

A Survey of the Advances in the Applications of Deep Learning Algorithms Across Different

Domains

Gabriel O. Sobola1* , Samuel Daramola1 , Emmanuel Adetiba1,2

1 Department of Electrical and Information Engineering, Covenant University, Ota 112104, Nigeria
2 HRA, Institute for Systems Science, Durban University of Technology, Durban 4001, South Africa

Corresponding Author Email: gabriel.sobola@covenantuniversity.edu.ng

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300322

ABSTRACT

Received: 7 May 2024

Revised: 3 September 2024

Accepted: 13 February 2025

Available online: 31 March 2025

 Deep learning has revolutionized the modern-day world starting with its application in

computer vision such as image classification, face recognition, autonomous vehicle etc. it

has been explored in various areas where human beings find it difficult to come up with

solutions to the challenges at hand. By the word deep, it implies they are trained with

millions, billions of parameters to achieve outstanding results. In this review paper, the

fundamentals of deep learning have been discussed extensively starting with the

classification, types of activation functions, different deep learning algorithms as well as

their applications were also discussed. Recurrent neural network (RNNs) and its variant,

convolution neural networks (CNNs) and various architectures, recursive neural networks

(RvNNs), restricted Boltzmann machines (RBMs), deep belief networks (DBNs),

generative adversarial networks (GANs) and other deep learning were discussed

extensively. Some of the findings of researchers for some of these algorithms were

highlighted. Based on various paper reviewed and thorough analysis carried out, it was

observed that the exploration of deep learnings in this modern-day world has found

applications in virtually all fields of life from medicine, academy, transportation,

entertainments, particularly the exploration of CNNs, RNNs, and GANs.

Keywords:

activation functions, artificial intelligence,

convolutional neural network (CNN), deep

learning, neural networks, neurons,

recurrent neural network (RNN)

1. INTRODUCTION

Artificial intelligence is a corner stone of the modern-day

mega trends and technologies where it has facilitated the

growth of various sectors from health to finance. It

encompasses the deep learning which is a subset of machine

learning [1]. The deep learning which is also called

representative learning has been explored in various domains

such as the natural language processing (NLP), Computer

vision, speech recognition [2], etc.

The deep learning originated from human desire to develop

a comprehensive system that could function as a human brain,

hence the desire to understand the human cognitive system. Its

historical development can be traced back to 300 BC during

the era of Aristotle through whom Associationism (a theory

that defined human mind as an organized set of conceptual

elements) was introduced. He postulated four laws in relation

to reminiscent, haven’t been inspired Plato-these four laws are

similarity, frequency, contrast, and contiguity. Similarity is the

concept that the thought of one event is being triggered by a

similar event’s thought; frequency defines that the number of

occurrences of two events is linked to their associations;

contrast is the thought of one event being triggered by an

opposite event’s thought; and contiguity is the concept that

there is an association in the mind of temporal or spatial events.

In 1873, Alexander Bain introduced neural groupings,

marking the earliest approach to neural networks. The

McCulloch & Pitts (MCP) model, a linear predecessor of

artificial neural networks, was introduced by McCulloch and

Pitts in 1943. In 1949, Donald Hebb introduced the Hebbian

Learning Rule, which serves as the foundation for modern

neural networks; he is often called the father of neural

networks, having postulated that “cells that fire together, wire

together”. Frank Rosenblatt introduced the first known

perceptron in 1958. Other notable developments include:

backpropagation by Paul Werbos in 1974; the Self-Organising

Map and Neocogitron (the inspiration behind CNNs) by Teuvo

Kohonen and Kunihiko Fukushima, respectively, in 1980; the

Hopfield Network by John Hopfield in 1982; the Boltzmann

Machine by Hinton and Sejnowski in 1985; the Harmonium

(later known as the RBM) and RNN by Paul Smolensky and

Michael I. Jordan, respectively, in 1986; LeNet—a deep

learning-based model—by Yann LeCun in 1990; LSTM and

bidirectional recurrent neural networks by Hochreiter &

Schmidhuber and Schuster & Paliwal, respectively, in 1997;

DBNs by Geoffrey Hinton in 2006; Deep Boltzmann

Machines by Salakhutdinov & Hinton in 2009; and Dropout, a

regularization technique, by Geoffrey Hinton in 2012. Other

contributions include the integration of deep learning into

ANN [3] and machine learning [4].

Various algorithms have been utilised for the achievements

of various results in deep learnings. One of such algorithms is

the CNNs which was originally designed and developed for

image classification and accomplishments that seems to be

Ingénierie des Systèmes d’Information
Vol. 30, No. 3, March, 2025, pp. 779-795

Journal homepage: http://iieta.org/journals/isi

779

https://orcid.org/0000-0003-1354-5563
https://orcid.org/0009-0001-9522-6533
https://orcid.org/0000-0001-9227-7389
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300322&domain=pdf

impossible with humans. It has been explored in autonomous

vehicles, face recognition, intelligent medical treatment, self-

service supermarket etc. In 1987, for speech recognition

system, the time delay neural networks (TDNNs) which is a

one-dimensional CNN was explored [5]. For CNNs, various

models have been developed. These are the LeNets-5 for

reading of bank checks and handwritten character recognition

in 1996 [6], AlexNet in 2012 [7], ZFNet in 2013, GoogleNet,

VGGNets in 2014 [8], ResNet for object detection and image

classification in 2015 [9] SqueezeNet, DCGAN in 2016 [10,

11], ResNext, DenseNet, Xception, MobileNet v1 IN 2017

[12], ShuffleNet v2, MobileNet v2 in 2018 [13, 14],

MobileNet v3 in 2019 [15], and GhostNet in 2020 [16]. Other

available deep learning algorithms are the RNNs, BM, DBNs,

LSTM, GRUs, SOM, RBF, that have also found applications

in various works of life [17]. The RNNs have been explored

on sequential data or time series data for various tasks such as

weather forecast, text predictions, speech recognition.

Different classes of deep learning also exist [18]. These are

the unsupervised deep learning, where only the input data is

provided for trainings without the labeled data, supervised

deep learning that makes provision for both the input data and

target output in terms of labelled data. in such system, another

output is generated whose efficiency is justified by comparing

it with the target output, then the partially supervised learning

where partial or weak supervision with the use of labelled data

is provided for trainings. Then the final type is called the

reinforcement deep learning that trains based on the

experienced gathered by an agent where the agent is either

rewarded or penalized. Besides these, deep learning can also

be shallow or deep which depends on the number of hidden

layers made available in the architecture. By shallow learning,

it implies that there are lesser number of hidden layers while

in deep learning, there are hundreds of hidden layers that are

connected within the architecture. This paper addresses the

state-of-the-art models and architectures developed using deep

learning algorithms. Besides, the different types of deep

learning as initially mentioned are highlighted to give readers

great insight into the role they play in the deep learning

domains and applications. Considering the aforementioned

applications of deep learning, this review paper aims to give

insight into the deep learning. Interested and enthusiastic

researchers in the field of AI would find this paper of great

help in terms of provisions of the fundamentals of technical

words, terminologies, architectures, and applications in

relations to deep learning.

The major contributions of this paper are as follows:

1. It serves as the material to give interested reader access

to the information in relation to deep learning.

2. It presents insight into the different types of types of deep

learning and their applications.

3. It gives comprehensive insight into the CNN architecture

considering the fact that it is the first model that pave the way

to deep learning.

2. FUNDAMENTALS OF DEEP LEARNING

2.1 Deep learning

Deep learning is a subset of machine learning that is

explored in many applications. It is also called representation

learning (RL). It has been explored in image processing,

speech recognition, sentiment analysis, NLP, computer vision

etc. Deep learning has been explored due to its universal

learning approach, scalabilty, generalization, and robustness.

Figure 1. Comparison of the number of parameters in

modern GenAIs, ant brain, rat brain and human brain

Figure 2. Simple biological neural network

Figure 3. Artificial neuron

It is an integration of many artificial neural networks that

learn from data to make predictions, recommendations, etc.

Just like the biological human neurons that are billions in

number that are wired for the processing of various tasks in

human bodies, deep learning also has several billions of

neurons that are combined and trained for various tasks as

initially mentioned. Large language models (LLMs) like the

ChatGPT were trained with 110 million parameters, GPT2

with 1.5 billion parameters, GPT3 with 175 billion parameters,

and GPT4 is expected to have about 100 trillion parameters

which is about 500 times more than that of GPT3 [19] This is

further supported by the diagram in Figure 1. A closer look at

the number of parameters used to train GPT4, one is expected

to find difficulty in distinguishing the output of the model from

human being. The human neurons and the artificial neural

share similarity in their components. As illustrated in Figures

2 and 3, the cell body or soma is similar to neurons in human,

dendrite to the input, axon to the output, and the synapse to the

weight in artificial neurons.

780

The deep neural network became popular in the year 2011

with the use of new techniques, powerful computers, and huge

dataset availability. In fact, the deep learning algorithm

became popular due to the following three reasons: recent

development and advances in deep learning, computer

hardware affordability, and notable increase in the capabilities

of its processing power [20]. One of the major challenges

encountered in the traditional machine learning that involves

the feature extraction was well catered for in the utilization of

deep learning. It was also confirmed for most applications or

problems where human beings might probably find it difficult

to provide solutions, the deep learning could help out in such

cases with better solutions provided. By the word deep

learning, it means that the architecture is deep in the sense that

there are many artificial neural networks that are aggregated

in the system.

