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 Milk, a nutrient-rich food of animal origin, is essential for human nutrition. However, its 

high nutritional value also increases the risk of it serving as a vector for food-borne 

diseases. Traditional methods for detecting contamination in milk are often time-

consuming, complex, and require additional reagents. To streamline this process, near-

infrared reflectance spectroscopy (NIRS) has been developed as a rapid and 

straightforward alternative. NIRS technology generates unique spectral signatures based 

on the molecular composition of examined samples. In conjunction with multivariate 

analysis methods, particularly principal component analysis (PCA) and linear 

discriminant analysis (LDA), NIRS offers a robust approach for identifying bacterial 

contamination in milk. This study investigates the efficacy of NIRS combined with PCA 

and LDA in distinguishing between contaminated and sterile milk samples. The findings 

indicate that by integrating NIRS with PCA and LDA, we can achieve a 100% accuracy 

rate in classifying bacteria-contaminated milk compared to sterile milk. This 

advancement not only enhances the efficiency of contamination detection but also 

showcases the broader potential of NIRS technology in rapid food safety assessments and 

sustainable microbiological practices. While these results are promising, further 

validation involving a wider diversity of samples is necessary.  
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1. INTRODUCTION 

 

Cow's milk, a nutrient-rich liquid produced by cows, is 

essential for human health due to its high content of proteins, 

fats, vitamins, and minerals. Its beneficial properties have led 

to significant increases in its production and consumption 

globally, particularly in developing countries [1, 2]. However, 

the high nutritional value also makes milk an ideal medium for 

microbial growth, which can lead to contamination through 

various sources such as equipment, floors, soil, water, and 

feces. Common contaminants include Staphylococcus aureus, 

Campylobacter spp., Salmonella, Listeria monocytogenes, and 

Escherichia coli [3]. 

Escherichia coli (E. coli) and Listeria monocytogenes are 

notable pathogenic bacteria that frequently contaminate food, 

causing foodborne diseases [4]. E. coli, typically a commensal 

organism in the intestines of vertebrates, can become an 

opportunistic pathogen leading to various intestinal and extra-

intestinal infections [5]. In particular, certain strains like E. 

coli O157:H7 are infamous for causing severe food poisoning 

outbreaks. Listeria monocytogenes, on the other hand, is 

pervasive in nature and can thrive at refrigeration temperatures 

due to its psychotropic characteristics. This bacterium is 

capable of forming biofilm-structured communities that 

adhere to surfaces and can be resilient against sanitization 

processes, thus making milking equipment a potential vector 

for contamination and posing significant risks as a foodborne 

pathogen [3, 6]. 

The prevalence of these bacteria in milk poses a substantial 

threat to public health. E. coli infections can lead to symptoms 

ranging from mild gastroenteritis to life-threatening conditions 

such as hemolytic uremic syndrome. Listeria infections, which 

are particularly dangerous to pregnant women, newborns, the 

elderly, and immunocompromised individuals, can result in 

severe outcomes, including meningitis, septicemia, and fetal 

loss. 

Traditional bacterial detection methods are labor-intensive 

and time-consuming, involving the growth of bacteria in 

culture media, isolation using selective media, and subsequent 

identification based on morphological, physiological, and 

biochemical characteristics [7, 8]. While these conventional 

methods are reliable and capable of detecting small amounts 

of bacteria and recovering live cells for further analysis, their 

complexity and environmental impact due to the use of 

chemicals are notable drawbacks. 

Near-Infrared Reflectance Spectroscopy (NIRS) has 

emerged as a potential alternative for microbial identification 

due to its speed, cost-effectiveness, ease of use, and ability to 
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provide clues about the chemical content and physical 

properties of samples. These advantages have led to its 

widespread application in the agri-food industry for both on-

site and laboratory analyses [9-11]. By utilizing near-infrared 

optical wave technology, NIRS can estimate sample quality 

parameters through spectral analysis, which reveals 

information about the chemical composition of the object [12]. 

NIRS has proven to be a promising tool in the agricultural 

sector for the rapid and accurate analysis of food compositions 

and quality control. Its benefits include high-speed operation, 

simplicity, non-destructive analysis, and the simultaneous 

measurement of multiple constituents [13]. These 

characteristics have made NIRS a preferred method for 

various applications, including monitoring livestock health 

and product quality [14]. 

