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 Deep learning has revolutionized the modern-day world starting with its application in 

computer vision such as image classification, face recognition, autonomous vehicle etc. it 

has been explored in various areas where human beings find it difficult to come up with 

solutions to the challenges at hand. By the word deep, it implies they are trained with 

millions, billions of parameters to achieve outstanding results. In this review paper, the 

fundamentals of deep learning have been discussed extensively starting with the 

classification, types of activation functions, different deep learning algorithms as well as 

their applications were also discussed. Recurrent neural network (RNNs) and its variant, 

convolution neural networks (CNNs) and various architectures, recursive neural networks 

(RvNNs), restricted Boltzmann machines (RBMs), deep belief networks (DBNs), 

generative adversarial networks (GANs) and other deep learning were discussed 

extensively. Some of the findings of researchers for some of these algorithms were 

highlighted. Based on various paper reviewed and thorough analysis carried out, it was 

observed that the exploration of deep learnings in this modern-day world has found 

applications in virtually all fields of life from medicine, academy, transportation, 

entertainments, particularly the exploration of CNNs, RNNs, and GANs. 
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1. INTRODUCTION 

 

Artificial intelligence is a corner stone of the modern-day 

mega trends and technologies where it has facilitated the 

growth of various sectors from health to finance. It 

encompasses the deep learning which is a subset of machine 

learning [1]. The deep learning which is also called 

representative learning has been explored in various domains 

such as the natural language processing (NLP), Computer 

vision, speech recognition [2], etc.  

The deep learning originated from human desire to develop 

a comprehensive system that could function as a human brain, 

hence the desire to understand the human cognitive system. Its 

historical development can be traced back to 300 BC during 

the era of Aristotle through whom Associationism (a theory 

that defined human mind as an organized set of conceptual 

elements) was introduced. He postulated four laws in relation 

to reminiscent, haven’t been inspired Plato-these four laws are 

similarity, frequency, contrast, and contiguity. Similarity is the 

concept that the thought of one event is being triggered by a 

similar event’s thought; frequency defines that the number of 

occurrences of two events is linked to their associations; 

contrast is the thought of one event being triggered by an 

opposite event’s thought; and contiguity is the concept that 

there is an association in the mind of temporal or spatial events. 

In 1873, Alexander Bain introduced neural groupings, 

marking the earliest approach to neural networks. The 

McCulloch & Pitts (MCP) model, a linear predecessor of 

artificial neural networks, was introduced by McCulloch and 

Pitts in 1943. In 1949, Donald Hebb introduced the Hebbian 

Learning Rule, which serves as the foundation for modern 

neural networks; he is often called the father of neural 

networks, having postulated that “cells that fire together, wire 

together”. Frank Rosenblatt introduced the first known 

perceptron in 1958. Other notable developments include: 

backpropagation by Paul Werbos in 1974; the Self-Organising 

Map and Neocogitron (the inspiration behind CNNs) by Teuvo 

Kohonen and Kunihiko Fukushima, respectively, in 1980; the 

Hopfield Network by John Hopfield in 1982; the Boltzmann 

Machine by Hinton and Sejnowski in 1985; the Harmonium 

(later known as the RBM) and RNN by Paul Smolensky and 

Michael I. Jordan, respectively, in 1986; LeNet—a deep 

learning-based model—by Yann LeCun in 1990; LSTM and 

bidirectional recurrent neural networks by Hochreiter & 

Schmidhuber and Schuster & Paliwal, respectively, in 1997; 

DBNs by Geoffrey Hinton in 2006; Deep Boltzmann 

Machines by Salakhutdinov & Hinton in 2009; and Dropout, a 

regularization technique, by Geoffrey Hinton in 2012. Other 

contributions include the integration of deep learning into 

ANN [3] and machine learning [4]. 

Various algorithms have been utilised for the achievements 

of various results in deep learnings. One of such algorithms is 

the CNNs which was originally designed and developed for 

image classification and accomplishments that seems to be 
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impossible with humans. It has been explored in autonomous 

vehicles, face recognition, intelligent medical treatment, self-

service supermarket etc. In 1987, for speech recognition 

system, the time delay neural networks (TDNNs) which is a 

one-dimensional CNN was explored [5]. For CNNs, various 

models have been developed. These are the LeNets-5 for 

reading of bank checks and handwritten character recognition 

in 1996 [6], AlexNet in 2012 [7], ZFNet in 2013, GoogleNet, 

VGGNets in 2014 [8], ResNet for object detection and image 

classification in 2015 [9] SqueezeNet, DCGAN in 2016 [10, 

11], ResNext, DenseNet, Xception, MobileNet v1 IN 2017 

[12], ShuffleNet v2, MobileNet v2 in 2018 [13, 14], 

MobileNet v3 in 2019 [15], and GhostNet in 2020 [16]. Other 

available deep learning algorithms are the RNNs, BM, DBNs, 

LSTM, GRUs, SOM, RBF, that have also found applications 

in various works of life [17]. The RNNs have been explored 

on sequential data or time series data for various tasks such as 

weather forecast, text predictions, speech recognition.  

Different classes of deep learning also exist [18]. These are 

the unsupervised deep learning, where only the input data is 

provided for trainings without the labeled data, supervised 

deep learning that makes provision for both the input data and 

target output in terms of labelled data. in such system, another 

output is generated whose efficiency is justified by comparing 

it with the target output, then the partially supervised learning 

where partial or weak supervision with the use of labelled data 

is provided for trainings. Then the final type is called the 

reinforcement deep learning that trains based on the 

experienced gathered by an agent where the agent is either 

rewarded or penalized. Besides these, deep learning can also 

be shallow or deep which depends on the number of hidden 

layers made available in the architecture. By shallow learning, 

it implies that there are lesser number of hidden layers while 

in deep learning, there are hundreds of hidden layers that are 

connected within the architecture. This paper addresses the 

state-of-the-art models and architectures developed using deep 

learning algorithms. Besides, the different types of deep 

learning as initially mentioned are highlighted to give readers 

great insight into the role they play in the deep learning 

domains and applications. Considering the aforementioned 

applications of deep learning, this review paper aims to give 

insight into the deep learning. Interested and enthusiastic 

researchers in the field of AI would find this paper of great 

help in terms of provisions of the fundamentals of technical 

words, terminologies, architectures, and applications in 

relations to deep learning.  

The major contributions of this paper are as follows: 

1. It serves as the material to give interested reader access 

to the information in relation to deep learning. 

2. It presents insight into the different types of types of deep 

learning and their applications. 

3. It gives comprehensive insight into the CNN architecture 

considering the fact that it is the first model that pave the way 

to deep learning. 

 

 

2. FUNDAMENTALS OF DEEP LEARNING 

 

2.1 Deep learning 

 

Deep learning is a subset of machine learning that is 

explored in many applications. It is also called representation 

learning (RL). It has been explored in image processing, 

speech recognition, sentiment analysis, NLP, computer vision 

etc. Deep learning has been explored due to its universal 

learning approach, scalabilty, generalization, and robustness. 

 

 
 

Figure 1. Comparison of the number of parameters in 

modern GenAIs, ant brain, rat brain and human brain 

 

 
 

Figure 2. Simple biological neural network 

 

 
 

Figure 3. Artificial neuron 

 

It is an integration of many artificial neural networks that 

learn from data to make predictions, recommendations, etc. 

Just like the biological human neurons that are billions in 

number that are wired for the processing of various tasks in 

human bodies, deep learning also has several billions of 

neurons that are combined and trained for various tasks as 

initially mentioned. Large language models (LLMs) like the 

ChatGPT were trained with 110 million parameters, GPT2 

with 1.5 billion parameters, GPT3 with 175 billion parameters, 

and GPT4 is expected to have about 100 trillion parameters 

which is about 500 times more than that of GPT3 [19] This is 

further supported by the diagram in Figure 1. A closer look at 

the number of parameters used to train GPT4, one is expected 

to find difficulty in distinguishing the output of the model from 

human being. The human neurons and the artificial neural 

share similarity in their components. As illustrated in Figures 

2 and 3, the cell body or soma is similar to neurons in human, 

dendrite to the input, axon to the output, and the synapse to the 

weight in artificial neurons.  
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The deep neural network became popular in the year 2011 

with the use of new techniques, powerful computers, and huge 

dataset availability. In fact, the deep learning algorithm 

became popular due to the following three reasons: recent 

development and advances in deep learning, computer 

hardware affordability, and notable increase in the capabilities 

of its processing power [20]. One of the major challenges 

encountered in the traditional machine learning that involves 

the feature extraction was well catered for in the utilization of 

deep learning. It was also confirmed for most applications or 

problems where human beings might probably find it difficult 

to provide solutions, the deep learning could help out in such 

cases with better solutions provided. By the word deep 

learning, it means that the architecture is deep in the sense that 

there are many artificial neural networks that are aggregated 

in the system.  