2.2 Artificial neural networks

This is a machine learning algorithm or model that follows

the patterns of human brain neurons to train data in generating

target output. It is a three-layered classifier [21] that consists

of the input layer, hidden layer, and the output layer. The input,

hidden, and output layer each has one or more neurons. Each

neuron in the input layer can have a single output (perceptron),

or more than one output, in the hidden layer each neuron has

more than one output, while it is always expected of each

neuron in the output layer to have a single output. The neurons

are linked to each other via weights. The output of a preceding

neuron is the input to the succeeding one. A neural network

with an input layer with more than one neuron and an output

layer with a single neuron is called a perceptron or a linear

classifier [22]. A typical ANN consists of an input, hidden, and

an output layers containing a number of neurons. The strength

of the output of a neuron is measured by the weight, and to

ensure the neuron keep firing at all time, bias is added. The

final output is passed through an activation function to

transformed the neuron output obtained.

2.3 Types of activation function

1. Linear (Identity) function

This is a type of activation function in which the output of

the neuron. i.e. the sum of the weighted input is the output of

the activation function. That is to say that the effect of a linear

activation is of no effect. It can be represented in Eq. (1) as:

𝑓(𝑧) = 𝑧 (1)

where, z=sum of the weighted inputs.

2. Step function

This is type of activation function in which the output is

either 0 or 1; or -1 or 1. That is, the output is always between

two state values. It is of two types:

Binary step function. In this type, the output of the

activation function is either 0 or 1. This is based on the

threshold value set as illustrated in the piecewise relationship

of Eq. (2):

𝑓(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 𝑇
0, 𝑧 < 𝑇

 (2)

where, z=sum of the weighted inputs; T=threshold value set.

Bipolar step function. In bipolar, the activation is found

such that its output is either a -1 or +1. This is illustrated in Eq.

(3).

𝑓(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 𝑇
−1, 𝑧 < 𝑇

 (3)

3. Sigmoid function

These are S shaped function that makes the value of the

activation function to vary between 0 and 1 for binary sigmoid

function or between -1 and 1 for bipolar sigmoid function.

They are of two types:

Binary sigmoid function. This is also called the logistic

function. The activation function for the binary sigmoid

function is represented by Eq. (4).

𝑓(𝑧) =
1

1 + 𝑒−𝜎𝑧
 (4)

where, σ=stepness parameter; z=sum of the weighted inputs.

Bipolar sigmoid function. This is a type of sigmoid function

that finds application as activation function when the desired

output range is between -1 and 1. It is presented in Eq. (5)

𝑓(𝑧) =
1 − 𝑒−𝜎𝑧

1 + 𝑒−𝜎𝑧
 (5)

4. Softmax activation function

This is a type of activation function that describes multiple

sigmoid function. The output of this function varies between 0

and 1, and the sum of probabilities is equal to one. It is mostly

utilised for multi-class classification where the probability of

each output class is a fraction of the sum of probabilities of all

other output classes, and the class with the highest probability

is often taken as the target class. It represented in Eq. (6).

𝑓(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, … , 𝐾 (6)

5. Rectified linear unit (ReLU)

This was developed to overcome the varnishing gradient

problems encountered by binary and bipolar sigmoid function.

It invented by Nair, and Hinton. It is the most widely used

activation function for deep learning. It rectified the output

value z, to z if z is greater than or equal to 0 and 0 if z is less

than 0. The piecewise representation is illustrated in Eq. (7).

𝑓(𝑧) = max (0, 𝑧) = {
𝑧𝑖 , 𝑧𝑖 ≥ 0
0, 𝑧𝑖 < 0

 (7)

2.4 Perceptron

This is the simplest architecture representing the artificial

neural network. It consists of the input layer, output layer, and

hidden layer. The number of neurons in the input layer could

be one or more than one. It has a single output with a single

neuron. In a Perceptron with a single neuron at the input layer

as shown in Figure 4, the output of this neuron is connected

directly to the neuron at the output layer. In a Perceptron with

more than one neuron at the input layer, each neuron output is

connected to the input of the neuron at the output layer. Hence,

a summation of these sets of neurons is carried out at the output

layer. This is illustrated in Figure 5, while Figure 6 shows a

typical ANN system consisting of networks of large numbers

781

of neurons. In Figure 5, each neuron in the input layer is linked

to the single neuron in the output via a weight, then each input

neuron, xi is multiplied by their respective weight, wi, and at

the output neuron, the sum of all these weighted inputs is

obtained and added to the bias value, b, this sum gives the

initial output at the output layer. The activation function, f is

applied on the output to obtain the final output 𝑦 as given in

Eq. (8) as:

𝑦 = 𝑓(𝑏 + ∑ 𝑥𝑖𝑤𝑖

𝑁

𝑖=1

) (8)

During training, the bias’ value can be adjusted thereby

shifting the activation function, to obtain a better accuracy of

the model.

Figure 4. A perceptron with a single neuron at both input and

output layer

Figure 5. Artificial neural network (A perceptron) [23]

Figure 6. Artificial neural network [23]

2.5 Calculation of the number of neurons and parameters

in a typical ANN

2.5.1 Number of neuron

The total number of neurons is computed as:

Total number of neurons at the input layer+Total number of

neurons at the hidden layer+Total number of neurons at the

output layer

For Figure 6, the total number of neurons is computed as:

3+((1*4)*3)+3=3+12+3=18 neurons.

2.5.2 Number of parameter

The parameters of an ANN refers to the total of number of

weights and biases utilised for the development of the ANN

architecture.

Considering the ANN of Figure 6, the total number of

weights and biases are calculated as follows:

Computation of weights. Hidden Layer:

There are three hidden layers, each hidden layer has 3

weights entering it from each of the three neurons at the input

layer.

First Hidden Layer

Each neuron at the first hidden layer has a total of 3 inputs

coming = 3 weights from each of the 3 neurons in the input

layer, for the 4 neurons at this first hidden layer, Total weights

at the first hidden layer = 3 * 4 = 12 weights

Second Hidden Layer

Each neuron at the second hidden layer has a total of 4

inputs coming = 4 weights from each of the 4 neurons in the

first hidden layer, for the 4 neurons at this second hidden layer,

Total weights at the second hidden layer = 4 * 4 = 16 weights

Third Hidden Layer

Each neuron at the third hidden layer has a total of 4 inputs

coming = 4 weights from each of the 4 neurons in the second

hidden layer, for the 4 neurons at this third hidden layer, Total

weights at the third hidden layer = 4 * 4 = 16 weights

nth Hidden Layer

Therefore, Each neuron at the nth hidden layer which in this

case has n=3, has a total of x inputs coming = x weights from

each of the xth neurons in the (n-1) hidden layer, for the x

neurons at this 𝑛 = 3 hidden layer, Total weights at the 𝑛𝑡ℎ

hidden layer = 4 * 4 = 16 weights.

Therefore, the total weights at the nth hidden layer of any

ANN architecture are computed as total number of neurons at

the (n-1)th hidden layer * total number of neurons at the nth

hidden layer

Output Layer

Each neuron at the output layer has a total of 4 inputs

coming = 4 weights from each of the 4 neurons in the third

hidden or last hidden layer, for the 3 neurons at this output

layer, Total weights at the output layer = 4 * 3 = 16 weights.

Therefore, the total weights at the output layer of any ANN

architecture is computed as total number of neurons at the last

hidden layer *total number of neurons at the output layer.

∴The total number of weights of ANN of Figure 6 is

computed as: 12+16+16+12=56 weights

The formular to compute the total number of weights is

given as (total number of neurons at input layer * total number

of neurons at the first hidden layer) +(total number of neurons

at the first hidden layer *total number of neurons at the second

hidden layer) + (total number of neurons at the (n-1)th hidden

layer * total number of neurons at the nth hidden layer) +(total

number of neurons at the last or nth hidden layer *total number

of neurons at the output layer)

Computation of bias. The bias is computed as follows:

First Hidden Layer

For Figure 6, a bias is added to each neuron at the first

hidden layer after the sum of the weighted inputs at each of the

782

neurons, hence, a total of 4 biases is needed at this layer.

Therefore, in a typical ANN architecture, the total number

of biases at the first hidden layer is computed as the total of

number of neurons at the first hidden layer.

Second Hidden Layer

A bias is also added to each neuron at the second hidden

layer after the sum of the weighted inputs at each of the

neurons, hence, a total of 4 biases is needed at this layer.

Therefore, in a typical ANN architecture, the total number

of biases at the second hidden layer is computed as the total of

number of neurons at the second hidden layer.

Third Hidden Layer:

A bias is also added to each neuron at the third hidden layer

after the sum of the weighted inputs at each of the neurons,

hence, a total of 4 biases is needed at this layer.

Therefore, in a typical ANN architecture, the total number

of biases at the third hidden layer is computed as the total of

number of neurons at the third hidden layer.

nth Hidden Layer:

yth bias is also added to each neuron at the nth hidden layer

after the sum of the weighted inputs at each of the neurons,

hence, a total of y biases is needed at this layer. Where, y is the

total number of biases = n the total number of neurons at this

layer.

Therefore, in a typical ANN architecture, the total number

of biases at the 𝑛th hidden layer is computed as the total of

number of neurons at the nth hidden layer.

Output Layer

A bias is also added to each neuron at the output layer after

the sum of the weighted inputs at each of the neurons, hence,

a total of 3 biases is needed at this layer.

Therefore, in a typical ANN architecture, the total number

of biases at the output layer is computed as given the total of

number of neurons at the output layer.

∴The total number of biases of ANN of Figure 6 is

computed as: 4+4+4+3=15 biases

The formular to compute the total number of biases is given

as given as the total of number of neurons at the first hidden

layer.+ The total of number of neurons at the second hidden

layer.+ The total of number of neurons at the nth hidden

layer.+ The total of number of neurons at the output layer.

Hence, the total parameters in a typical ANN architecture is

computed by summing the total number of neurons due to the

weight and biases.

For Figure 6, it is given as: 56 weights + 15 biases = 71

parameters.