Over the decades, NIRS technology has been recognized as 

one of the most effective non-destructive analysis methods. It 

is widely utilized in fields such as milk inspection due to its 

straightforward sample preparation, quick processing, and 

environmentally friendly nature, as it does not involve 

chemical use. Numerous studies highlight the application of 

NIRS in assessing food quality, predicting the authenticity of 

oils [15, 16], evaluating food composition and quality [10, 12], 

and identifying bacteria [9, 17, 18]. The integration of NIRS 

with chemometric techniques further enhances its potential as 

an alternative method for food safety testing and surveillance. 

Building on these previous studies, we hypothesize that 

NIRS technology could be an effective tool for classifying 

bacterial species in milk. This research aims to develop a 

qualitative model for classifying E. coli and L. monocytogenes 

in milk using NIRS technology, coupled with multivariate 

analysis via Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) methods. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Milk samples 

 

Milk samples collected from dairy farms in Aceh Besar 

were stored in sterile bottles and transported in designated 

storage boxes under controlled temperature conditions to 

maintain sample integrity during transit. Upon arrival at the 

laboratory, strict aseptic procedures were followed to prevent 

any potential contamination. 

The sterilization process involved subjecting 300 ml of each 

milk sample to autoclaving at 121℃ for 3 minutes. This 

thorough sterilization method effectively eliminated all 

microorganisms, including bacterial spores, ensuring that the 

milk was rendered sterile and free from any initial 

contamination. 

Post-sterilization, the sterile milk was divided into three 

distinct portions: the control group of sterile milk, milk 

designated for contamination with E. coli, and milk designated 

for contamination with L. monocytogenes. 

To prepare for the contamination process, bacterial 

suspensions of E. coli and L. monocytogenes were cultured and 

prepared to meet a 0.5 McFarland turbidity standard, 

equivalent to a concentration of approximately 1.5×108 

CFU/ml. Specific volumes of the bacterial suspensions were 

then carefully measured: 0.6ml for E. coli and 0.5ml for L. 

monocytogenes. 

Following preparation, each bacterial suspension was 

thoroughly mixed to ensure uniform distribution of the 

bacteria. Subsequently, 1 ml of each bacterial suspension was 

added to its respective portions of sterile milk to initiate the 

contamination procedure. 

The contaminated milk samples were then divided into 

subsets: 8 samples for milk contaminated with L. 

monocytogenes, 7 samples for milk contaminated with E. coli, 

and 4 samples of sterile milk serving as controls. In total, 20 

milk samples were meticulously prepared for further analysis 

using Near Infrared Reflectance Spectroscopy (NIRS) to 

facilitate accurate examination and evaluation. 

These detailed steps in the sample preparation process aim 

to uphold consistency, accuracy, and reproducibility in the 

subsequent analysis and assessment of the milk samples for 

bacterial contamination. 

 
2.2 NIR spectral acquisition 

 
Diffuse reflectance spectra in the wavelength range 1000-

2500 nm will be obtained with a self-developed diode-array 

NIR instrument (PSD NIRS i16). The spectral bandwidth of 

that instrument can be adjusted up to 4nm. For the sake of 

standardization, the acquired spectra were interpolated to a 

0.2nm step using a piece-wise linear function. Spectra will be 

acquired with an integration time of 1s. The analysis was 

carried out at room temperature (25±1℃). 

 
2.3 Spectral data analysis 

 
The entire data is used as a dataset to build a classification 

model for bacterial contamination in milk. An outlier test was 

carried out first to see outlier data using the PCA and Hotelling 

T2 methods. Data analysis was processed using the principal 

component analysis (PCA) and linear discriminant analysis 

(LDA) methods using Unscrambler X version 10.3 software to 

enable the classification of sterile and contaminated milk 

samples, as presented in Figure 1. PCA is a dimensionality 

reduction technique applied to identify underlying patterns and 

principal components in high-dimensional spectral data. 

Principal component analysis (PCA) is a technique for 

simplifying data by changing data into new variables. PCA can 

also be used to classify or differentiate products from other 

products. PCA works by finding new variables, called 

principal components (PC), that explain most of the variability 

in the data. This PC allows us to describe information with far 

fewer variables than originally existed. 

 

 
 

Figure 1. Spectral data analysis for the classification based 

on bacteria species and benefits 
 

LDA is a commonly used technique for data classification 

and pattern recognition as well as dimensionality reduction. 
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LDA will classify objects into one of two or more groups 

based on various features that describe classes or groups of 

data [10]. In this case, the use of LDA for data classification is 

applied to the classification of sterile milk with milk 

contaminated with E. coli and L. monocytogenes bacteria. 