 

2.2 Artificial neural networks 

 

This is a machine learning algorithm or model that follows 

the patterns of human brain neurons to train data in generating 

target output. It is a three-layered classifier [21] that consists 

of the input layer, hidden layer, and the output layer. The input, 

hidden, and output layer each has one or more neurons. Each 

neuron in the input layer can have a single output (perceptron), 

or more than one output, in the hidden layer each neuron has 

more than one output, while it is always expected of each 

neuron in the output layer to have a single output. The neurons 

are linked to each other via weights. The output of a preceding 

neuron is the input to the succeeding one. A neural network 

with an input layer with more than one neuron and an output 

layer with a single neuron is called a perceptron or a linear 

classifier [22]. A typical ANN consists of an input, hidden, and 

an output layers containing a number of neurons. The strength 

of the output of a neuron is measured by the weight, and to 

ensure the neuron keep firing at all time, bias is added. The 

final output is passed through an activation function to 

transformed the neuron output obtained.  

 

2.3 Types of activation function 

 

1. Linear (Identity) function 

This is a type of activation function in which the output of 

the neuron. i.e. the sum of the weighted input is the output of 

the activation function. That is to say that the effect of a linear 

activation is of no effect. It can be represented in Eq. (1) as: 

 

𝑓(𝑧) = 𝑧 (1) 

 

where, z=sum of the weighted inputs. 

 

2. Step function 

This is type of activation function in which the output is 

either 0 or 1; or -1 or 1. That is, the output is always between 

two state values. It is of two types: 

Binary step function. In this type, the output of the 

activation function is either 0 or 1. This is based on the 

threshold value set as illustrated in the piecewise relationship 

of Eq. (2): 

 

𝑓(𝑧) = {
1,   𝑖𝑓 𝑧 ≥ 𝑇
0,      𝑧 < 𝑇

 (2) 

 

where, z=sum of the weighted inputs; T=threshold value set. 

Bipolar step function. In bipolar, the activation is found 

such that its output is either a -1 or +1. This is illustrated in Eq. 

(3). 

 

𝑓(𝑧) = {
1,    𝑖𝑓 𝑧 ≥ 𝑇
−1,     𝑧 < 𝑇

 (3) 

 

3. Sigmoid function 

These are S shaped function that makes the value of the 

activation function to vary between 0 and 1 for binary sigmoid 

function or between -1 and 1 for bipolar sigmoid function. 

They are of two types: 

Binary sigmoid function. This is also called the logistic 

function. The activation function for the binary sigmoid 

function is represented by Eq. (4). 

 

𝑓(𝑧) =
1

1 + 𝑒−𝜎𝑧
 (4) 

 

where, σ=stepness parameter; z=sum of the weighted inputs. 

Bipolar sigmoid function. This is a type of sigmoid function 

that finds application as activation function when the desired 

output range is between -1 and 1. It is presented in Eq. (5) 

 

𝑓(𝑧) =
1 − 𝑒−𝜎𝑧

1 + 𝑒−𝜎𝑧
 (5) 

 

4. Softmax activation function 

This is a type of activation function that describes multiple 

sigmoid function. The output of this function varies between 0 

and 1, and the sum of probabilities is equal to one. It is mostly 

utilised for multi-class classification where the probability of 

each output class is a fraction of the sum of probabilities of all 

other output classes, and the class with the highest probability 

is often taken as the target class. It represented in Eq. (6). 

 

𝑓(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

        𝑓𝑜𝑟 𝑗 = 1, … , 𝐾 (6) 

 

5. Rectified linear unit (ReLU) 

This was developed to overcome the varnishing gradient 

problems encountered by binary and bipolar sigmoid function. 

It invented by Nair, and Hinton. It is the most widely used 

activation function for deep learning. It rectified the output 

value z, to z if z is greater than or equal to 0 and 0 if z is less 

than 0. The piecewise representation is illustrated in Eq. (7). 

 

𝑓(𝑧) = max (0, 𝑧) = {
𝑧𝑖 , 𝑧𝑖 ≥ 0
0, 𝑧𝑖 < 0

 (7) 

 

2.4 Perceptron 

 

This is the simplest architecture representing the artificial 

neural network. It consists of the input layer, output layer, and 

hidden layer. The number of neurons in the input layer could 

be one or more than one. It has a single output with a single 

neuron. In a Perceptron with a single neuron at the input layer 

as shown in Figure 4, the output of this neuron is connected 

directly to the neuron at the output layer. In a Perceptron with 

more than one neuron at the input layer, each neuron output is 

connected to the input of the neuron at the output layer. Hence, 

a summation of these sets of neurons is carried out at the output 

layer. This is illustrated in Figure 5, while Figure 6 shows a 

typical ANN system consisting of networks of large numbers 
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of neurons. In Figure 5, each neuron in the input layer is linked 

to the single neuron in the output via a weight, then each input 

neuron, xi is multiplied by their respective weight, wi, and at 

the output neuron, the sum of all these weighted inputs is 

obtained and added to the bias value, b, this sum gives the 

initial output at the output layer. The activation function, f is 

applied on the output to obtain the final output 𝑦 as given in 

Eq. (8) as: 

 

𝑦 = 𝑓(𝑏 + ∑ 𝑥𝑖𝑤𝑖

𝑁

𝑖=1 

) (8) 

 

During training, the bias’ value can be adjusted thereby 

shifting the activation function, to obtain a better accuracy of 

the model. 

 

 
 

Figure 4. A perceptron with a single neuron at both input and 

output layer 

 

 
 

Figure 5. Artificial neural network (A perceptron) [23] 

 

 
 

Figure 6. Artificial neural network [23] 

 

2.5 Calculation of the number of neurons and parameters 

in a typical ANN 

 

2.5.1 Number of neuron 

The total number of neurons is computed as: 

Total number of neurons at the input layer+Total number of 

neurons at the hidden layer+Total number of neurons at the 

output layer 

 

For Figure 6, the total number of neurons is computed as: 

3+((1*4)*3)+3=3+12+3=18 neurons. 

 

2.5.2 Number of parameter 

The parameters of an ANN refers to the total of number of 

weights and biases utilised for the development of the ANN 

architecture. 

Considering the ANN of Figure 6, the total number of 

weights and biases are calculated as follows: 

Computation of weights. Hidden Layer: 

There are three hidden layers, each hidden layer has 3 

weights entering it from each of the three neurons at the input 

layer. 

First Hidden Layer 

Each neuron at the first hidden layer has a total of 3 inputs 

coming = 3 weights from each of the 3 neurons in the input 

layer, for the 4 neurons at this first hidden layer, Total weights 

at the first hidden layer = 3 * 4 = 12 weights 

Second Hidden Layer 

Each neuron at the second hidden layer has a total of 4 

inputs coming = 4 weights from each of the 4 neurons in the 

first hidden layer, for the 4 neurons at this second hidden layer, 

Total weights at the second hidden layer = 4 * 4 = 16 weights 

Third Hidden Layer 

Each neuron at the third hidden layer has a total of 4 inputs 

coming = 4 weights from each of the 4 neurons in the second 

hidden layer, for the 4 neurons at this third hidden layer, Total 

weights at the third hidden layer = 4 * 4 = 16 weights 

nth Hidden Layer 

Therefore, Each neuron at the nth hidden layer which in this 

case has n=3, has a total of x inputs coming = x weights from 

each of the xth neurons in the (n-1) hidden layer, for the x 

neurons at this 𝑛 = 3 hidden layer, Total weights at the 𝑛𝑡ℎ 

hidden layer = 4 * 4 = 16 weights.  

Therefore, the total weights at the nth hidden layer of any 

ANN architecture are computed as total number of neurons at 

the (n-1)th hidden layer * total number of neurons at the nth 

hidden layer 

Output Layer  

Each neuron at the output layer has a total of 4 inputs 

coming = 4 weights from each of the 4 neurons in the third 

hidden or last hidden layer, for the 3 neurons at this output 

layer, Total weights at the output layer = 4 * 3 = 16 weights. 

Therefore, the total weights at the output layer of any ANN 

architecture is computed as total number of neurons at the last 

hidden layer *total number of neurons at the output layer. 

∴The total number of weights of ANN of Figure 6 is 

computed as: 12+16+16+12=56 weights 

The formular to compute the total number of weights is 

given as (total number of neurons at input layer * total number 

of neurons at the first hidden layer) +( total number of neurons 

at the first hidden layer *total number of neurons at the second 

hidden layer) + (total number of neurons at the (n-1)th hidden 

layer * total number of neurons at the nth hidden layer) +( total 

number of neurons at the last or nth hidden layer *total number 

of neurons at the output layer) 

Computation of bias. The bias is computed as follows: 

First Hidden Layer 

For Figure 6, a bias is added to each neuron at the first 

hidden layer after the sum of the weighted inputs at each of the 
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neurons, hence, a total of 4 biases is needed at this layer. 