3. DEEP LEARNING ALGORITHMS

3.1 Deep learning architecture

A typical deep learning architectures consists of the input

layer, hidden layer(s) and output layer. There can be shallow

architectures or deep architectures. The number of hidden

neurons determines if it is shallow or deep type. In shallow

architecture, there are one or a smaller number of hidden layers,

in deep architecture, there are quite a number of hidden layers.

These are illustrated in Figures 7 and 8.

State-of-the-art transformer architectures have been

developed using the deep learning architecture. Here the input

data which is a sequential data is fed into an encoder which is

nothing but a stack of BiLSTMs or LSTMs or even MLPs. The

output of such system has a decoder which does opposite work

of the encoder to output the target sequential data. The decoder

is also a stack of LSTMs or BiLSTMs networks. This type of

modelling is called a sequence-to-sequence modelling because

the inputs of such model is fed with sequential data and a

sequential data is also obtained at the output. Techniques such

as the attention mechanism that works in similar fashion to

filter or kernel in the CNN has been utilised along-side the

positional encoding, embedding to achieve the enhanced

performance of the transformer network. Notable example of

transformer based models are the LLMs like the GPT, speech

recognition like the Whisper, Jasper, speech synthesis like the

SeamlessM4T, Translatotron and Translatotron 2 [24-27].

Figure 7. Shallow architecture

Figure 8. Deep learning architecture

3.2 Classification of deep learning techniques

According to the hierarchical block diagram of Figure 9,

Deep Learning can be classified into three main groups: these

are the supervised deep learning (discriminative learning),

unsupervised deep learning (generative learning), and hybrid

deep learning [20].

Figure 9. Classification of deep learning techniques [28]

As seen in Figure 9, an example of the Supervised Deep

Learning algorithm is the popular CNN utilised for machine

783

learning when the inputs are images; Deep Neural Network is

an example of a Hybrid Deep Learning algorithm; also, it is

further given in the figure that unsupervised deep learning

algorithms are the Autoencoder (AE) [29], sum product

network (SPN), RNN, and Boltzmann machine (BM).

Apart from the deep supervised learning or supervised deep

learning, deep unsupervised learning, others types of deep

learnings are: deep semi-supervised learning, and deep

reinforcement learning or reinforcement learning.

Deep supervised learning: In this type of deep learning,

supervision in terms of label data is made available for the

trainings alongside the input features. It is a type of learning in

which the trainings is carried out towards already known

outputs and the validity of the obtained output is compared

with the already known output. Examples of such learning are

the RNNs, CNNs, deep neural networks (DNN). Gate

recurrent units (GRUs), and long short-term memory (LSTM)

which are RNN variants are also parts of the algorithms in

deep supervised learning [18].

Deep semi-supervised learning: This is also called the

partially supervised learning. In this type of learning, the

trainings are based on semi-labelled datasets. Examples of

algorithms that fall in this category are the GANs, deep

reinforcement learning (DRL), RNNs and its variants (GRUs

and LSTM).

Deep unsupervised learning: In this type of learning, the

trainings are carried out without the provision of the labelled

output data. that is only the input features are made available

for the trainings. Examples of algorithms here are the auto-

encoders, RBMs, GANs, RNN (GRUs and LSTM).

Deep reinforcement learning: In this type of learning, the

model learns from experience gathered in the course of

trainings. The outcome of what is learned can be inform of

reward or penalty. Carrying out this form of learning is much

more difficult because of the absence of straight forward loss

function. This finds application in the development of games,

robotic system etc. The motivations for utilizing this type of

learning are to assist in identifying the type of action that

generates the highest reward over longer period, to discover

the situation that demands actions, giving out of reward

function to a learning agent, and for figuring out the best

approach to reach large rewards.

3.3 Deep learning algorithms

3.3.1 RvNN

These are deep learning architectures that are used to make

predictions for hierarchical structures, and to capture

dependencies within recursively structure data. Unlike the

CNN that uses convolution operation of the input and kernel

in extracting features, and RNN that processes sequential data

by traversing backward into the deeper layer of the network

(LSTM) or forward and backward direction (BiLSTM), it uses

recursive operation on the inputs or child nodes to form the

parent nodes representation. The same set of weights are

applied in a recursive way over the structure input to generate

structure predictions. They are developed to process randomly

shaped objects like trees, graphs, or molecular structures in

chemistry. Hence their suitability for tasks that involve

hierarchical and nested relationships.

It works using the data structure algorithm (DSA) where

input is processed recursively, there by merging information

from child nodes to parent nodes. This algorithm uses a

Recursive Auto-Associative Memory (RAAM) for its

development. It is utilised in several areas such as the NLP for

sentiment analysis where the information available on the

children’s nodes is used to assign vectors to each word or sub-

phrases.

On comparison with a RNN, both are utilised for sequential

data. The RvNN form the present node (parent node) through

recursive operations of the previous inputs or child nodes,

while RNN also traverses backward but not in a recursive

manner but is able to retain information of the previous inputs

or time steps or states. Hence their choice in sequential events

like the time-series predictions, NLP, speech recognition etc.

These are illustrated in Figures 10 and 11 for RvNNs and

Figure 12 for RNNs.

Figure 10. Tree structure of RvNNs [26]

Figure 11. RvNNs for parsing NLS [18]

Figure 12. Structure of a RNN [26]

Training. The training of RvNNs involves learning the

transformation matrices. Different algorithms are utilised for

training. The most popular ones is the Gradient Descent

Optimisation algorithm with Back propagation through

structure (BTS) learning system. Here, the model learns the

weight matrices for each child, and these weight matrices are

shared across different recursions for the succeeding children

at the same position. The network is trained to regenerate the

input layer pattern at the output layer.

Advantages of RvNNs for NLP.

1. The structure of the tree can manage hierarchical data e.g.

parsing problems.

2. There is reduction in the depth of the network. This is due

to the implementation of logarithm where complexity is

O(logn)

784

Disadvantages of RvNNs for NLP.

1. The implementation of tree structures introduces bias to

the model as the data might not necessarily follow a tree

hierarchy structure.

2. Ambiguity and slowness of sentence parsing.

3. Manual parsing of sentence into short components is

tedious and time-consuming.

Application of RvNNs.

1. It is implemented for tasks that involves nested like

structures such as molecular structure analysis or natural

language parsing.

2. It is also utilised in utilised in image segmentation.

Review of Related Work on RvNNs. In the work carried out

in [30], the logical deduction in the application of RvNNs for

sentence parsing was carried out. Success have been recorded

for sentence meaning using RvNNs. Two models comprising

tree-structured neural tensor networks (TreeRNTNs) and plain

TreeRNNs were evaluated. The models were trained using the

SICK challenge dataset and evaluated for recursive structures,

relational reasoning, and quantification. The findings of the

experiments show that the two models generalize well for the

three evaluations, which means they can give logical

conclusion in NLP. A max-margin structure prediction

architecture which is based on RvNNs was utilised in [31] for

the predictions of image and sentence outputs. Using the

Stanford background dataset, the algorithms developed for the

image outputs achieved State of the Art (SOTA) performance

(accuracy) of 78.1% for annotation and segmentation. The

duplicated building block in deep neural network was

simplified using the dynamic recursive neural network

(DRNN) developed [32]. The DRNN was able to achieve

recursive outputs using fewer blocks compared to other well-

known methods. To further reduce the computation of the

algorithm, a gate structure that determines the loop times for

each block was added. The gradient problems encountered in

RvNNs was solved using the Loop Variable Batch

Normalisation (LVBN).

3.3.2 RNN

These are deep learning architectures that are utilised for

modeling sequential or temporal data. They find application in

NLP, speech recognition, language translation etc. Unlike the

traditional neural networks where outputs and inputs are

independent of each other, in RNNs, the present output is a

function of the previous input elements. It is also true that the

present input also relies on the future events. In RNNs, the

architecture is such that the system is able to traverse

backward or forward into the layers to update the present

output result, as illustrated in Figure 13. In RNNs, the same

weights are shared across each layer or nodes of the networks,

which are mostly adjusted during the gradient descent and

backpropagation process in the quest to minimize the errors.

The backpropagation through time (BPTT) is employed in

RNNs.

Advantages of RNNs.

1. They are integrated with CNNs for best performance.

2. They have the ability to remember previous events.

Disadvantages of RNNs.

1. There are the issues of the exploding and varnishing

gradients that occur during optimization.

2. Processing of very long sequence is difficult when ReLU

or tanh activation function is utilised.

3. Difficulty in training.

Figure 13. Recurrent nature of a RNN [28]

Types of RNNs:

Based on the numbers of inputs and outputs.

One-to-One. This is a RNNs with one input and one output.

It is also known as Vanilla Neural Network. This is illustrated

in Figure 14.

One-to-Many. As the name implies, it has one input and

many output nodes. It is widely used in image captioning. It is

shown in Figure 15.

Many-to-One. This type of RNNs has one input and more

than one outputs. It is utilised in sentimental analysis [33]. It

is shown in Figure 16.

Many-to-Many. As shown in Figure 17, it has multiple

inputs nodes and multiple output nodes. It is used in language

translation.

Figure 14. One-to-one RNNs [28]

Figure 15. One-to-many RNNs [28]

Figure 16. Many-to-one RNNs [28]

785

Figure 17. Many-to-many RNNs [28]

Based on the adjustment to the traditional RNNs layers’

deep architectures:

Bidirectional RNNs (BRNNs).

These are variants of RNNs that are able to traverse forward

and backward into the networks to make predictions of the

present events. For instance, in the NLP, given the word string:

“You get to go home now”, the RNNs could make prediction

of “home” by having the knowledge of “now” or any other

words prior to “home”. Through this architecture, it gives

better predictions of any needed present word. Other

applications of BRNNs in NLP are Sentimental analysis, Part

of Speech Tagging, Machine Translation, and Name Entity

Recognition. It has also been utilised in Speech Recognition

Advantages of BRNNs.