 

 
3. RESULTS AND DISCUSSION 

 

3.1 Spectra features 

 

The NIRS spectrum is formed due to the absorption of NIRS 

light by the material, which causes the molecules to vibrate 

and then form peaks and valleys in the spectrum [19, 20]. 

Figure 1 shows typical NIRS diffuse reflectance spectra for 

sterile milk samples and milk contaminated with E. coli and L. 

monocytogenes bacteria. 

When performing spectral analysis of milk and bacteria, 

there are several key NIR spectral regions to consider: 

Overtone bands and combinations associated with OH bonds 

around 1450nm and 1940nm. This is mainly related to water 

content. After 1350 nm, the absorbance of all samples changes 

drastically caused by the absorption of OH and water [10]. The 

main band formed is defined as containing information on 

carbohydrate content around 1483-1490nm and 2100nm, 

protein content information around 2050-2060nm, 1500-

1530nm; fat content information 2070nm [17]. The NH bond 

absorption is around 2100nm which can provide information 

about the protein content in bacteria. The structure of the 

bacterial cell membrane and the ratio of lipids, proteins, and 

polysaccharides (IR active molecular bonds CH, NH, OH) 

depend on the bacterial species. These changes can appear in 

the IR vibration spectrum. 

Correction of the spectrum of milk contaminated with 

bacteria with absorbance transformed into % transmittance is 

seen in Figure 2. 

 

 
 

Figure 2. Typical spectrum of E. coli and L. monocytogenes bacteria in NIR region 

 
When light originating from a light source falls on the 

biological components of the sample, an interaction between 

the biological components and the light will occur, giving a 

response in the form of reflection, absorption, and 

transmission [11]. Each spectrum result obtained will be 

different for each sample because it is influenced by the 

interaction of infrared rays with the biological content 

contained in the sample so that different spectrum shapes will 

be obtained between samples, as presented in Figure 2. 

Although only three different species are distinguished, it can 

be seen that the NIR spectrum contains information about the 

chemical composition of the sample. 

Information on chemical content in spectrum data cannot be 

seen just by observing the spectrum but must be analyzed 

further using multivariate analysis. According to previous 

research [21], this is due to the complex infrared spectrum 

pattern, making direct and visual interpretation difficult. 

NIRS shows potential in classifying different bacterial 

species accurately based on the spectral patterns formed. By 

analyzing the reflectance or absorption of NIRS Light by the 

biological components of bacteria, NIRS can identify the 

structure of certain molecules. This spectral profile can be 

used as reference data in building classification models that 

enable rapid identification of bacterial contamination. 

 

 
 

Figure 3. Outlier data examination with PCA method and 

Hotelling T2 ellipse 

 

Examination of outlier data shows that no data is outside the 

ellipse line, so no data needs to be discarded or removed, so 

all 20 samples can be used for analysis using PCA and LDA 

(Figure 3). The data used for further analysis is the data within 
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the ellipse [20]. If the data is outside the circle of the ellipse, 

the data is marked as outlier data. 

 
3.2 PCA and LDA classification models 

 
Data processing using the PCA method aims to make it 

easier to visually see the formation of data classification 

clusters. A good classification model, built using the PCA 

method, must have a latent variable (LV) smaller than 9. 

The classification results obtained based on Figure 4 show 

very good results because the data is classified at 100%, which 

indicates that all data is collected into their respective clusters. 

The PCA analysis carried out resulted in a total PC (PC-1 and 

PC-2) of 100%, indicating that PCA was able to collect all the 

data in two PCs to carry out a classification process, which 

showed that all the data held could be collected well. 

PCA is a statistical method that transforms an original 

dataset into a new coordinate system. The axes of this new 

system, called principal components, are orthogonal and linear 

combinations of the original variables. Each principal 

component represents a certain percentage of the total 

variation in the dataset. Two PCs were selected by examining 

the eigenvalue plot, outliers were detected and removed from 

the NIRS data after confirming their presence by spectral 

analysis [21]. In the context of bacterial classification, PCA 

can be used to generate a reduced set of variables that still 

captures most of the patterns in bacterial data. These variables, 

or principal components, can be visualized in a scatter plot to 

help differentiate between bacterial species. 

 

 
 

Figure 4. Classification based on NIR spectral data of milk 

samples using PCA method 

 

 
 

Figure 5. Classification based on NIR spectral data of bacteria samples using the LDA method 

 
After PCA reduces the dimensionality of the NIR data to 20 

dimensions, linear discriminant analysis (LDA) is applied to 

extract discriminant features from the training set. For LDA, 

the sum of eigenvectors and eigenvalues is usually the 

category number minus one [2]. The classification plot using 

LDA can be seen in Figure 5. It shows that the LDA 

classification results succeeded in classifying milk 

contaminated with E. coli and L. monocytogenes bacteria by 

producing a validation accuracy rate of 100%, which was 

projected using 2 components. This method is able to detect 

all sample treatments correctly. In the category description, 2 

types correspond to the treatment carried out in this study. 