Therefore, in a typical ANN architecture, the total number 

of biases at the first hidden layer is computed as the total of 

number of neurons at the first hidden layer. 

Second Hidden Layer 

A bias is also added to each neuron at the second hidden 

layer after the sum of the weighted inputs at each of the 

neurons, hence, a total of 4 biases is needed at this layer. 

Therefore, in a typical ANN architecture, the total number 

of biases at the second hidden layer is computed as the total of 

number of neurons at the second hidden layer. 

Third Hidden Layer: 

A bias is also added to each neuron at the third hidden layer 

after the sum of the weighted inputs at each of the neurons, 

hence, a total of 4 biases is needed at this layer. 

Therefore, in a typical ANN architecture, the total number 

of biases at the third hidden layer is computed as the total of 

number of neurons at the third hidden layer. 

nth Hidden Layer: 

yth bias is also added to each neuron at the nth hidden layer 

after the sum of the weighted inputs at each of the neurons, 

hence, a total of y biases is needed at this layer. Where, y is the 

total number of biases = n the total number of neurons at this 

layer. 

Therefore, in a typical ANN architecture, the total number 

of biases at the 𝑛th hidden layer is computed as the total of 

number of neurons at the nth hidden layer. 

Output Layer 

A bias is also added to each neuron at the output layer after 

the sum of the weighted inputs at each of the neurons, hence, 

a total of 3 biases is needed at this layer. 

Therefore, in a typical ANN architecture, the total number 

of biases at the output layer is computed as given the total of 

number of neurons at the output layer. 

∴The total number of biases of ANN of Figure 6 is 

computed as: 4+4+4+3=15 biases 

The formular to compute the total number of biases is given 

as given as the total of number of neurons at the first hidden 

layer.+ The total of number of neurons at the second hidden 

layer.+ The total of number of neurons at the nth hidden 

layer.+ The total of number of neurons at the output layer. 

Hence, the total parameters in a typical ANN architecture is 

computed by summing the total number of neurons due to the 

weight and biases. 

For Figure 6, it is given as: 56 weights + 15 biases = 71 

parameters. 

 

 

3. DEEP LEARNING ALGORITHMS 

3.1 Deep learning architecture 

 

A typical deep learning architectures consists of the input 

layer, hidden layer(s) and output layer. There can be shallow 

architectures or deep architectures. The number of hidden 

neurons determines if it is shallow or deep type. In shallow 

architecture, there are one or a smaller number of hidden layers, 

in deep architecture, there are quite a number of hidden layers. 

These are illustrated in Figures 7 and 8. 

State-of-the-art transformer architectures have been 

developed using the deep learning architecture. Here the input 

data which is a sequential data is fed into an encoder which is 

nothing but a stack of BiLSTMs or LSTMs or even MLPs. The 

output of such system has a decoder which does opposite work 

of the encoder to output the target sequential data. The decoder 

is also a stack of LSTMs or BiLSTMs networks. This type of 

modelling is called a sequence-to-sequence modelling because 

the inputs of such model is fed with sequential data and a 

sequential data is also obtained at the output. Techniques such 

as the attention mechanism that works in similar fashion to 

filter or kernel in the CNN has been utilised along-side the 

positional encoding, embedding to achieve the enhanced 

performance of the transformer network. Notable example of 

transformer based models are the LLMs like the GPT, speech 

recognition like the Whisper, Jasper, speech synthesis like the 

SeamlessM4T, Translatotron and Translatotron 2 [24-27].  

 

 
 

Figure 7. Shallow architecture 

 

 
 

Figure 8. Deep learning architecture 

 

3.2 Classification of deep learning techniques 

 

According to the hierarchical block diagram of Figure 9, 

Deep Learning can be classified into three main groups: these 

are the supervised deep learning (discriminative learning), 

unsupervised deep learning (generative learning), and hybrid 

deep learning [20]. 

 

 
 

Figure 9. Classification of deep learning techniques [28] 

 

As seen in Figure 9, an example of the Supervised Deep 

Learning algorithm is the popular CNN utilised for machine 

783



 

learning when the inputs are images; Deep Neural Network is 

an example of a Hybrid Deep Learning algorithm; also, it is 

further given in the figure that unsupervised deep learning 

algorithms are the Autoencoder (AE) [29], sum product 

network (SPN), RNN, and Boltzmann machine (BM).  

Apart from the deep supervised learning or supervised deep 

learning, deep unsupervised learning, others types of deep 

learnings are: deep semi-supervised learning, and deep 

reinforcement learning or reinforcement learning. 

Deep supervised learning: In this type of deep learning, 

supervision in terms of label data is made available for the 

trainings alongside the input features. It is a type of learning in 

which the trainings is carried out towards already known 

outputs and the validity of the obtained output is compared 

with the already known output. Examples of such learning are 

the RNNs, CNNs, deep neural networks (DNN). Gate 

recurrent units (GRUs), and long short-term memory (LSTM) 

which are RNN variants are also parts of the algorithms in 

deep supervised learning [18]. 

Deep semi-supervised learning: This is also called the 

partially supervised learning. In this type of learning, the 

trainings are based on semi-labelled datasets. Examples of 

algorithms that fall in this category are the GANs, deep 

reinforcement learning (DRL), RNNs and its variants (GRUs 

and LSTM). 

Deep unsupervised learning: In this type of learning, the 

trainings are carried out without the provision of the labelled 

output data. that is only the input features are made available 

for the trainings. Examples of algorithms here are the auto-

encoders, RBMs, GANs, RNN (GRUs and LSTM).  

Deep reinforcement learning: In this type of learning, the 

model learns from experience gathered in the course of 

trainings. The outcome of what is learned can be inform of 

reward or penalty. Carrying out this form of learning is much 

more difficult because of the absence of straight forward loss 

function. This finds application in the development of games, 

robotic system etc. The motivations for utilizing this type of 

learning are to assist in identifying the type of action that 

generates the highest reward over longer period, to discover 

the situation that demands actions, giving out of reward 

function to a learning agent, and for figuring out the best 

approach to reach large rewards. 

 

3.3 Deep learning algorithms 

 

3.3.1 RvNN 

These are deep learning architectures that are used to make 

predictions for hierarchical structures, and to capture 

dependencies within recursively structure data. Unlike the 

CNN that uses convolution operation of the input and kernel 

in extracting features, and RNN that processes sequential data 

by traversing backward into the deeper layer of the network 

(LSTM) or forward and backward direction (BiLSTM), it uses 

recursive operation on the inputs or child nodes to form the 

parent nodes representation. The same set of weights are 

applied in a recursive way over the structure input to generate 

structure predictions. They are developed to process randomly 

shaped objects like trees, graphs, or molecular structures in 

chemistry. Hence their suitability for tasks that involve 

hierarchical and nested relationships. 

It works using the data structure algorithm (DSA) where 

input is processed recursively, there by merging information 

from child nodes to parent nodes. This algorithm uses a 

Recursive Auto-Associative Memory (RAAM) for its 

development. It is utilised in several areas such as the NLP for 

sentiment analysis where the information available on the 

children’s nodes is used to assign vectors to each word or sub-

phrases. 

On comparison with a RNN, both are utilised for sequential 

data. The RvNN form the present node (parent node) through 

recursive operations of the previous inputs or child nodes, 

while RNN also traverses backward but not in a recursive 

manner but is able to retain information of the previous inputs 

or time steps or states. Hence their choice in sequential events 

like the time-series predictions, NLP, speech recognition etc. 

These are illustrated in Figures 10 and 11 for RvNNs and 

Figure 12 for RNNs. 

 

 
 

Figure 10. Tree structure of RvNNs [26] 

 

 
 

Figure 11. RvNNs for parsing NLS [18] 

 

 
 

Figure 12. Structure of a RNN [26] 

 

Training. The training of RvNNs involves learning the 

transformation matrices. Different algorithms are utilised for 

training. The most popular ones is the Gradient Descent 

Optimisation algorithm with Back propagation through 

structure (BTS) learning system. Here, the model learns the 

weight matrices for each child, and these weight matrices are 

shared across different recursions for the succeeding children 

at the same position. The network is trained to regenerate the 

input layer pattern at the output layer. 

Advantages of RvNNs for NLP. 

1. The structure of the tree can manage hierarchical data e.g. 

parsing problems. 

2. There is reduction in the depth of the network. This is due 

to the implementation of logarithm where complexity is 

O(logn) 
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Disadvantages of RvNNs for NLP. 

1. The implementation of tree structures introduces bias to 

the model as the data might not necessarily follow a tree 

hierarchy structure. 

2. Ambiguity and slowness of sentence parsing. 

3. Manual parsing of sentence into short components is 

tedious and time-consuming. 

Application of RvNNs. 

1. It is implemented for tasks that involves nested like 

structures such as molecular structure analysis or natural 

language parsing. 