1. It allows variable length sequence easier handling.

2. It allows bidirectional processing.

3. It helps to capture better information.

4. BRNNs enhanced the accuracy of the prediction since

they capture information both from the future and past.

5. BRNNs are resilience to irrelevant information and noise

presents in the data by traversing forward and backward

through the network.

6. BRNNs are able to handle the long-term dependency

issues experienced in the conventional RNN.

Disadvantages of BRNNs.

1. The forward and backward traversing of the algorithm

makes to be computationally complex.

2. The complexity of the system increases the training time

of the algorithm when implemented for modelling.

3. Difficulty in the interpreting of the model due to its

forward and backward movement through the network.

4. They are mostly prone to overfitting condition due to the

huge number of data utilised for training the model.

LSTM.

Traditional RNNs have small memory which denotes their

inability to traverse deeper backward into the architecture to

make predictions of the present output. This problem was

overcome via the LSTM memory architecture. This

architecture was designed by Juergen Schmidhuber and Sepp

Hochreiter to particularly overcome the varnishing gradient

problem encountered in RNNs. It overcomes the problem of

long dependency encountered in the network, where the

prediction of the present output cannot be made possible if the

recent set of events cannot be found. To overcome the long

dependency, the LSTM was developed with cells that contain

the input, output, and forget gate as shown in Figure 18. They

are used in music composition, speech recognition,

pharmaceutical development etc.

As indicated in Figure 18, the LSTM network consists of a

cell represented by the block, with three gates which are the

forget, input, and output gates, which are equivalent of the

reset, write, and read for the present cell [34].

Figure 18. LSTM network [35]

Forget gate. The first gate from the left is the forget gate

which has a sigmoid activation function, σ determines which

part of the cell information to be forgotten, and which is to be

saved. The sigmoid function acts on the present input, xt and

the previous time step, ht-1 represented by the bottom arrow

entering the cell as indicated in Eq. (9) [34, 35].

𝑓𝑡 = 𝜎(𝑤𝑓 . 𝑥𝑡 + 𝑤𝑓 . ℎ𝑡−1 + 𝑏𝑓) (9)

The top arrow entering the cell represents the previous cell

state, Ct-1, which is multiplied (elementwise multiplication) by

the output of the sigmoid function in Eq. (9) (as indicated in

Eq. (10) to determine what part of the previous cell state is to

stored and discarded. Since the value of the sigmoid function

is between 0 and 1. A 0 indicates to forget, and a 1 means to

forget nothing in the previous cell state.

𝑎1 = 𝐶𝑡−1 ⊗ 𝑓𝑡 (10)

Input Gate. This is the second gate from the left. It has two

parts, the update part, it and the generation of new values, gt

part for the cell state. These are represented by the sigmoid, σ

and tanh functions as shown in Eq. (11) and Eq. (12)

respectively [34].

𝑖𝑡 = 𝜎(𝑤𝑖 . 𝑥𝑡 + 𝑤𝑖 . ℎ𝑡−1 + 𝑏𝑖) (11)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑔. 𝑥𝑡 + 𝑤𝑔. ℎ𝑡−1 + 𝑏𝑔) (12)

The update part updates the value of the present cell and the

generate new values to be added to the cell, using the tanh

sigmoid function. These two are elementwise multiplied to

obtain output a3 as indicated in Figure 18. This output a3 is the

input gate of the network. This is illustrated in Eq. (13) as:

𝑎3 = 𝑔𝑡 ⊗ 𝑖𝑡 (13)

Then the present or new value (state) of the cell (becomes

previous in the next cell) is the sum of the forget gate and input

gate as illustrated in Eq. (14) [34] as:

𝑎2 = 𝑎1 + 𝑎3 = [𝐶𝑡−1 ⊗ 𝑓𝑡] + [𝑔𝑡 ⊗ 𝑖𝑡] = 𝐶𝑡 (14)

Output Gate. This is used to compute the part of the current

cell state that is utilised as the previous timestep of the next

state. It is indicated as ht. In the next cell, it becomes ht-1. It is

obtained by finding the elementwise multiplication of the

output of the Tanh and sigmoid activation functions. The Tanh

786

activation function acts on the present cell state, Ct as given in

Eq. (15) and its output is given as a4 while the sigmoid

function acts on the present input, xt and previous timestep, ht-

1 as illustrated in Eq. (16), where it is given as ot. The

elementwise multiplication of Eq. (15) and Eq. (16) are

illustrated in Eq. (17) and given as ht, which is the present

output of the cell and it becomes the previous output or

timestep in the next cell [34].

𝑎4 = tanh (𝐶𝑡) (15)

𝑜𝑡 = 𝜎(𝑤𝑜. 𝑥𝑡 + 𝑤𝑜. ℎ𝑡−1 + 𝑏𝑜) (16)

ℎ𝑡 = 𝑎4 ⊗ 𝑜𝑡 = tanh(𝐶𝑡) ⊗ 𝜎(𝑤𝑜. 𝑥𝑡 + 𝑤𝑜. ℎ𝑡−1

+ 𝑏𝑜)
(17)

Advantages of LSTM

1. They are able to solve the long dependency issues

associated with the Vanilla RNN.

2. They have the ability to learn sequential data.

3. LSTMs can make predictions by traversing backward

into the network due to the memory.

Disadvantages of LSTM

1. LSTMs have complex systems due to their architecture.

2. There is the need for high computing power.

3. They sometimes forget very important information in the

previous state of the network.

4. They are sometimes difficult to comprehend.

5. LSTMs require huge volume of data to learn from for

better performance.

6. They require more training time due to the complexity of

the system.

Gated Recurrent Units. This architecture is similar to the

LSTM in that it was designed to overcome the problem of long

dependencies due to memory issues in the network. It uses

hidden states to control the flow of information instead of the

cell utilised in the LSTM. It also uses two gates, that is an

update gate, and a reset gate to control the volume and type of

information to be kept. Prediction of previous information

deeper into the network using RNN, becomes an issue due to

exploding gradient and varnishing gradients. It has been

applied in the detection of stress in Electro Encephalogram

(EEG) signals [36].

Exploding Gradient

This arises during backpropagation when trying to improve

the performance of the model where the gradient exponentially

explode and prevents the convergent of the model. Then

weights and biases’ update tend to become unstable. One

solution to this is called gradient clipping where the gradient

vectors are clipped if greater than the threshold set.

Varnishing Gradient

This occurs when the gradient exponentially decay such that

the performance of the model cannot be updated due to zero

value of the gradient. Then the update made on the weights

and biases in the network become so small. To solve this

problem, the Gated Recurrent Unit (GRU) or LSTM is used so

that very long dependence can be captured. While GRU is

faster than LSTM with low memory, the LSTM is more

accurate when dealing with longer datasets. Other approaches

to solving the varnishing gradient problem is the use of ReLU

activation function, and batch normalization

Application of RNNs

1. NLP

2. Speech Recognition

3. Machine Translation

4. Time Series Forecasting

5. Face Detection

6. Handwriting recognition

3.3.3 RvNN versus RNN

Both RvNN and RNN are used to process sequential data.

Difference ocurs due to how they are structures. RvNNs

process sequential data in a tree like fashion, while RNN is

utilised to capture dependencies over time. The differences

between the two are captured in the Table 1.

Table 1. Difference between RNNs and RvNNs

S/N Features RNN RvNN

1 Architecture

There is a tree-like,

or hierarchical

structure

There is a chain-

like or

sequential

structure

2 Memory

It captures

information via the

sequential memory

Memory is

limited

3
Data

Preprocessing

It processes time-

series and sequential

data

It processes

hierarchical data

4
Training

Complexity

It uses

backpropagation

through time

For training, it

uses specific

tree traversal

algorithms

5 Connections
Based on sequential

order

Based on

hierarchical

structure.

6
Application

Areas

Speech recognition,

Speech Synthesis,

Language Modelling

Image Parsing,

Syntactic

parsing, and

other NLP

applications

3.3.4 CNNs

These are networks with multiple layers that are mostly

used for object detection and image processing. They are also

called ConvNets. The first CNN architecture named LeNet

was developed by Yann LeCun in 1988. It was used for

character recognition like the digits, zip codes etc. it has been

applied in brain tumor detection [37], brain stroke detection

[38], cyber bullying detection [39]. Other application areas

include detection of anomalies, identification of satellite

images, forecasting of time series, medical image processing

etc. [18, 40].

Architecture of CNN. The CNN has three layers, which are

the input, hidden, and the output layer. The hidden layer

consists of the convolution layer, pooling and fully connected

layer.

The Convolution Layer. Within the convolution layer, the

input is convolved with the filter or kernel in the hidden layer.

The kernel slides over the input layer convolving with it to

obtain the reduced dimensional feature map. Feature

extractions do mostly occur during the stage of the CNN. The

movement of the sliding operation of the filter over the input

is controlled by the parameter called stride of the CNNs. It has

been observed that input parameters of the matrix towards the

edge are not actively engaged in the convolution process. To

address these issues, padding of the input matrix is normally

carried. This ensures that every input values within the matrix

is actively engaged in the convolution process.

Convolution Operation within the Convolution Layer.