Data processing using the LDA method aims to make it 

easier to see the level of success of the classification model. 

This method maximizes the ratio between class variance to 

within-class variance in any data set, thereby guaranteeing 

maximum separation [22]. Linear discriminant analysis 

(LDA) classification has been most widely used for NIRS 

because of its excellent performance reflected by the fast-

learning rate and good classification performance. In applying 

classifiers, dimensionality reduction or feature selection 

methods are generally used because the number of NIRS 

feature vectors is usually larger than the dataset. 

This score plot illustrates the separation of milk samples 
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into two distinct groups: healthy milk (blue squares) and 

contaminated milk (red circles). The x-axis represents 

Principal Component 1 (PC-1), which accounts for 99% of the 

variance in the dataset, while the y-axis represents Principal 

Component 2 (PC-2), contributing only 1% of the variance. 

The clustering demonstrates that PCA effectively reduces the 

dimensionality of NIRS data while preserving essential 

information for classification. The clear separation between 

healthy and contaminated samples signifies that PC-1 captures 

most of the variability associated with the contamination 

status, making it a dominant feature for distinguishing between 

these groups. 

The loading plot provides insight into how different 

wavelengths contribute to PC-1, which captures nearly all the 

variance in the dataset. Peaks in this plot correspond to 

wavelengths that have a significant influence on the separation 

of sample groups. These wavelengths likely represent spectral 

features associated with specific chemical or biological 

properties of milk contaminated with E. coli and Listeria 

monocytogenes. 

The results from the PCA analysis demonstrate a robust 

classification, with 100% of the data allocated to their 

respective clusters, indicative of successful data collection 

within two principal components. Subsequent LDA 

application, as shown in Figure 5, further enhances 

classification accuracy, achieving a validation rate of 100% by 

differentiating milk contaminated with E. coli and L. 

monocytogenes bacteria. LDA simplifies the assessment of the 

classification model’s success by optimizing the ratio of class 

variance to within-class variance, ensuring effective 

separation within the data set. 

The use of Linear Discriminant Analysis (LDA) in 

conjunction with NIRS technology has proven to be highly 

effective in classifying bacterial contaminants in milk, such 

as Escherichia coli and Listeria monocytogenes. This section 

delves into the specifics of how LDA enhances the 

classification model's success and its role in maximizing 

separation within datasets. 

LDA classification, renowned for its fast-learning rate and 

superior classification performance, is widely employed in 

NIRS applications due to its ability to maximize separation 

efficiency within datasets. Dimensionality reduction or feature 

selection techniques enhance the classification process by 

managing the extensive NIRS feature vectors commonly 

present in datasets. This is also in agreement with previous 

works and literature [6, 12, 18]. Moreover, it operates by 

maximizing the ratio of class variance to within-class variance 

in any dataset, thereby ensuring maximum separation between 

different classes or groups of data. This is particularly 

beneficial in NIRS applications, where the number of feature 

vectors (spectral data points) often exceeds the number of 

samples. By optimizing this variance ratio [23, 24]. 

Future research in the field of NIRS offers a multitude of 

avenues for enhancing the sensitivity and specificity of 

contaminant detection in milk, thereby augmenting overall 

food safety measures. One particularly promising area for 

exploration involves the optimization of detection limits 

within NIRS methodologies. By delving into techniques that 

can enhance the sensitivity of NIRS to identify bacterial 

contaminants at even lower concentrations, researchers can 

pave the way for more precise and early detection capabilities, 

bolstering the method's utility in safeguarding milk quality. 

Expanding the application of NIRS to encompass a wider 

spectrum of contaminants beyond the current focus on E. coli 

and L. monocytogenes presents another fruitful research 

direction. By exploring the detection of additional 

contaminants, such as diverse pathogenic bacteria strains, 

toxins, or chemical residues in milk samples, researchers can 

develop a more comprehensive contamination screening 

platform. This extension of capabilities could significantly 

enhance the overall efficacy of NIRS in ensuring the safety 

and integrity of milk products. 