2. It is also utilised in utilised in image segmentation. 

Review of Related Work on RvNNs. In the work carried out 

in [30], the logical deduction in the application of RvNNs for 

sentence parsing was carried out. Success have been recorded 

for sentence meaning using RvNNs. Two models comprising 

tree-structured neural tensor networks (TreeRNTNs) and plain 

TreeRNNs were evaluated. The models were trained using the 

SICK challenge dataset and evaluated for recursive structures, 

relational reasoning, and quantification. The findings of the 

experiments show that the two models generalize well for the 

three evaluations, which means they can give logical 

conclusion in NLP. A max-margin structure prediction 

architecture which is based on RvNNs was utilised in [31] for 

the predictions of image and sentence outputs. Using the 

Stanford background dataset, the algorithms developed for the 

image outputs achieved State of the Art (SOTA) performance 

(accuracy) of 78.1% for annotation and segmentation. The 

duplicated building block in deep neural network was 

simplified using the dynamic recursive neural network 

(DRNN) developed [32]. The DRNN was able to achieve 

recursive outputs using fewer blocks compared to other well-

known methods. To further reduce the computation of the 

algorithm, a gate structure that determines the loop times for 

each block was added. The gradient problems encountered in 

RvNNs was solved using the Loop Variable Batch 

Normalisation (LVBN).  

 

3.3.2 RNN 

These are deep learning architectures that are utilised for 

modeling sequential or temporal data. They find application in 

NLP, speech recognition, language translation etc. Unlike the 

traditional neural networks where outputs and inputs are 

independent of each other, in RNNs, the present output is a 

function of the previous input elements. It is also true that the 

present input also relies on the future events. In RNNs, the 

architecture is such that the system is able to traverse 

backward or forward into the layers to update the present 

output result, as illustrated in Figure 13. In RNNs, the same 

weights are shared across each layer or nodes of the networks, 

which are mostly adjusted during the gradient descent and 

backpropagation process in the quest to minimize the errors. 

The backpropagation through time (BPTT) is employed in 

RNNs.  

Advantages of RNNs. 

1. They are integrated with CNNs for best performance. 

2. They have the ability to remember previous events. 

Disadvantages of RNNs. 

1. There are the issues of the exploding and varnishing 

gradients that occur during optimization. 

2. Processing of very long sequence is difficult when ReLU 

or tanh activation function is utilised. 

3. Difficulty in training. 

 

 
 

Figure 13. Recurrent nature of a RNN [28] 

 

Types of RNNs:  

Based on the numbers of inputs and outputs.  

One-to-One. This is a RNNs with one input and one output. 

It is also known as Vanilla Neural Network. This is illustrated 

in Figure 14. 

One-to-Many. As the name implies, it has one input and 

many output nodes. It is widely used in image captioning. It is 

shown in Figure 15. 

Many-to-One. This type of RNNs has one input and more 

than one outputs. It is utilised in sentimental analysis [33]. It 

is shown in Figure 16. 

Many-to-Many. As shown in Figure 17, it has multiple 

inputs nodes and multiple output nodes. It is used in language 

translation. 

 

 
 

Figure 14. One-to-one RNNs [28] 

 

 
 

Figure 15. One-to-many RNNs [28] 

 

 
 

Figure 16. Many-to-one RNNs [28] 
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Figure 17. Many-to-many RNNs [28] 

 

Based on the adjustment to the traditional RNNs layers’ 

deep architectures: 

Bidirectional RNNs (BRNNs).  

These are variants of RNNs that are able to traverse forward 

and backward into the networks to make predictions of the 

present events. For instance, in the NLP, given the word string: 

“You get to go home now”, the RNNs could make prediction 

of “home” by having the knowledge of “now” or any other 

words prior to “home”. Through this architecture, it gives 

better predictions of any needed present word. Other 

applications of BRNNs in NLP are Sentimental analysis, Part 

of Speech Tagging, Machine Translation, and Name Entity 

Recognition. It has also been utilised in Speech Recognition 

Advantages of BRNNs. 

1. It allows variable length sequence easier handling. 

2. It allows bidirectional processing. 

3. It helps to capture better information. 

4. BRNNs enhanced the accuracy of the prediction since 

they capture information both from the future and past. 

5. BRNNs are resilience to irrelevant information and noise 

presents in the data by traversing forward and backward 

through the network. 

6. BRNNs are able to handle the long-term dependency 

issues experienced in the conventional RNN. 

Disadvantages of BRNNs. 

1. The forward and backward traversing of the algorithm 

makes to be computationally complex. 

2. The complexity of the system increases the training time 

of the algorithm when implemented for modelling. 

3. Difficulty in the interpreting of the model due to its 

forward and backward movement through the network. 

4. They are mostly prone to overfitting condition due to the 

huge number of data utilised for training the model. 

LSTM.  

Traditional RNNs have small memory which denotes their 

inability to traverse deeper backward into the architecture to 

make predictions of the present output. This problem was 

overcome via the LSTM memory architecture. This 

architecture was designed by Juergen Schmidhuber and Sepp 

Hochreiter to particularly overcome the varnishing gradient 

problem encountered in RNNs. It overcomes the problem of 

long dependency encountered in the network, where the 

prediction of the present output cannot be made possible if the 

recent set of events cannot be found. To overcome the long 

dependency, the LSTM was developed with cells that contain 

the input, output, and forget gate as shown in Figure 18. They 

are used in music composition, speech recognition, 

pharmaceutical development etc. 

As indicated in Figure 18, the LSTM network consists of a 

cell represented by the block, with three gates which are the 

forget, input, and output gates, which are equivalent of the 

reset, write, and read for the present cell [34].  

 
 

Figure 18. LSTM network [35] 

 

Forget gate. The first gate from the left is the forget gate 

which has a sigmoid activation function, σ determines which 

part of the cell information to be forgotten, and which is to be 

saved. The sigmoid function acts on the present input, xt and 

the previous time step, ht-1 represented by the bottom arrow 

entering the cell as indicated in Eq. (9) [34, 35].  

 

𝑓𝑡 =  𝜎(𝑤𝑓 . 𝑥𝑡 + 𝑤𝑓 . ℎ𝑡−1 + 𝑏𝑓) (9) 

 

The top arrow entering the cell represents the previous cell 

state, Ct-1, which is multiplied (elementwise multiplication) by 

the output of the sigmoid function in Eq. (9) (as indicated in 

Eq. (10) to determine what part of the previous cell state is to 

stored and discarded. Since the value of the sigmoid function 

is between 0 and 1. A 0 indicates to forget, and a 1 means to 

forget nothing in the previous cell state. 

 

𝑎1 =  𝐶𝑡−1  ⊗  𝑓𝑡 (10) 

 

Input Gate. This is the second gate from the left. It has two 

parts, the update part, it and the generation of new values, gt 

part for the cell state. These are represented by the sigmoid, σ 

and tanh functions as shown in Eq. (11) and Eq. (12) 

respectively [34]. 

 

𝑖𝑡 =  𝜎(𝑤𝑖 . 𝑥𝑡 + 𝑤𝑖 . ℎ𝑡−1 + 𝑏𝑖) (11) 

 

𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑤𝑔. 𝑥𝑡 + 𝑤𝑔. ℎ𝑡−1 + 𝑏𝑔) (12) 

 

The update part updates the value of the present cell and the 

generate new values to be added to the cell, using the tanh 

sigmoid function. These two are elementwise multiplied to 

obtain output a3 as indicated in Figure 18. This output a3 is the 

input gate of the network. This is illustrated in Eq. (13) as: 

 

𝑎3 = 𝑔𝑡 ⊗ 𝑖𝑡 (13) 

 

Then the present or new value (state) of the cell (becomes 

previous in the next cell) is the sum of the forget gate and input 

gate as illustrated in Eq. (14) [34] as: 

 

𝑎2 = 𝑎1 + 𝑎3 = [𝐶𝑡−1 ⊗ 𝑓𝑡] + [𝑔𝑡 ⊗ 𝑖𝑡] = 𝐶𝑡 (14) 

 

Output Gate. This is used to compute the part of the current 

cell state that is utilised as the previous timestep of the next 

state. It is indicated as ht. In the next cell, it becomes ht-1. It is 

obtained by finding the elementwise multiplication of the 

output of the Tanh and sigmoid activation functions. The Tanh 
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activation function acts on the present cell state, Ct as given in 

Eq. (15) and its output is given as a4 while the sigmoid 

function acts on the present input, xt and previous timestep, ht-

1 as illustrated in Eq. (16), where it is given as ot. The 

elementwise multiplication of Eq. (15) and Eq. (16) are 

illustrated in Eq. (17) and given as ht, which is the present 

output of the cell and it becomes the previous output or 

timestep in the next cell [34]. 