787

Consider an image with 5 × 5 dimensions. When fed into the

CNN, the convolution layer with the help of a filter or kernel

acts on the input image so as to find local patterns and features

from the input image. If a filter or kernel of dimension 3 × 3

acts on the image, the following convolution operation occurs

where the filter slides over the image to extract relevant

information:

Figure 19. Sliding of the kernel through the image and

convolution operation with stride = 1

As can be seen in Figure 19, the convolution operation starts

at a), and as the filter slides through the images, various

convolution operations are carried out as indicated in b) to i)

after which the a 3 × 3 feature map is obtained. The

convolution operation at each position of the slide as given as

follows:

|
2 0 1
0 1 0
3 2 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (2 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (0 ∗ 1) + (3 ∗ 0) + (2 ∗ −1) + (0 ∗ 2) = (2 + 0 +
0) + (0 + 1 + 0) + (0 + −2 + 0) = (2 + 1 − 2) = 1

|
0 1 2
1 0 1
2 0 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (2 ∗ 0) + (1 ∗

2) + (0 ∗ 1) + (1 ∗ 1) + (2 ∗ 0) + (0 ∗ −1) + (1 ∗ 2) = (0 +
−1 + 0) + (2 + 0 + 1) + (0 + 0 + 2) = (−1 + 3 + 2) = 4

|
1 2 2
0 1 3
0 1 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (2 ∗ −1) + (2 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (3 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (1 ∗ 2) = (1 +
−2 + 0) + (0 + 1 + 3) + (0 + −1 + 2) = (−1 + 4 + 1) = 4

|
1 1 0
3 2 0
1 0 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (0 ∗ 0) + (3 ∗

2) + (2 ∗ 1) + (0 ∗ 1) + (1 ∗ 0) + (0 ∗ −1) + (0 ∗ 2) = (0 +
−1 + 0) + (6 + 2 + 0) + (0 + 0 + 0) = (−1 + 8 + 0) = 7

|
1 0 1
2 0 1
0 0 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (2 ∗ 2)

+(0 ∗ 1) + (1 ∗ 1) + (0 ∗ 0) + (0 ∗ −1) + (1 ∗ 2) = (1 + 0 + 0)
+(4 + 0 + 1) + (0 + 0 + 2) = (1 + 5 + 2) = 8

|
1 1 3
0 1 1
0 1 2

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (1 ∗ −1) + (3 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (1 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (2 ∗ 2) = (0 +
−1 + 0) + (0 + 1 + 1) + (0 + −1 + 4) = (−1 + 2 + 3) = 4

|
3 2 0
1 0 0
2 2 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (3 ∗ 1) + (2 ∗ −1) + (0 ∗ 0) + (1 ∗

2) + (0 ∗ 1) + (0 ∗ 1) + (2 ∗ 0) + (2 ∗ −1) + (1 ∗ 2) = (3 +
−2 + 0) + (2 + 0 + 0) + (0 + −2 + 2) = (1 + 2 + 0) = 3

|
2 0 1
0 0 1
0 1 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (2 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (0 ∗ 1) + (1 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (0 ∗ 2) = (2 + 0 +
0) + (0 + 0 + 1) + (0 + −1 + 0) = (2 + 1 + −1) = 2

|
0 1 1
0 1 2
1 0 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (2 ∗ 1) + (1 ∗ 0) + (0 ∗ −1) + (0 ∗ 2) = (0 +
−1 + 0) + (0 + 1 + 2) + (0 + 0 + 0) = (−1 + 3 + 0) = 2

The results of Figure 20 is a 3 × 3 matrix called the feature

map, which is given in Figure 21.

Figure 20. Feature map of above convolution (stride = 1)

Figure 21. Sliding of the kernel through the image and

convolution operation with stride = 2

As given in the convolution above, the matrix operation is

an array multiplication carried out at each position. It should

also be noted that for the convolution operation carried out, the

strides, which is the speed of the filter movement along the

image is taken to be 1.

Techniques Utilised CNN Convolution Operation

Stride. This refers to the speed with which a filter translates

through an image. A stride of 1 depicts the filter travels one

pixel at a time, 2 pixels per time with a stride of two. e.g.

If a stride of length 2 is to be utilised, the following

788

convolution operations shown in Figure 21 will be obtained.

As shown in Figure 21, the higher the stride, the higher the

speed or motion through the input image by the filter or kernel

and the lower the dimension. This also reduces the

computational complexity of the model due to a reduced

dimension. However, the use of high value for the stride has

the effect of information loss. The result of using a stride of

two for a 5 × 5 image and 3 × 3 kernel is a 2 × 2 feature map

which is given as follows and the feature map output is shown

in Figure 22.

|
2 0 1
0 1 0
3 2 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (2 ∗ 1) + (0 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (0 ∗ 1) + (3 ∗ 0) + (2 ∗ −1) + (0 ∗ 2) = (2 + 0 +
0) + (0 + 1 + 0) + (0 + −2 + 0) = (2 + 1 − 2) = 1

|
1 2 2
0 1 3
0 1 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (1 ∗ 1) + (2 ∗ −1) + (2 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (3 ∗ 1) + (0 ∗ 0) + (1 ∗ −1) + (1 ∗ 2) = (1 +
−2 + 0) + (0 + 1 + 3) + (0 + −1 + 2) = (−1 + 4 + 1) = 4

|
3 2 0
1 0 0
2 2 1

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (3 ∗ 1) + (2 ∗ −1) + (0 ∗ 0) + (1 ∗

2) + (0 ∗ 1) + (0 ∗ 1) + (2 ∗ 0) + (2 ∗ −1) + (1 ∗ 2) = (3 +
−2 + 0) + (2 + 0 + 0) + (0 + −2 + 2) = (1 + 2 + 0) = 3

|
0 1 1
0 1 2
1 0 0

| ∗ |
1 −1 0
2 1 1
0 −1 2

| = (0 ∗ 1) + (1 ∗ −1) + (1 ∗ 0) + (0 ∗

2) + (1 ∗ 1) + (2 ∗ 1) + (1 ∗ 0) + (0 ∗ −1) + (0 ∗ 2) = (0 +
−1 + 0) + (0 + 1 + 2) + (0 + 0 + 0) = (−1 + 3 + 0) = 2

Figure 22. Feature map of the above convolution for stride of

2

Padding. During the convolution operations, it has been

observed that only border regions of the input image undergo

less filtering operation. That is, the pixels around the border or

edges are convolved the least amount of time compare to the

pixels within the body of the image matrix (border effect)-this

leads to loss of information at the borders. Hence, the padding

technique is used to extend the dimension by adding zeros so

that the initial border regions are now within the body of the

new matrix pixel obtained. This is illustrated in Figure 23 for

the initial 5 × 5 input image matrix of Figure 23.

Figure 23. The effect of pooling on a 5 × 5 input image

Pooling Layer. This is used for dimensionality reduction of

the output activated feature map. For instance, if the size of the

output of the convolution layer is 8 × 8, pooling can reduce

this size to 2 × 2. In this case pooling is carried out on 4 × 4

sub-block of the convolution output matrix. If the size of the

feature map is 2 × 2, pooling can reduce it to 1 dimensional

space. It involves the application of filter that traverse over

varying regions of the feature map to extract a single output

value. The single output value can be an average or maximum

representation. Hence, two types of pooling are known with

CNNs. These are the average pooling and max pooling. In

average pooling, the average of the selected matrix grouped is

found while the max is selected in the case of the max pooling.

Another benefits of pooling is increase in the receptive field of

the CNN network. Pooling over a region or window within the

feature map ensures the capturing of necessary patterns needed

for trainings.

Average Pooling. The average value of the region of the

filter or window is found to obtain a single value

representation of that window. This is illustrated in Figure 24

for a 4 × 4 by matrix.

Figure 24. Average pooling in CNN

As shown in Figure 24, the average of each pooling window

is found as a single representation of that window, and the

resulting matrix is a feature map with a dimension of 2 × 2.

Max Pooling. This involves selecting the maximum value

within each region or pool window within the matrix. This

ensures that most important features are captured while

potential noise is ignored. An example of max pooling is

shown in Figure 25.

Figure 25. Max pooling in CNN

Fully Connected Layer. The output of the pooling layer, is

flattened into a 1-dimensional space. If for instance, the output

is a 4 × 4, this will be flattened to become 1 × 8 or simply put

a vertical dimensional space with a size or length of 8. This

will serve as input to the fully connected layer. By fully

connected layer, it implies that every input is fully linked to

the node of the next layer in the hidden layer of the network.

Then classification takes place within this layer. This is

illustrated in Figure 26.

As shown in Figure 26, the pooled feature map is first

flattened and served as input to the fully connected layer with

large number of hidden layers. The first hidden layer has 5

neurons and the last hidden layer also has 5 neurons. The

output of the network is obtained at the output layer with 2

neurons.

Evolution of CNN Architectures. As initially stated, the first

789

CNN architecture named LeNet was developed by Yann

LeCun in 1988. It was used for character recognition like the

digits, zip codes etc. over the past 10 years several CNN

architectures have been developed. Modifications have been

made to the existing ones to obtain an improved CNN

architecture. Some of the modifications carried out are

regularization, structural reformulation, parameter

optimizations etc. [18]. Presented next are some of the CNN

architectures.

Figure 26. Fully connected layer in CNN

LeNet. The inputs to the LeNet are images and this CNN

architecture consists of the following:

1. Convolutional layer with 6 filters each of size 5 * 5

followed by 2 * 2 max pooling layer.

2. Convolutional layer with 16 filters each of size 5 * 5

followed by 2 * 2 max pooling layer.

3. Fully connected layer with a sigmoid activation function

and 120 units.

4. Fully connected layer with a sigmoid activation function

and 84 units.

5. Output layer with a softmax activation function and 10

units.

AlexNet. In 2012, AlexNet was developed by Alex

Krizhevsky et al where it achieved SOTA results on ImageNet

dataset. The architecture consists of 5 convolutional layers

unlike 2 present in LeNet followed by 2 fully connected layers,

and 1 output layer. It is summarized as follows:

1. Convolutional layer with 96 filters each of size 11 * 11

followed by 2 * 2 max pooling layer.

2. Convolutional layer with 256 filters each of size 5 * 5

followed by 2 * 2 max pooling layer.

