoU per class presented 

in Table 8. 

 

Table 8. Most used models with corresponding precision for 3D digitization with AI for the industrial infrastructure 

 
Ref DataSet Year Model mOA mAcc mIoU 

[13] Pipework 2020 PointNet 79.9% 73.6% 60.8% 

[15] CLOI 2020 

PointNet 

PointNet++ 

CLOI-NET 

50% 

68% 

83.0% 

21% 

46% 

59% 

12% 

32% 

45.1% 

[19] CLOI 2021 

PointNet 

PointNet++ 

PointNET++ SFR 

50% 

68% 

72% 

21% 

46% 

50% 

12% 

32% 

38% 

[8] PSNet 5 2021 

PointNet 

PointNet++ 

ResPointNet++ 

53.0% 

70.5% 

95.0% 

- 

- 

- 

21.2% 

45.5% 

87.3% 

[9] Pipework 

2020 

2022 

2022 

PointNet 

PointNet++ 

SE-PseudoGrid 

84.2% 

86.8% 

96.2% 

73.9% 

75.3% 

97.5% 

- 

- 

96.5% 

 

Industrial structural components play a critical role in 

industrial plants, and the 3D digitization of these components 

from point clouds has gained significant attention. A major 

challenge has been the ineffectiveness of semantic 

segmentation. Accurate classification of structural 

components typically requires professional intervention, 

leading to inefficiencies. However, recent advancements in 

DL methods for classification, semantic segmentation, and 

object detection in point clouds have shown promise for 

industrial structural components, particularly with the 

development of pointwise MLP methods for segmentation, as 

illustrated in Figure 10. 

After conducting a thorough analysis of the datasets, the 

datasets related to industrial structural components are as 

follows: Pipework, CLOI, and PSNet5, these datasets have 

played a fundamental role in the evaluation of DL models 

designed to address the interpretation of three-dimensional 

industrial scenes. 

In particular, it is essential to highlight that 3D digitalization 

with AI is a growing trend in the mining industry, as it allows 

for better understanding and planning of infrastructures. The 

aforementioned DL models, such as PointNet, PointNet++, 

ResPointNet++, and SE-PseudoGrid, have proven to be highly 

effective in analyzing and processing large datasets of point 

clouds in environments other than industrial mining 

infrastructures. However, they have been successfully used to 

identify and classify different types of rocks and minerals in 

three-dimensional images using the PointNet model, in a type 

of infrastructure that could be considered similar to 

transportation infrastructure or construction infrastructure, 

according to the classification described in this paper. 

Therefore, by combining 3D digitization with AI and using 

appropriate models and datasets, greater efficiency and 

accuracy can be achieved in the characterization of mining 

infrastructure. This can lead to better planning and 

management of mining projects, as well as a reduction in costs 

and risks associated with resource exploration and extraction.  

A global analysis of the industries related to the 92 articles 

investigated in this article confirms that: a) the industry where 

this technology is most used is the oil or natural gas industry, 

where it is employed for the inspection and maintenance of 

metal structures in difficult and hazardous environments, b) 

there are no articles of the industrial infrastructure type that are 

related to the mining industry. There are some articles that 

could be related to rocks or mining areas, but not those related 

to industrial processes. Consequently, it can be stated that 3D 

digitization with AI in mining infrastructure is in full 

development and requires deep attention. 

Paradoxically, the main industrial activity in Peru is mining; 

however, this study demonstrates that there has been no 

advancement in 3D digitization with AI in journals indexed in 

Scopus. Therefore, it is recommended to consider the present 

research topic in the strategic funding areas of the competent 

entities, such as Prociencia in Peru. 

As a final result of this article, to accelerate the adoption of 

3D digitalization tools with AI in industrial mining 

infrastructures, it is recommended to consider articles [8, 9], 

13-31] as a starting point. Additionally, it is suggested to use 

the models (PointNet++, ResPointNet++, and SE-PseudoGrid) 

and the dataset (Pipework, CLOI, and PSNet5) for the 

digitalization of industrial mining infrastructures with AI. 

In consideration of future research activities, a number of 

potential pathways are suggested subsequent to the completion 

of this comprehensive review. Several of these are detailed in 

what follows: 

1) The generation of synthetic data with enhanced 

geometric accuracy and a broader variety of materials, 

including concrete, wood, steel, and glass, aims to augment the 

capabilities of DL models. 

2) Exploration of datasets pertinent to particular industrial 

sectors, incorporating data from infrastructure situated in 

diverse geographical regions while taking into account distinct 

cultural and construction elements. 

3) Given that the findings associated with ISPS exhibit the 

lowest degree of accuracy, subsequent research endeavors 

may aim to enhance the precision of the following categories: 

Soil, Tall Vegetation, Buildings, Walls, Parking, Circulation 

Paths, Street Furniture, Automobiles, and Path. This 

improvement is intended to strengthen the DL models. 
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5. CONCLUSIONS 

 

The present systematic literature review has facilitated the 

generation of knowledge on 3D digitization with AI, 

recognized trends in the application of deep learning (DL) 

models, and identified unexplored research areas, particularly 

in the mining industry. 

Models such as PointNet and its variants (PointNet++, SE-

PseudoGrid, among others), MaskR-CNN, KPConv, U-Net, 

DGCNN ConPro-NET, NVE-DGCNN and D-Net used in 

point cloud classification, focusing on overall infrastructures, 

achieved representative levels of accuracy in specific datasets 

as described in detail in the article. 

Among these, models with high potential for use in 

industrial infrastructures, specially mining industry the 

PointNet++ spurred the development of improved models, 

such as ResPointNet++ and SE-PseudoGrid which stand out 

with accuracy higher than 97.5%. Furthermore, a thorough 

analysis of datasets revealed that key industrial structural 

components include Pipework, CLOI, and PSNet5. These 

datasets play a critical role in evaluating DL models tailored 

to interpreting 3D industrial infrastructures. 

Overall, the application of DL models has resulted in 

quantifiable improvements, demonstrating their exceptional 

performance in semantic segmentation and classification tasks. 

However, there are still some areas such as the mining sector 

where there is no evidence in Scopus where the use of such 

DL models has been used in industrial infrastructures. 

This study is distinguished not only by its thorough 

examination of DL models utilized in the 3D digitalization of 

industrial, construction, transport, and ISPS sectors, but also 

by its exploration of the models' competencies in performing 

specific tasks. These tasks range from the semantic 

segmentation of industrial components to the identification of 

architectural structures within construction and urban settings. 

The analysis encompasses the classification of the elements 

under consideration, as well as a synthesis of relevant metrics, 

including mAcc. This investigation promotes the integration 

of AI-driven technologies within infrastructures. Furthermore, 

it underscores critical gaps in the existing literature, thereby 

motivating future inquiries to overcome these identified 

limitations. 
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