 

𝑎4 = tanh (𝐶𝑡) (15) 

 

𝑜𝑡 = 𝜎(𝑤𝑜. 𝑥𝑡 + 𝑤𝑜. ℎ𝑡−1 + 𝑏𝑜) (16) 

 

ℎ𝑡 = 𝑎4 ⊗ 𝑜𝑡 = tanh(𝐶𝑡) ⊗ 𝜎(𝑤𝑜. 𝑥𝑡 + 𝑤𝑜. ℎ𝑡−1

+ 𝑏𝑜) 
(17) 

 

Advantages of LSTM 

1. They are able to solve the long dependency issues 

associated with the Vanilla RNN. 

2. They have the ability to learn sequential data. 

3. LSTMs can make predictions by traversing backward 

into the network due to the memory.  

Disadvantages of LSTM 

1. LSTMs have complex systems due to their architecture. 

2. There is the need for high computing power. 

3. They sometimes forget very important information in the 

previous state of the network. 

4. They are sometimes difficult to comprehend. 

5. LSTMs require huge volume of data to learn from for 

better performance. 

6. They require more training time due to the complexity of 

the system. 

Gated Recurrent Units. This architecture is similar to the 

LSTM in that it was designed to overcome the problem of long 

dependencies due to memory issues in the network. It uses 

hidden states to control the flow of information instead of the 

cell utilised in the LSTM. It also uses two gates, that is an 

update gate, and a reset gate to control the volume and type of 

information to be kept. Prediction of previous information 

deeper into the network using RNN, becomes an issue due to 

exploding gradient and varnishing gradients. It has been 

applied in the detection of stress in Electro Encephalogram 

(EEG) signals [36]. 

Exploding Gradient 

This arises during backpropagation when trying to improve 

the performance of the model where the gradient exponentially 

explode and prevents the convergent of the model. Then 

weights and biases’ update tend to become unstable. One 

solution to this is called gradient clipping where the gradient 

vectors are clipped if greater than the threshold set. 

Varnishing Gradient 

This occurs when the gradient exponentially decay such that 

the performance of the model cannot be updated due to zero 

value of the gradient. Then the update made on the weights 

and biases in the network become so small. To solve this 

problem, the Gated Recurrent Unit (GRU) or LSTM is used so 

that very long dependence can be captured. While GRU is 

faster than LSTM with low memory, the LSTM is more 

accurate when dealing with longer datasets. Other approaches 

to solving the varnishing gradient problem is the use of ReLU 

activation function, and batch normalization 

Application of RNNs 

1. NLP 

2. Speech Recognition 

3. Machine Translation 

4. Time Series Forecasting 

5. Face Detection 

6. Handwriting recognition 

 

3.3.3 RvNN versus RNN 

Both RvNN and RNN are used to process sequential data. 

Difference ocurs due to how they are structures. RvNNs 

process sequential data in a tree like fashion, while RNN is 

utilised to capture dependencies over time. The differences 

between the two are captured in the Table 1. 

 

Table 1. Difference between RNNs and RvNNs 

 
S/N Features RNN RvNN 

1 Architecture 

There is a tree-like, 

or hierarchical 

structure 

There is a chain-

like or 

sequential 

structure 

2 Memory 

It captures 

information via the 

sequential memory 

Memory is 

limited 

3 
Data 

Preprocessing 

It processes time-

series and sequential 

data 

It processes 

hierarchical data 

4 
Training 

Complexity 

It uses 

backpropagation 

through time 

For training, it 

uses specific 

tree traversal 

algorithms 

5 Connections 
Based on sequential 

order 

Based on 

hierarchical 

structure. 

6 
Application 

Areas 

Speech recognition, 

Speech Synthesis, 

Language Modelling 

Image Parsing, 

Syntactic 

parsing, and 

other NLP 

applications 

 

3.3.4 CNNs 

These are networks with multiple layers that are mostly 

used for object detection and image processing. They are also 

called ConvNets. The first CNN architecture named LeNet 

was developed by Yann LeCun in 1988. It was used for 

character recognition like the digits, zip codes etc. it has been 

applied in brain tumor detection [37], brain stroke detection 

[38], cyber bullying detection [39]. Other application areas 

include detection of anomalies, identification of satellite 

images, forecasting of time series, medical image processing 

etc. [18, 40]. 

Architecture of CNN. The CNN has three layers, which are 

the input, hidden, and the output layer. The hidden layer 

consists of the convolution layer, pooling and fully connected 

layer.    

The Convolution Layer. Within the convolution layer, the 

input is convolved with the filter or kernel in the hidden layer. 

The kernel slides over the input layer convolving with it to 

obtain the reduced dimensional feature map. Feature 

extractions do mostly occur during the stage of the CNN. The 

movement of the sliding operation of the filter over the input 

is controlled by the parameter called stride of the CNNs. It has 

been observed that input parameters of the matrix towards the 

edge are not actively engaged in the convolution process. To 

address these issues, padding of the input matrix is normally 

carried. This ensures that every input values within the matrix 

is actively engaged in the convolution process. 

Convolution Operation within the Convolution Layer. 
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Consider an image with 5 × 5 dimensions. When fed into the 

CNN, the convolution layer with the help of a filter or kernel 

acts on the input image so as to find local patterns and features 

from the input image. If a filter or kernel of dimension 3 × 3 

acts on the image, the following convolution operation occurs 

where the filter slides over the image to extract relevant 

information: 

 

 

 
 

Figure 19. Sliding of the kernel through the image and 

convolution operation with stride = 1 

 

As can be seen in Figure 19, the convolution operation starts 

at a), and as the filter slides through the images, various 

convolution operations are carried out as indicated in b) to i) 

after which the a 3 × 3 feature map is obtained. The 

convolution operation at each position of the slide as given as 

follows: 
 

|
2 0 1
0 1 0
3 2 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (2 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (0 ∗ 1) + (3 ∗ 0) + (2 ∗ −1) + (0 ∗ 2) = (2 + 0 +
0) + (0 + 1 + 0) + (0 + −2 + 0) = (2 + 1 − 2) = 1  

 

|
0 1 2
1 0 1
2 0 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (2 ∗ 0) + (1 ∗

2) + (0 ∗ 1) + (1 ∗ 1) + (2 ∗ 0) + (0 ∗ −1) + (1 ∗ 2) = (0 +
−1 + 0) + (2 + 0 + 1) + (0 + 0 + 2) = (−1 + 3 + 2) = 4  

 

|
1 2 2
0 1 3
0 1 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (2 ∗ −1) + (2 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (3 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (1 ∗ 2) = (1 +
−2 + 0) + (0 + 1 + 3) + (0 + −1 + 2) = (−1 + 4 + 1) = 4   

 

|
1 1 0
3 2 0
1 0 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (0 ∗ 0) + (3 ∗

2) + (2 ∗ 1) + (0 ∗ 1) + (1 ∗ 0) + (0 ∗ −1) + (0 ∗ 2) = (0 +
−1 + 0) + (6 + 2 + 0) + (0 + 0 + 0) = (−1 + 8 + 0) = 7  

 

|
1 0 1
2 0 1
0 0 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (2 ∗ 2) 

+(0 ∗ 1) + (1 ∗ 1) + (0 ∗ 0) + (0 ∗ −1) + (1 ∗ 2) = (1 + 0 + 0) 
+(4 + 0 + 1) + (0 + 0 + 2) = (1 + 5 + 2) = 8  

|
1 1 3
0 1 1
0 1 2

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (1 ∗ −1) + (3 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (1 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (2 ∗ 2) = (0 +
−1 + 0) + (0 + 1 + 1) + (0 + −1 + 4) = (−1 + 2 + 3) =  4  

 

|
3 2 0
1 0 0
2 2 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (3 ∗ 1) + (2 ∗ −1) + (0 ∗ 0) + (1 ∗

2) + (0 ∗ 1) + (0 ∗ 1) + (2 ∗ 0) + (2 ∗ −1) + (1 ∗ 2) = (3 +
−2 + 0) + (2 + 0 + 0) + (0 + −2 + 2) = (1 + 2 + 0) =  3  

 

|
2 0 1
0 0 1
0 1 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (2 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (0 ∗ 1) + (1 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (0 ∗ 2) = (2 + 0 +
0) + (0 + 0 + 1) + (0 + −1 + 0) = (2 + 1 + −1) =  2  

 

|
0 1 1
0 1 2
1 0 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (2 ∗ 1) + (1 ∗ 0) + (0 ∗ −1) + (0 ∗ 2) = (0 +
−1 + 0) + (0 + 1 + 2) + (0 + 0 + 0) = (−1 + 3 + 0) =  2  

 

The results of Figure 20 is a 3 × 3 matrix called the feature 

map, which is given in Figure 21. 

 

 
 

Figure 20. Feature map of above convolution (stride = 1)  

 

 
 

Figure 21. Sliding of the kernel through the image and 

convolution operation with stride = 2 

 

As given in the convolution above, the matrix operation is 

an array multiplication carried out at each position. It should 

also be noted that for the convolution operation carried out, the 

strides, which is the speed of the filter movement along the 

image is taken to be 1.  