3. Convolutional layer with 384 filters each of size 3 * 3

4. Convolutional layer with 384 filters each of size 3 * 3

5. Convolutional layer with 256 filters each of size 3 * 3

followed by 2 * 2 max pooling layer

6. Fully connected layer with a ReLU activation function

and 4096 units.

7. Fully connected layer with a ReLU activation function

and 4096 units.

8. Output layer with a softmax activation function and 1000

units.

VGG. This was developed by Andrew Zisserman and Karen

Simonyan in the year 2014. It is an improvement on the

AlexNet considering the number of filters, dropout

regularization technique, and max pooling layers utilised. It is

summarized as:

1. Convolutional layer with 64 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

2. Convolutional layer with 128 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

3. Convolutional layer with 256 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

4. Convolutional layer with 512 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

5. Convolutional layer with 512 filters each of size 3 * 3

followed by 2 * 2 max pooling layer

6. Fully connected layer with a ReLU activation function,

dropout regularization and 4096 units.

7. Fully connected layer with a ReLU activation function,

dropout regularization and 4096 units.

8. Output layer with a softmax activation function and 1000

units.

ResNet. To tackle the varnishing gradient problem

encountered during training, ResNet was introduced by

Kaiming He et al. in 2015. The architecture can be

summarized as follows:

1. Convolutional layer with 64 filters each of size 7 * 7

followed by 3 * 3 max pooling layer.

2. Multiple residual blocks with each containing:

 Convolutional layer with 64 filters each of size 3 * 3

 Convolutional layer with 64 filters each of size 3 * 3

 Shortcut connection that merges the original input to

the output of the block.

3. Multiple residual blocks with each containing:

 Convolutional layer with 128 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

 Convolutional layer with 128 filters each of size 3 * 3.

 Convolutional layer with 128 filters each of size 3 * 3

 Shortcut connection that merges the original input to

the output of the block.

4. Multiple residual blocks with each containing:

 Convolutional layer with 256 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

 Convolutional layer with 256 filters each of size 3 * 3.

 Convolutional layer with 256 filters each of size 3 * 3

 Shortcut connection that merges the original input to

the output of the block.

5. Multiple residual blocks with each containing:

 Convolutional layer with 512 filters each of size 3 * 3

followed by 2 * 2 max pooling layer.

 Convolutional layer with 512 filters each of size 3 * 3.

 Convolutional layer with 512 filters each of size 3 * 3

 Shortcut connection that merges the original input to

the output of the block.

6. Fully connected layer with a softmax activation function,

and 1000 units [18].

A block diagram of ResNet is displayed in Figure 27.

Figure 27. Block diagram of ResNet [18]

790

EfficientNet. This was invented by Quoc V. Le and

Mingxing Tan from Google Research in 2019. The distinct

feature of this architecture is its new scaling method. This

ensures uniform scaling of all dimensions of width, depth, and

resolution with the help of a compound coefficient. Variants

of efficientNet are EfficientNet-B0, EfficientNet-B1 to B7,

EfficientNet-Lite

Review of Related Work on CNNs.

CNN is one of the most significant networks in the field of

deep learning [22]. It has been explored in NLP, and computer

vision, hence its choice in academia and industry in the past

few years. The review paper looked into the applications of

CNN in diverse scenarios without its consideration from

general perspective. In addition to those novel aspects and

ideas in this area of CNN, the one-dimensional CNN, two-

dimensional CNN, as well as multi-dimensional CNN were

also discussed in this paper. The paper started with an

introduction to CNN, then an overview, followed by

introduction of classic and advanced CNN models being

introduced. Thereafter, experimental analysis of CNN was

carried out after which conclusions were drawn and several

rules of thumbs were highlighted for selection of functions.

Then the areas of applications of one-dimensional, two-

dimensional, and multi-dimensional CNN were covered and

the paper ended with some challenges faced with the CNN

architecture.

CNNs overviewed was covered in the study [41]. Its

applications in the area of image recognition tasks were also

highlighted. The paper started with an introduction to the CNN

architecture where the different phases of Machine learning

and Artificial Intelligence such as the data collection,

preprocessing of data, selection of model, trainings of the

model, evaluation, model deployment, monitoring and model

maintenance were discussed extensively. Then the various

contributions of the paper such as a thorough review of recent

developments in CNNs, discussion on the fundamentals of

CNNs, comparison of different CNN architecture,

recommendation for data scientists and developers, discussion

on libraries for CNN, cost of CNN estimations, recent

developments in CNN, efficiency and reliability enhancement

of CNNs and finally, summary of the whole work was given

where they stated that image recognition field has been

revolutionized by the CNNs and they also find applications in

other domains, and that CNNs have the ability and potential to

bring about transformation from health care industry and

finance to entertainment and transportation sectors due to

increase in the volume of data and large computing resources

made available for the trainings.

Biological vision’s early findings inspired the birth of CNN

[42]. That CNNs have found immense applications in

Computer vision tasks. The paper started with a brief

introduction to CNN, the origin of CNN, its application in

computer vision, and its validation in the field, its comparison

to human neural and behavioural levels, its variants, the

datasets available, different architecture of CNNs, trainings

procedures, understanding of CNNs where approaches such as

the empirical methods, mathematical analysis were discussed

extensively. Then they ended by considering the limitations of

CNN such as the way in which the networks are trained,

assumption of weight sharings etc, and they provided future

directions.

CNN was utilised to model a sign language recognition

system in the study [43]. Deafness and voice impairment have

caused a gap in communication between these impaired people

and the outside world. The static America Sign Language

dataset where through the HandDetector module, the signer’s

hand images were detected and captured using PC webcam

was utilised for the training. The dataset consists of 44, 654

images, which is split into 20, 772, 8, 903, and 14, 979 for train,

validation, and test sets respectively. The input images were

first processed and then fed to the CNN which consisted of 3

convolution layers, and an output SoftMax layer, and is trained

using an Adam Optimiser. Accuracies of 99.86%, 99.94%, and

94.68% were obtained for train, validation, and test

respectively.

However, CNN was used to train a model that classified

three types of maize leaf diseases that comprises of Common

Rust, Leaf Blight, and Leaf Spot [44]. According to the work,

the input to the CNN trained using Keras platform with Python

TensorFlow had neither preprocessing nor feature extraction,

and its size was 224 × 224 pixels. The model was able to

achieve an accuracy of 98.56% which shows that farmers

could save time and problem of incorrect detection mostly

encountered using manual approach is taken care of.

3.3.5 GANs

In 2014, a paper published by researchers at the University

of Montreal introduced the GANs. They are deep learning

algorithms that are trained to make prediction, classify images

etc through two components comprising the generator and

discriminator. The generator generates fake output which the

discriminator learns from and authenticity evaluation of the

data to a real world is carried out. The generator receives the

input data and undergo training to generate output which are

fed to the discriminator. The discriminator then checks if the

output is a representation of the real-world output. If it is a

good representation, this is given as the output else, this is

returned or fed back to the generator that further trains on the

data until better results free from discrimination from the

discriminator is generated.

3.3.6 Radial basis function networks

These are types of feedforward neural networks that use the

radial basis function as their activation functions. They are

utilised for time-series prediction, regression, and

classification. They perform classification through

measurements of the similarity between the input and the

training set. The output layer has one node in each class or

category. They have input vector that are fed to the input layer,

and they also have a layer of radial basis function neurons.

Then the weighted sum of the inputs is found. Gaussian

transfer function are used for neurons in the hidden layer. The

output of this function and the distance from the neuron’s

center are inversely proportional to each other. Linear

combination of the neuron’s parameters and the input of RBF

gives the output of the network.

3.3.7 Multilayer perceptrons

This is a feedforward neural network with multiple layers

of perceptrons. The number of inputs and outputs in MLPs are

the same but there are multiple hidden layers. They are utilised

in machine translation, image recognition, and speech

recognition.

Working Principle. The data are feed to the input layer of

the network. The signal passes in one direction via the

graphical connection of layers of neurons. It then computes the

weighted inputs that exists between the input and hidden layers.

It then uses activation functions such as tanh, ReLU, sigmoid

791

functions to determine which node to fire. Thereafter, it trains

the model to learn dependencies and understand the

correlation that exist between the independent and target

output from a training dataset.

3.3.8 Self organising maps

This was invented by Professor Teuvo Kohonen. It is a type

of artificial neural network that reduces the dimension of data

via the data visualisation. They are created to help humans

have the ability to visualize high-dimensional data through

self-organising artificial neural networks.

Working principle. It first carryout weights initialization for

each node and make random selection of vectors from the

training data. it then finds out weights that are most likely be

the input vector through examination of every node. The

winning node is referred to as the Best Matching Unit (BMU).

It then discovers then neighbourhood of the BMU. The sample

vector is awarded a winning weight. The shorter the distance

between a node and a BMU, the more the changes in weight,

and the longer the distance between a node (neighbour) and

BMU, the less it learns.

3.3.9 RBMs

These are stochastically shallow two-layered neural

networks that are developed by Goeffrey Hinton. It was able

to tackle the problem of varnishing gradients known to most

deep learning networks. They can learn from a probability

distribution over a set of inputs which are not labeled, and the

non-labeling seems to be beneficial for real world data like the

videos, photos, sensor data that are mostly unlabeled.

Working Principles. Two phases of RBMs exists. These are

forward pass and backward pass. It translates the accepted

inputs into a set of numbers that encodes the inputs in the

forward pass. It then combines each activation with their

corresponding weight and one overall bias. The output is

passed to the next hidden layer. Through the backward pass, it

takes the set of numbers and translate them to produce the

reconstructed inputs. It then combines each activation with

individual weight and bias and pass the output to the visible

layer for reconstruction. A high degree of accuracy is achieved

for backpropagation of a well trained RBM network. The

biases and weights assist the RBM to decode the

interrelationships between the inputs and to decide the

essential inputs in detecting patterns. Via different weights and

biases, the model is trained until the difference between the

inputs and the reconstructed inputs are as minimal as possible.