Techniques Utilised CNN Convolution Operation 

Stride. This refers to the speed with which a filter translates 

through an image. A stride of 1 depicts the filter travels one 

pixel at a time, 2 pixels per time with a stride of two. e.g.  

If a stride of length 2 is to be utilised, the following 
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convolution operations shown in Figure 21 will be obtained. 

As shown in Figure 21, the higher the stride, the higher the 

speed or motion through the input image by the filter or kernel 

and the lower the dimension. This also reduces the 

computational complexity of the model due to a reduced 

dimension. However, the use of high value for the stride has 

the effect of information loss. The result of using a stride of 

two for a 5 × 5 image and 3 × 3 kernel is a 2 × 2 feature map 

which is given as follows and the feature map output is shown 

in Figure 22. 
 

|
2 0 1
0 1 0
3 2 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (2 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (0 ∗ 1) + (3 ∗ 0) + (2 ∗ −1) + (0 ∗ 2) = (2 + 0 +
0) + (0 + 1 + 0) + (0 + −2 + 0) = (2 + 1 − 2) = 1  

 

|
1 2 2
0 1 3
0 1 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (2 ∗ −1) + (2 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (3 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (1 ∗ 2) = (1 +
−2 + 0) + (0 + 1 + 3) + (0 + −1 + 2) = (−1 + 4 + 1) = 4  

 

|
3 2 0
1 0 0
2 2 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (3 ∗ 1) + (2 ∗ −1) + (0 ∗ 0) + (1 ∗

2) + (0 ∗ 1) + (0 ∗ 1) + (2 ∗ 0) + (2 ∗ −1) + (1 ∗ 2) = (3 +
−2 + 0) + (2 + 0 + 0) + (0 + −2 + 2) = (1 + 2 + 0) = 3  

 

|
0 1 1
0 1 2
1 0 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (2 ∗ 1) + (1 ∗ 0) + (0 ∗ −1) + (0 ∗ 2) = (0 +
−1 + 0) + (0 + 1 + 2) + (0 + 0 + 0) = (−1 + 3 + 0) = 2  

 

 
 

Figure 22. Feature map of the above convolution for stride of 

2  

 

Padding. During the convolution operations, it has been 

observed that only border regions of the input image undergo 

less filtering operation. That is, the pixels around the border or 

edges are convolved the least amount of time compare to the 

pixels within the body of the image matrix (border effect)-this 

leads to loss of information at the borders. Hence, the padding 

technique is used to extend the dimension by adding zeros so 

that the initial border regions are now within the body of the 

new matrix pixel obtained. This is illustrated in Figure 23 for 

the initial 5 × 5 input image matrix of Figure 23. 

 

 
 

Figure 23. The effect of pooling on a 5 × 5 input image 

 

Pooling Layer. This is used for dimensionality reduction of 

the output activated feature map. For instance, if the size of the 

output of the convolution layer is 8 × 8, pooling can reduce 

this size to 2 × 2. In this case pooling is carried out on 4 × 4 

sub-block of the convolution output matrix. If the size of the 

feature map is 2 × 2, pooling can reduce it to 1 dimensional 

space. It involves the application of filter that traverse over 

varying regions of the feature map to extract a single output 

value. The single output value can be an average or maximum 

representation. Hence, two types of pooling are known with 

CNNs. These are the average pooling and max pooling. In 

average pooling, the average of the selected matrix grouped is 

found while the max is selected in the case of the max pooling. 

Another benefits of pooling is increase in the receptive field of 

the CNN network. Pooling over a region or window within the 

feature map ensures the capturing of necessary patterns needed 

for trainings. 

Average Pooling. The average value of the region of the 

filter or window is found to obtain a single value 

representation of that window. This is illustrated in Figure 24 

for a 4 × 4 by matrix. 

 

 
 

Figure 24. Average pooling in CNN 

 

As shown in Figure 24, the average of each pooling window 

is found as a single representation of that window, and the 

resulting matrix is a feature map with a dimension of 2 × 2. 

Max Pooling. This involves selecting the maximum value 

within each region or pool window within the matrix. This 

ensures that most important features are captured while 

potential noise is ignored. An example of max pooling is 

shown in Figure 25. 

 

 
 

Figure 25. Max pooling in CNN 

 

Fully Connected Layer. The output of the pooling layer, is 

flattened into a 1-dimensional space. If for instance, the output 

is a 4 × 4, this will be flattened to become 1 × 8 or simply put 

a vertical dimensional space with a size or length of 8. This 

will serve as input to the fully connected layer. By fully 

connected layer, it implies that every input is fully linked to 

the node of the next layer in the hidden layer of the network. 

Then classification takes place within this layer. This is 

illustrated in Figure 26. 

As shown in Figure 26, the pooled feature map is first 

flattened and served as input to the fully connected layer with 

large number of hidden layers. The first hidden layer has 5 

neurons and the last hidden layer also has 5 neurons. The 

output of the network is obtained at the output layer with 2 

neurons. 

Evolution of CNN Architectures. As initially stated, the first 
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CNN architecture named LeNet was developed by Yann 

LeCun in 1988. It was used for character recognition like the 

digits, zip codes etc. over the past 10 years several CNN 

architectures have been developed. Modifications have been 

made to the existing ones to obtain an improved CNN 

architecture. Some of the modifications carried out are 

regularization, structural reformulation, parameter 

optimizations etc. [18]. Presented next are some of the CNN 

architectures. 

 

 
 

Figure 26. Fully connected layer in CNN 

 

LeNet. The inputs to the LeNet are images and this CNN 

architecture consists of the following: 

1. Convolutional layer with 6 filters each of size 5 * 5 

followed by 2 * 2 max pooling layer. 

2. Convolutional layer with 16 filters each of size 5 * 5 

followed by 2 * 2 max pooling layer. 

3. Fully connected layer with a sigmoid activation function 

and 120 units. 

4. Fully connected layer with a sigmoid activation function 

and 84 units. 

5. Output layer with a softmax activation function and 10 

units. 

AlexNet. In 2012, AlexNet was developed by Alex 

Krizhevsky et al where it achieved SOTA results on ImageNet 

dataset. The architecture consists of 5 convolutional layers 

unlike 2 present in LeNet followed by 2 fully connected layers, 

and 1 output layer. It is summarized as follows: 

1. Convolutional layer with 96 filters each of size 11 * 11 

followed by 2 * 2 max pooling layer. 

2. Convolutional layer with 256 filters each of size 5 * 5 

followed by 2 * 2 max pooling layer. 

3. Convolutional layer with 384 filters each of size 3 * 3  

4. Convolutional layer with 384 filters each of size 3 * 3  

5. Convolutional layer with 256 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer 

6. Fully connected layer with a ReLU activation function 

and 4096 units. 

7. Fully connected layer with a ReLU activation function 

and 4096 units. 

8. Output layer with a softmax activation function and 1000 

units. 

VGG. This was developed by Andrew Zisserman and Karen 

Simonyan in the year 2014. It is an improvement on the 

AlexNet considering the number of filters, dropout 

regularization technique, and max pooling layers utilised. It is 

summarized as: 

1. Convolutional layer with 64 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

2. Convolutional layer with 128 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

3. Convolutional layer with 256 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

4. Convolutional layer with 512 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

5. Convolutional layer with 512 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer 

6. Fully connected layer with a ReLU activation function, 

dropout regularization and 4096 units. 

7. Fully connected layer with a ReLU activation function, 

dropout regularization and 4096 units. 

8. Output layer with a softmax activation function and 1000 

units. 

ResNet. To tackle the varnishing gradient problem 

encountered during training, ResNet was introduced by 

Kaiming He et al. in 2015. The architecture can be 

summarized as follows: 

1. Convolutional layer with 64 filters each of size 7 * 7 

followed by 3 * 3 max pooling layer. 

2. Multiple residual blocks with each containing: 

 Convolutional layer with 64 filters each of size 3 * 3 

 Convolutional layer with 64 filters each of size 3 * 3 

 Shortcut connection that merges the original input to 

the output of the block. 

3. Multiple residual blocks with each containing: 

 Convolutional layer with 128 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

 Convolutional layer with 128 filters each of size 3 * 3. 

 Convolutional layer with 128 filters each of size 3 * 3 

 Shortcut connection that merges the original input to 

the output of the block. 

4. Multiple residual blocks with each containing: 

 Convolutional layer with 256 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

 Convolutional layer with 256 filters each of size 3 * 3. 

 Convolutional layer with 256 filters each of size 3 * 3 

 Shortcut connection that merges the original input to 

the output of the block. 

5. Multiple residual blocks with each containing: 

 Convolutional layer with 512 filters each of size 3 * 3 

followed by 2 * 2 max pooling layer. 

 Convolutional layer with 512 filters each of size 3 * 3. 

 Convolutional layer with 512 filters each of size 3 * 3 

 Shortcut connection that merges the original input to 

the output of the block. 

6. Fully connected layer with a softmax activation function, 

and 1000 units [18].  

A block diagram of ResNet is displayed in Figure 27. 

 

 
 

Figure 27. Block diagram of ResNet [18] 
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EfficientNet. This was invented by Quoc V. Le and 

Mingxing Tan from Google Research in 2019. The distinct 

feature of this architecture is its new scaling method. This 

ensures uniform scaling of all dimensions of width, depth, and 

resolution with the help of a compound coefficient. Variants 

of efficientNet are EfficientNet-B0, EfficientNet-B1 to B7, 

EfficientNet-Lite 

Review of Related Work on CNNs. 

CNN is one of the most significant networks in the field of 

deep learning [22]. It has been explored in NLP, and computer 

vision, hence its choice in academia and industry in the past 

few years. The review paper looked into the applications of 

CNN in diverse scenarios without its consideration from 

general perspective. In addition to those novel aspects and 

ideas in this area of CNN, the one-dimensional CNN, two-

dimensional CNN, as well as multi-dimensional CNN were 

also discussed in this paper. The paper started with an 

introduction to CNN, then an overview, followed by 

introduction of classic and advanced CNN models being 

introduced. Thereafter, experimental analysis of CNN was 

carried out after which conclusions were drawn and several 

rules of thumbs were highlighted for selection of functions. 

Then the areas of applications of one-dimensional, two-

dimensional, and multi-dimensional CNN were covered and 

the paper ended with some challenges faced with the CNN 

architecture.  

CNNs overviewed was covered in the study [41]. Its 

applications in the area of image recognition tasks were also 

highlighted. The paper started with an introduction to the CNN 

architecture where the different phases of Machine learning 

and Artificial Intelligence such as the data collection, 

preprocessing of data, selection of model, trainings of the 

model, evaluation, model deployment, monitoring and model 

maintenance were discussed extensively. Then the various 

contributions of the paper such as a thorough review of recent 

developments in CNNs, discussion on the fundamentals of 

CNNs, comparison of different CNN architecture, 

recommendation for data scientists and developers, discussion 

on libraries for CNN, cost of CNN estimations, recent 

developments in CNN, efficiency and reliability enhancement 

of CNNs and finally, summary of the whole work was given 

where they stated that image recognition field has been 

revolutionized by the CNNs and they also find applications in 

other domains, and that CNNs have the ability and potential to 

bring about transformation from health care industry and 

finance to entertainment and transportation sectors due to 

increase in the volume of data and large computing resources 

made available for the trainings. 

Biological vision’s early findings inspired the birth of CNN 

[42]. That CNNs have found immense applications in 

Computer vision tasks. The paper started with a brief 

introduction to CNN, the origin of CNN, its application in 

computer vision, and its validation in the field, its comparison 

to human neural and behavioural levels, its variants, the 

datasets available, different architecture of CNNs, trainings 

procedures, understanding of CNNs where approaches such as 

the empirical methods, mathematical analysis were discussed 

extensively. Then they ended by considering the limitations of 

CNN such as the way in which the networks are trained, 

assumption of weight sharings etc, and they provided future 

directions. 

CNN was utilised to model a sign language recognition 

system in the study [43]. Deafness and voice impairment have 

caused a gap in communication between these impaired people 

and the outside world. The static America Sign Language 

dataset where through the HandDetector module, the signer’s 

hand images were detected and captured using PC webcam 

was utilised for the training. The dataset consists of 44, 654 

images, which is split into 20, 772, 8, 903, and 14, 979 for train, 

validation, and test sets respectively. The input images were 

first processed and then fed to the CNN which consisted of 3 

convolution layers, and an output SoftMax layer, and is trained 

using an Adam Optimiser. Accuracies of 99.86%, 99.94%, and 

94.68% were obtained for train, validation, and test 

respectively. 

However, CNN was used to train a model that classified 

three types of maize leaf diseases that comprises of Common 

Rust, Leaf Blight, and Leaf Spot [44]. According to the work, 

the input to the CNN trained using Keras platform with Python 

TensorFlow had neither preprocessing nor feature extraction, 

and its size was 224 × 224 pixels. The model was able to 

achieve an accuracy of 98.56% which shows that farmers 

could save time and problem of incorrect detection mostly 

encountered using manual approach is taken care of. 

 

3.3.5 GANs 

In 2014, a paper published by researchers at the University 

of Montreal introduced the GANs. They are deep learning 

algorithms that are trained to make prediction, classify images 

etc through two components comprising the generator and 

discriminator. The generator generates fake output which the 

discriminator learns from and authenticity evaluation of the 

data to a real world is carried out. The generator receives the 

input data and undergo training to generate output which are 

fed to the discriminator. The discriminator then checks if the 

output is a representation of the real-world output. If it is a 

good representation, this is given as the output else, this is 

returned or fed back to the generator that further trains on the 

data until better results free from discrimination from the 

discriminator is generated. 

 

3.3.6 Radial basis function networks 

These are types of feedforward neural networks that use the 

radial basis function as their activation functions. They are 

utilised for time-series prediction, regression, and 

classification. They perform classification through 

measurements of the similarity between the input and the 

training set. The output layer has one node in each class or 

category. They have input vector that are fed to the input layer, 

and they also have a layer of radial basis function neurons. 

Then the weighted sum of the inputs is found. Gaussian 

transfer function are used for neurons in the hidden layer. The 

output of this function and the distance from the neuron’s 

center are inversely proportional to each other. Linear 

combination of the neuron’s parameters and the input of RBF 

gives the output of the network. 

 

3.3.7 Multilayer perceptrons 

This is a feedforward neural network with multiple layers 

of perceptrons. The number of inputs and outputs in MLPs are 

the same but there are multiple hidden layers. They are utilised 

in machine translation, image recognition, and speech 

recognition. 

Working Principle. The data are feed to the input layer of 

the network. The signal passes in one direction via the 

graphical connection of layers of neurons. It then computes the 

weighted inputs that exists between the input and hidden layers. 

It then uses activation functions such as tanh, ReLU, sigmoid 
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functions to determine which node to fire. Thereafter, it trains 

the model to learn dependencies and understand the 

correlation that exist between the independent and target 

output from a training dataset. 

 

3.3.8 Self organising maps 

This was invented by Professor Teuvo Kohonen. It is a type 

of artificial neural network that reduces the dimension of data 

via the data visualisation. They are created to help humans 

have the ability to visualize high-dimensional data through 

self-organising artificial neural networks. 

Working principle. It first carryout weights initialization for 

each node and make random selection of vectors from the 

training data. it then finds out weights that are most likely be 

the input vector through examination of every node. The 

winning node is referred to as the Best Matching Unit (BMU). 

It then discovers then neighbourhood of the BMU. The sample 

vector is awarded a winning weight. The shorter the distance 

between a node and a BMU, the more the changes in weight, 

and the longer the distance between a node (neighbour) and 

BMU, the less it learns. 

 

3.3.9 RBMs 

These are stochastically shallow two-layered neural 

networks that are developed by Goeffrey Hinton. It was able 

to tackle the problem of varnishing gradients known to most 

deep learning networks. They can learn from a probability 

distribution over a set of inputs which are not labeled, and the 

non-labeling seems to be beneficial for real world data like the 

videos, photos, sensor data that are mostly unlabeled.  

Working Principles. Two phases of RBMs exists. These are 

forward pass and backward pass. It translates the accepted 

inputs into a set of numbers that encodes the inputs in the 

forward pass. It then combines each activation with their 

corresponding weight and one overall bias. The output is 

passed to the next hidden layer. Through the backward pass, it 

takes the set of numbers and translate them to produce the 

reconstructed inputs. It then combines each activation with 

individual weight and bias and pass the output to the visible 

layer for reconstruction. A high degree of accuracy is achieved 

for backpropagation of a well trained RBM network. The 

biases and weights assist the RBM to decode the 

interrelationships between the inputs and to decide the 

essential inputs in detecting patterns. Via different weights and 

biases, the model is trained until the difference between the 

inputs and the reconstructed inputs are as minimal as possible. 

Review of Literatures on RBMs. RBM is a family of 

machine learning and statistical models and played a central 

role in the growth and development of the deep learning was 

discussed [45]. It is explored in tasks such as representation 

and classification learning. According to the authors, through 

the phase diagrams derived for various statistical ensembles of 

RBM, the functioning of RBM can be analysed and that the 

identification of compositional phase has been achieved where 

a small number of nodes or features are combined to form 

patterns that are complex. The paper started with an 

introduction to RBM, definition of the model and learning, 

then discussion on stochastic gradient descent, was given and 

overview of various RBM settings that involve the Gaussian-

Gaussian RBM, Gaussian-Spherical, Gaussian-Softmax, 

Bernoulli-Gaussian RBM, Gaussian-Bernoulli RBM, 

Bernoulli-Bernoulli RBM were highlighted. Discussion on 

phase diagram of the Bernoulli-Bernoulli RBM, learning 

RBM and finally conclusions in the form of summary was 

given where they discussed about the learning quality, the 

number of hidden nodes which affects representation power of 

RBM, the landscape of learned RBMs, the landscape of free 

energy, and the link between the dataset and the learned 

features. 