Review of Literatures on RBMs. RBM is a family of

machine learning and statistical models and played a central

role in the growth and development of the deep learning was

discussed [45]. It is explored in tasks such as representation

and classification learning. According to the authors, through

the phase diagrams derived for various statistical ensembles of

RBM, the functioning of RBM can be analysed and that the

identification of compositional phase has been achieved where

a small number of nodes or features are combined to form

patterns that are complex. The paper started with an

introduction to RBM, definition of the model and learning,

then discussion on stochastic gradient descent, was given and

overview of various RBM settings that involve the Gaussian-

Gaussian RBM, Gaussian-Spherical, Gaussian-Softmax,

Bernoulli-Gaussian RBM, Gaussian-Bernoulli RBM,

Bernoulli-Bernoulli RBM were highlighted. Discussion on

phase diagram of the Bernoulli-Bernoulli RBM, learning

RBM and finally conclusions in the form of summary was

given where they discussed about the learning quality, the

number of hidden nodes which affects representation power of

RBM, the landscape of learned RBMs, the landscape of free

energy, and the link between the dataset and the learned

features.

The study [46] looked into the survey on the RBM and DBN.

The paper was also a tutorial that discussed about the BM,

RBM, and DBN. The paper commenced by giving more

insight into the graphical models that are probabilistic in

nature, Gibbs sampling, Markov random field, Ising model,

statistical physics, and Hopfield network. Thereafter, the

structure of BM and RBM were introduced. The explanation

on Gibbs sampling in RBM for generating variables,

contrastive divergence, maximum likelihood estimation

training of BM & RBM, as well as the conditional distributions

of hidden and visible variables were given. Then discussion on

the continuous and discrete distributions for the variables was

also highlighted, then they explained on how conditional RBM

is trained. Finally, explanation of DBM which is a stack of

RBM models was given. According to the authors, the model

can find application in statistics, data science, statistical

physics, as well as neural computation.

3.3.10 DBNs

DBNs was also developed by Geoffrey Hinton as alternative

to providing solution to backpropagation problems that

involves the varnishing gradients. It has a similar structure to

the MLP but diverse in training. These are generative models

that have multiple layers of latent, stochastic variables. The

latent variables that contain binary values are called hidden

units. DBNs are integration or stack of Boltzmann machines.

Communication exists between each RBM layer with both the

previous and subsequent layers. The hidden layer of the first

RBM which is trained for the reconstruction of inputs

accurately, is the visible layer of the next RBM ahead of it.

They are utilised in motion capture data, image recognition,

video recognition. Just like an integration of perceptrons called

MLP outperforms perceptrons, the stack or integration of

RBMs outperformed a single RBM network. To complete the

trainings of the DBN, labels are mostly introduced to the

patterns in the network and fine-tuned in a supervised way.

Working Principles. Greedy learning algorithm which uses

a layer-by-layer approach to learn the top-down generative

weights, are used to train the DBNs. Steps of Gibbs sampling

on the top two hidden layers are carried out. It then draws a

sample from the visible units by utilizing a single pass

ancestral training. It then learns that the latent variables in

every layer can be inferred by a single, bottom-up pass.

3.3.11 Autoencoders

They are feedforward neural networks with identical inputs

and output. It was developed by Geoffrey Hinton in 1980s.

they are used to solve unsupervised learning problems. Other

areas of application include image processing, pharmaceutical

discovery, and popularity predictions. In autoencoders, input

data are encoded as vectors, which are compressed, hidden and

representation of the raw input data, and to achieve the low

dimensionality reduction of the input raw data. it has been

applied in the detection of intrusion and cyber attacks [29, 47].

Working Principles. It consists of encoder, code, and

decoder which are three main components of the network. It

receives the inputs and transforms it into a signal

representation. It first encodes the image; this ensures that the

size of the input reduction size. Finally, the decoding of the

792

image to generate the reconstruction images.

3.3.12 Choosing a deep network

In choosing the type of deep network, decision has to be

made if patterns are to be found, classification model is to be

built, or the type of deep learning such as the supervised or

unsupervised etc is needed for the task. If image classification

model is needed, then one can be thinking of exploring the

CNNs, modeling of sequential data is best carried out by the

RNNs, for extraction of patterns from a set of unlabeled data,

autoencoder or RBM can be considered.

Factors to be considered in choosing a particular type of

deep learning algorithms. The choice of a deep learning

algorithm must align with the problem being addressed or the

application being taking into consideration. Several factors

must be taking care of when choosing a deep learning

algorithm for specific tasks. They are as follows:

The type of input data. The input data fed into the model to

be trained has a lot to say about the type of deep learning

algorithm. For instance, for sequential data, the RNN or RvNN

or variants of RNN can be utilised; for image data or data with

certain patterns, CNN can be used for such tasks.

Learning tasks. The type of learning task also has an effect

in determining the type of deep learning algorithm to be used.

For instance, for classification and prediction problems, the

FNN can be used; for tasks that needs knowledge of the long

dependences in the data, the LSTMs can be implemented.

Availability of data. This is another key factor in the

selection of the deep learning algorithm. Deep learning

algorithms or models developed like the CNNs architectures

such as the AlexNet, ResNet etc, RNN based models like the

speech recognition models, machine translation models and

state-of-the-art transformer-based models like the CHAT-GPT,

speech synthesis, and speech recognition models such as

Whisper, Jasaper, AudioPalm are trained with large volume of

data. [cite whisper, Translatotron, Jasper, AudioPalm].

Whisper is trained with over 600, 000 hours of corpus and

transcripts sourced over the internets.

Complexity and depth of the problem. Simple problem

modelling can be carried-out using simple architecture such as

the Perceptron; while complex problems like the image

classification as in the case of brain tumor classification, and

disease classification, can be achieved using the CNN

architecture; speech recognition, text-to-speech modelling or

any other speech processing tasks can be carried-out using

RNNs, or transformer based RNNs where stack of LSTMs or

BiLSTMs are utilised as encoders and decoders.

Table 2. Type of deep learning and their areas of application

S/N Applications Types of Deep Learning

1

Sentimental

analysis, text

processing, name

entity recognition,

parsing

Recursive Neural Tensor

Network (RNTN), RNNs,

2

Language model

that functions at

character level

RNNs

3 Object recognition RNTN

4 Image Recognition CNNs, DBNs

5 Speech Recognition RNNs

6 Classification DBNs and MLP with ReLU

7 Time series RNNs

Computational resources. The availability of the hardware

resources like the high computing Graphic Processing Units

(GPU) for tasks like the CNNs or RNNs that require high

memory and space is another important factor to be considered

in choosing the type of deep learning algorithms for a specific

task.

A detailed illustration of the type of deep learning for

various application is given in Table 2.

4. DISCUSION

Different architectures of deep learning have been

developed by different researchers. For instance, for various

image recognition, character recognition, reading of bank

checks, various CNNs architectures have addressed these

areas. Different architectures are AlexNet, ResNet, ResNext,

SqueezeNet, MobileNet, LeNet [12-15]. For sentence parsing

using the RvNNs, plain TreeRNNs and tree-structured neural

tensor networks (TreeRNTNs) models were utilised [30] for

evaluation. DRNN was modeled where its computational

complexity was catered for using a gate structure, and the

backpropagation problems were addressed via the Loop

Variable Batch Normalisation (LVBN) [32]. According to the

study [22], CNN is one of the most significant networks in the

field of deep learning, and its application areas particulary in

image processing were highlighted [41, 42]. Illustration of the

different types of RBMs settings such as the Gaussian-

Spherical, Bernoulli-Gaussian RBM, Gaussian-Gaussian

RBM, Gaussian-Softmax [45] shows that more intense works

are ongoing in this exploration of deep learning. In addition to

this, the present-day world is ocuupied with the generation of

video contents, image contents which have been made possible

through the GANs. The GANs with the help of generator and

discriminator is able to achieve real world output

representation that have been utilised by individuals for their

daily consumptions. The following review paper shows that

researchers are findings or developing systems or models that

achieve the purpose for which deep learnings were developed

for. Findings show that CNNs are the most widely used deep

learning architectures.

5. CONCLUSIONS

In this review work, the different types of deep learning

have been explored. Deep learning which is a subset of

machine learning via its deep architecture have achieved great

feat in various works of life. Researchers and experts have

developed various architectures to simulate real life scenarios.

The paper discussed different algorithms of deep learning such

as the RNNs, CNNs, GANs, RBMs, DBNs, LSTM, GRUs, etc,

and the works of different researchers were also reported. It

was discovered that deep learning has made immense

contributions to human development. For instance, it has been

explored in speech recognition where different speech models

have been trained to interact with humans. Image

classifications and recognitions models have been developed

using the CNNs. Various large language models like the GPT,

Dale-2 have made immense contributions for human

interactive learnings, adaptive learnings, etc. To further ensure

the deep learning model run faster, high computing Graphic

Processing Unit (GPU) are available to run various deep

learning model. The conclusion drawn from this paper is that

CNNs, RNNs, GANs are some of the deep learning models

793

that have found great contributions in various fields of

endeavour.

ACKNOWLEDGMENT

The authors wish to acknowledge the Covenant University

Centre for Research, Innovations and Discovery (CUCRID)

and Google for providing fund towards the publication of this

study.

REFERENCES

[1] Alzubi, J., Nayyar, A., Kumar, A. (2018). Machine

learning from theory to algorithms: An overview. In

Journal of Physics: Conference Series, 1142: 012012.

https://doi.org/10.1088/1742-6596/1142/1/012012

[2] Adeyinka, A.A., Adebiyi, M.O., Akande, N.O.,

Ogundokun, R.O., Kayode, A.A., Oladele, T.O. (2019).