The study [46] looked into the survey on the RBM and DBN. 

The paper was also a tutorial that discussed about the BM, 

RBM, and DBN. The paper commenced by giving more 

insight into the graphical models that are probabilistic in 

nature, Gibbs sampling, Markov random field, Ising model, 

statistical physics, and Hopfield network. Thereafter, the 

structure of BM and RBM were introduced. The explanation 

on Gibbs sampling in RBM for generating variables, 

contrastive divergence, maximum likelihood estimation 

training of BM & RBM, as well as the conditional distributions 

of hidden and visible variables were given. Then discussion on 

the continuous and discrete distributions for the variables was 

also highlighted, then they explained on how conditional RBM 

is trained. Finally, explanation of DBM which is a stack of 

RBM models was given. According to the authors, the model 

can find application in statistics, data science, statistical 

physics, as well as neural computation. 

 

3.3.10 DBNs 

DBNs was also developed by Geoffrey Hinton as alternative 

to providing solution to backpropagation problems that 

involves the varnishing gradients. It has a similar structure to 

the MLP but diverse in training. These are generative models 

that have multiple layers of latent, stochastic variables. The 

latent variables that contain binary values are called hidden 

units. DBNs are integration or stack of Boltzmann machines. 

Communication exists between each RBM layer with both the 

previous and subsequent layers. The hidden layer of the first 

RBM which is trained for the reconstruction of inputs 

accurately, is the visible layer of the next RBM ahead of it. 

They are utilised in motion capture data, image recognition, 

video recognition. Just like an integration of perceptrons called 

MLP outperforms perceptrons, the stack or integration of 

RBMs outperformed a single RBM network. To complete the 

trainings of the DBN, labels are mostly introduced to the 

patterns in the network and fine-tuned in a supervised way.  

Working Principles. Greedy learning algorithm which uses 

a layer-by-layer approach to learn the top-down generative 

weights, are used to train the DBNs. Steps of Gibbs sampling 

on the top two hidden layers are carried out. It then draws a 

sample from the visible units by utilizing a single pass 

ancestral training. It then learns that the latent variables in 

every layer can be inferred by a single, bottom-up pass.  

 

3.3.11 Autoencoders 

They are feedforward neural networks with identical inputs 

and output. It was developed by Geoffrey Hinton in 1980s. 

they are used to solve unsupervised learning problems. Other 

areas of application include image processing, pharmaceutical 

discovery, and popularity predictions. In autoencoders, input 

data are encoded as vectors, which are compressed, hidden and 

representation of the raw input data, and to achieve the low 

dimensionality reduction of the input raw data. it has been 

applied in the detection of intrusion and cyber attacks [29, 47].  

Working Principles. It consists of encoder, code, and 

decoder which are three main components of the network. It 

receives the inputs and transforms it into a signal 

representation. It first encodes the image; this ensures that the 

size of the input reduction size. Finally, the decoding of the 
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image to generate the reconstruction images. 

 

3.3.12 Choosing a deep network 

In choosing the type of deep network, decision has to be 

made if patterns are to be found, classification model is to be 

built, or the type of deep learning such as the supervised or 

unsupervised etc is needed for the task. If image classification 

model is needed, then one can be thinking of exploring the 

CNNs, modeling of sequential data is best carried out by the 

RNNs, for extraction of patterns from a set of unlabeled data, 

autoencoder or RBM can be considered.  

Factors to be considered in choosing a particular type of 

deep learning algorithms. The choice of a deep learning 

algorithm must align with the problem being addressed or the 

application being taking into consideration. Several factors 

must be taking care of when choosing a deep learning 

algorithm for specific tasks. They are as follows: 

The type of input data. The input data fed into the model to 

be trained has a lot to say about the type of deep learning 

algorithm. For instance, for sequential data, the RNN or RvNN 

or variants of RNN can be utilised; for image data or data with 

certain patterns, CNN can be used for such tasks.  

Learning tasks. The type of learning task also has an effect 

in determining the type of deep learning algorithm to be used. 

For instance, for classification and prediction problems, the 

FNN can be used; for tasks that needs knowledge of the long 

dependences in the data, the LSTMs can be implemented.  

Availability of data. This is another key factor in the 

selection of the deep learning algorithm. Deep learning 

algorithms or models developed like the CNNs architectures 

such as the AlexNet, ResNet etc, RNN based models like the 

speech recognition models, machine translation models and 

state-of-the-art transformer-based models like the CHAT-GPT, 

speech synthesis, and speech recognition models such as 

Whisper, Jasaper, AudioPalm are trained with large volume of 

data. [cite whisper, Translatotron, Jasper, AudioPalm]. 

Whisper is trained with over 600, 000 hours of corpus and 

transcripts sourced over the internets. 

Complexity and depth of the problem. Simple problem 

modelling can be carried-out using simple architecture such as 

the Perceptron; while complex problems like the image 

classification as in the case of brain tumor classification, and 

disease classification, can be achieved using the CNN 

architecture; speech recognition, text-to-speech modelling or 

any other speech processing tasks can be carried-out using 

RNNs, or transformer based RNNs where stack of LSTMs or 

BiLSTMs are utilised as encoders and decoders. 

 

Table 2. Type of deep learning and their areas of application 

 
S/N Applications Types of Deep Learning 

1 

Sentimental 

analysis, text 

processing, name 

entity recognition, 

parsing 

Recursive Neural Tensor 

Network (RNTN), RNNs, 

2 

Language model 

that functions at 

character level 

RNNs 

3 Object recognition RNTN 

4 Image Recognition CNNs, DBNs 

5 Speech Recognition RNNs 

6 Classification DBNs and MLP with ReLU 

7 Time series RNNs 

 

Computational resources. The availability of the hardware 

resources like the high computing Graphic Processing Units 

(GPU) for tasks like the CNNs or RNNs that require high 

memory and space is another important factor to be considered 

in choosing the type of deep learning algorithms for a specific 

task.  

A detailed illustration of the type of deep learning for 

various application is given in Table 2. 

 

 

4. DISCUSION 

 

Different architectures of deep learning have been 

developed by different researchers. For instance, for various 

image recognition, character recognition, reading of bank 

checks, various CNNs architectures have addressed these 

areas. Different architectures are AlexNet, ResNet, ResNext, 

SqueezeNet, MobileNet, LeNet [12-15]. For sentence parsing 

using the RvNNs, plain TreeRNNs and tree-structured neural 

tensor networks (TreeRNTNs) models were utilised [30] for 

evaluation. DRNN was modeled where its computational 

complexity was catered for using a gate structure, and the 

backpropagation problems were addressed via the Loop 

Variable Batch Normalisation (LVBN) [32]. According to the 

study [22], CNN is one of the most significant networks in the 

field of deep learning, and its application areas particulary in 

image processing were highlighted [41, 42]. Illustration of the 

different types of RBMs settings such as the Gaussian-

Spherical, Bernoulli-Gaussian RBM, Gaussian-Gaussian 

RBM, Gaussian-Softmax [45] shows that more intense works 

are ongoing in this exploration of deep learning. In addition to 

this, the present-day world is ocuupied with the generation of 

video contents, image contents which have been made possible 

through the GANs. The GANs with the help of generator and 

discriminator is able to achieve real world output 

representation that have been utilised by individuals for their 

daily consumptions. The following review paper shows that 

researchers are findings or developing systems or models that 

achieve the purpose for which deep learnings were developed 

for. Findings show that CNNs are the most widely used deep 

learning architectures. 

 

 

5. CONCLUSIONS 

 

In this review work, the different types of deep learning 

have been explored. Deep learning which is a subset of 

machine learning via its deep architecture have achieved great 

feat in various works of life. Researchers and experts have 

developed various architectures to simulate real life scenarios. 

The paper discussed different algorithms of deep learning such 

as the RNNs, CNNs, GANs, RBMs, DBNs, LSTM, GRUs, etc, 

and the works of different researchers were also reported. It 

was discovered that deep learning has made immense 

contributions to human development. For instance, it has been 

explored in speech recognition where different speech models 

have been trained to interact with humans. Image 

classifications and recognitions models have been developed 

using the CNNs. Various large language models like the GPT, 

Dale-2 have made immense contributions for human 

interactive learnings, adaptive learnings, etc. To further ensure 

the deep learning model run faster, high computing Graphic 

Processing Unit (GPU) are available to run various deep 

learning model. The conclusion drawn from this paper is that 

CNNs, RNNs, GANs are some of the deep learning models 
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that have found great contributions in various fields of 

endeavour.  
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NOMENCLATURE 

 

w weight of a neuron 

b bias of a neuron 

x input to a neural network 

y output of a neural network 

f activation function 

 

Greek symbols 

 

σ steepness parameter 

 

795