A deep convolutional encoder-decoder architecture for

retinal blood vessels segmentation. In Computational

Science and Its Applications–ICCSA 2019: 19th

International Conference, Saint Petersburg, Russia, pp.

180-189. https://doi.org/10.1007/978-3-030-24308-1_15

[3] Aizenberg, I., Aizenberg, N.N., Vandewalle, J.P. (2013).

Multi-valued and universal binary neurons: Theory,

learning and applications. Springer Science & Business

Media.

[4] Dechter, R. (1986). Learning while searching in

constraint-satisfaction problems. AAAI, 178-185.

[5] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang,

K.J. (2013). Phoneme recognition using time-delay

neural networks. In Backpropagation, pp. 35-61.

[6] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11): 2278-2324.

https://doi.org/10.1109/5.726791

[7] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural

networks. Advances in Neural Information Processing

Systems, 25.

[8] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

[9] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770-778.

[10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1-9.

[11] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Bengio, Y. (2014).

Generative adversarial nets. Advances in Neural

Information Processing Systems, 27.

[12] Howard, A.G. (2017). MobileNets: Efficient

convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

https://doi.org/10.48550/arXiv.1704.04861

[13] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,

L.C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4510-

4520.

[14] Ma, N., Zhang, X., Zheng, H.T., Sun, J. (2018).

Shufflenet v2: Practical guidelines for efficient CNN

architecture design. In Proceedings of the European

Conference on Computer Vision (ECCV), pp. 116-131.

[15] Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B.,

Tan, M., Adam, H. (2019). Searching for mobilenetv3.

In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 1314-1324.

[16] Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.

(2020). Ghostnet: More features from cheap operations.

In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 1580-

1589.

[17] Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.

X. (2019). Deep learning and its applications to machine

health monitoring. Mechanical Systems and Signal

Processing, 115: 213-237.

https://doi.org/10.1016/j.ymssp.2018.05.050

[18] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A.,

Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A.,

Al-Amidie, M., Farhan, L. (2021). Review of deep

learning: Concepts, CNN architectures, challenges,

applications, future directions. Journal of Big Data, 8: 1-

74. https://doi.org/10.1186/s40537-021-00444-8

[19] Rudolph, J., Tan, S., Tan, S. (2023). ChatGPT: Bullshit

spewer or the end of traditional assessments in higher

education? Journal of Applied Learning and Teaching,

6(1): 342-363.

[20] Benavides, E., Fuertes, W., Sanchez, S., Sanchez, M.

(2020). Classification of phishing attack solutions by

employing deep learning techniques: A systematic

literature review. Developments and Advances in

Defense and Security: Proceedings of MICRADS 2019,

pp. 51-64. https://doi.org/10.1007/978-981-13-9155-2_5

[21] Trivedi, A., Pant, N., Shah, P., Sonik, S., Agrawal, S.

(2018). Speech to text and text to speech recognition

systems—A review. IOSR Journal of Computer

Engineering, 20(2): 36-43. https://doi.org/10.9790/0661-

2002013643

[22] Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J. (2021). A

survey of convolutional neural networks: Analysis,

applications, and prospects. IEEE Transactions on

Neural Networks and Learning Systems, 33(12): 6999-

7019. https://doi.org/10.1109/TNNLS.2021.3084827

[23] Medeiros, E.F. (2023). Deep learning for speech to text

transcription for the Portuguese language. Universidade

de Évora.

[24] Radford, A., Kim, J.W., Xu, T., Brockman, G., Mcleavey,

C., Sutskever, I. (2023). Robust speech recognition via

large-scale weak supervision. https://github.com/openai/.

[25] Jia, Y., Johnson, M., Macherey, W., Weiss, R.J., Cao, Y.,

Chiu, C.C., Ari, N., Laurenzo, S., Wu, Y. (2019).

Leveraging weakly supervised data to improve end-to-

end speech-to-text translation. In ICASSP 2019-2019

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 7180-7184.

https://doi.org/10.1109/ICASSP.2019.8683343

[26] Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev,

O., Cohen, J. M., Gadde, R.T. (2019). Jasper: An end-to-

end convolutional neural acoustic model. arXiv preprint

794

arXiv:1904.03288.

https://doi.org/10.48550/arXiv.1904.03288

[27] Barrault, L., Chung, Y.A., Meglioli, M.C., Dale, D., et al.

(2023). SeamlessM4T-Massively Multilingual &

multimodal machine translation. arXiv preprint

arXiv:2308.11596.

https://doi.org/10.48550/arXiv.2308.11596

[28] Selvaganapathy, S.G., Nivaashini, M., Natarajan, H.P.

(2018). Deep belief network based detection and

categorization of malicious URLs. Information Security

Journal, 27(3): 145-161.

https://doi.org/10.1080/19393555.2018.1456577

[29] Moraboena, S., Ketepalli, G., Ragam, P. (2020). A deep

learning approach to network intrusion detection using

deep autoencoder. Revue d’Intelligence Artificielle,

34(4): 457-463. https://doi.org/10.18280/ria.340410

[30] Bowman, S., Potts, C., Manning, C.D. (2015). Recursive

neural networks can learn logical semantics. In

Proceedings of the 3rd Workshop on Continuous Vector

Space Models and their Compositionality, pp. 12-21.

[31] Socher, R., Lin, C.C., Manning, C., Ng, A.Y. (2011).

Parsing natural scenes and natural language with

recursive neural networks. In Proceedings of the 28th

International Conference on Machine Learning (ICML-

11), pp. 129-136.

[32] Guo, Q., Yu, Z., Wu, Y., Liang, D., Qin, H., Yan, J.

(2019). Dynamic recursive neural network. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 5147-5156.

[33] Khonde, S.R., Virnodkar, S.S., Nemade, S.B., Dudhedia,

M.A., Kanawade, B., Gawande, S.H. (2024). Sentiment

analysis and stock data prediction using financial news

headlines approach. Revue d’Intelligence Artificielle,

38(3): 999-1008. https://doi.org/10.18280/ria.380325

[34] Safarzadeh, V.M., Jafarzadeh, P. (2020). Offline persian

handwriting recognition with CNN and RNN-CTC. In

2020 25th International Computer Conference,

Computer Society of Iran (CSICC), Tehran, Iran, pp. 1-

10. https://doi.org/10.1109/CSICC49403.2020.9050073

[35] Limbu, S.H. (2020). Direct speech to speech translation

using machine learning. http://www.teknat.uu.se/student.

[36] Mhaouch, A., Fradi, M., Gtifa, W., Ben Abdelali, A.,

Machhout, M. (2024). Deep learning based recurrent

neural network model for stress detection in EEG signals.

Revue d’Intelligence Artificielle, 38(3): 979–985.

https://doi.org/10.18280/ria.380323

[37] Elango, P., Arthanareeswaran, A. (2024). BT detection

using improved whale optimization and convolutional

neural networks. Revue d’Intelligence Artificielle, 38(3):

815-823. https://doi.org/10.18280/ria.380308

[38] Qasim, A.N., Alani, S., Mahmood, S.N., Mohammed, S.

S., Aziz, D.A., Ata, K.I.M. (2024). Enhancing brain

stroke detection: A novel deep neural network with

weighted binary cross entropy training. Revue

d’Intelligence Artificielle, 38(3): 777-785.

https://doi.org/10.18280/ria.380304

[39] Agbaje M., Afolabi, O. (2024). Neural network-based

cyber-bullying and cyber-aggression detection using

Twitter(X) text. Revue d’Intelligence Artificielle, 38(3):

837-846. https://doi.org/10.18280/ria.380310

[40] Napte, K., Mahajan, A. (2022). Deep learning based liver

segmentation: A review. Revue d’Intelligence

Artificielle, 36(6): 979-984.

https://doi.org/10.18280/ria.360620

[41] Krichen, M. (2023). Convolutional neural networks: A

survey. Computers, 12(8): 151.

https://doi.org/10.3390/computers12080151

[42] Lindsay, G.W. (2021). Convolutional neural networks as

a model of the visual system: Past, present, and future. J

Cogn Neurosci, 33(10): 2017-2031.

https://doi.org/10.1162/jocn_a_01544

[43] Orovwode, H., Oduntan, I.D., Abubakar, J. (2023).

Development of a sign language recognition system

using machine learning. In 2023 International

Conference on Artificial Intelligence, Big Data,

Computing and Data Communication Systems

(icABCD), Durban, South Africa, pp. 1-8.

https://doi.org/10.1109/icABCD59051.2023.10220456

[44] Olayiwola, J.O., Adejoju, J.A. (2023). Maize (Corn) leaf

disease detection system using convolutional neural

network (CNN). In 23rd International Conference on

Computational Science and Its Applications, Athens,

Greece, pp. 309-321. https://doi.org/10.1007/978-3-031-

36805-9_21

[45] Decelle, A., Furtlehner, C. (2021). Restricted Boltzmann

machine: Recent advances and mean-field theory.

Chinese Physics B, 30(4): 40202.

https://doi.org/10.1088/1674-1056/abd160

[46] Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M. (2021).

Restricted boltzmann machine and deep belief network:

Tutorial and survey. arXiv preprint arXiv:2107.12521.

https://doi.org/10.48550/arXiv.2107.12521

[47] Kadhim, Q.K., Alwan, O.F., Khudhair, I.Y. (2024). Deep

Learning methods to prevent various cyberattacks in

cloud environment. Revue d’Intelligence Artificielle,

38(3): 893-900. https://doi.org/10.18280/ria.380316

NOMENCLATURE

w weight of a neuron

b bias of a neuron

x input to a neural network

y output of a neural network

f activation function

Greek symbols

σ steepness parameter

795