One key area involves optimizing the detection limits within 

NIRS methodologies. By developing techniques that enhance 

the sensitivity of NIRS, researchers can identify bacterial 

contaminants at even lower concentrations. This would enable 

more precise and early detection capabilities, bolstering the 

method's utility in safeguarding milk quality. Techniques such 

as improving spectral resolution, enhancing signal processing 

algorithms, or integrating NIRS with other spectroscopic 

methods could be explored to achieve this goal. 

Expanding the application of NIRS to detect a broader range 

of contaminants beyond E. coli and L. monocytogenes is 

another fruitful research direction. This could involve 

exploring the detection of additional pathogenic bacteria 

strains, toxins, or chemical residues in milk samples. By 

developing a more comprehensive contamination screening 

platform, researchers can significantly enhance the overall 

efficacy of NIRS in ensuring the safety and integrity of milk 

products. For instance, detecting antibiotic residues, as 

explored in other studies using NIR-II fluorescence-based 

methods, could be integrated into NIRS platforms for a more 

holistic approach to milk safety [25]. 

Moreover, the integration of advanced algorithms, such as 

machine learning and artificial intelligence, holds significant 

promise for enhancing the analytical capabilities of NIRS. 

Through the development and implementation of sophisticated 

algorithms, researchers can refine the accuracy and specificity 

of NIRS-based contaminant detection in milk samples. This 

innovative approach has the potential to revolutionize the 

precision and efficiency of contaminant identification, paving 

the way for more robust food safety practices within the dairy 

industry. 

Another promising avenue is the exploration of multimodal 

spectroscopy approaches, combining NIRS with other 

spectroscopic techniques like Mid-Infrared (MIR) 

spectroscopy or Surface-Enhanced Raman Spectroscopy 

(SERS) [26, 27]. These combinations could leverage the 

strengths of each method to provide more comprehensive and 

accurate detection of contaminants. For example, MIR 

spectroscopy is excellent for the quantitative identification of 

organic functional groups, while SERS offers high sensitivity 

and specificity for molecular fingerprinting [28, 29]. 

Furthermore, future outlook could delve into the feasibility 

of implementing real-time monitoring systems utilizing NIRS 

technology. By exploring the development of systems that 

allow for continuous monitoring of milk quality throughout 

the production process, researchers can enable timely 

interventions in response to contamination events. 

Investigating the integration of NIRS into on-field 

applications in dairy farms or processing facilities could 

provide a practical solution for the efficient and rapid 

screening of milk samples for contaminants, ensuring the 

preservation of milk quality and safety at every stage of 

production.
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4. CONCLUSION 

 

The research findings significantly highlight the efficacy of 

Near Infrared Reflectance Spectroscopy (NIRS) in 

conjunction with Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) for accurately discerning 

bacterial contamination by L. monocytogenes and E. coli in 

milk samples. The PCA analysis revealed a remarkable 

achievement, where all data points were classified into their 

designated clusters with an outstanding rate of 100%, 

indicating the robustness and precision of the classification 

process. Similarly, the LDA analysis further reinforced the 

study's credibility by showcasing a validation accuracy rate of 

100%, underscoring the reliability and accuracy of the NIRS 

technology in identifying specific bacterial contaminants in 

milk. 

As evidenced by the study outcomes, the application of 

NIRS technology emerges as a rapid and efficient method for 

detecting bacterial contamination in milk with minimal sample 

preparation requirements. This technology not only 

streamlines the process but also significantly reduces the time 

and resources traditionally associated with examining milk 

contamination, making it a valuable tool for expedited and 

high-throughput analyses in scenarios demanding swift and 

large-scale assessments. 

While the PCA and LDA analyses yielded exceptional 

classification results across diverse sample treatments, it is 

imperative to acknowledge the importance of continued 

evaluation under varied conditions. Future research endeavors 

should encompass a broader spectrum of samples and various 

bacterial strains commonly found in animal-derived food 

products, ensuring the robustness and versatility of the NIRS 

technology in real-world applications. Furthermore, the 

study's outcomes underscore the immense potential of 

integrating NIRS with sophisticated multivariate analyses for 

assessing bacterial contamination in milk, hinting at its 

profound implications on enhancing veterinary public health 

practices and ensuring the safety and quality of dairy products 

across the industry. 

 

 

REFERENCES 

 

[1] Christi, R.F., Hermawan, H., Salman, L.B. (2020). 

Distribution of Holstein-Friesian dairy cattle populations 

in KUD Gemah Ripah Sukabumi, West Java for milk 

production of during lactation, daily milk production, 

and fat levels. Chalaza Journal of Animal Husbandry, 5: 

1-5. https://doi.org/10.31327/chalaza.v5i1.1228 

[2] Wu, X., Fang, Y., Wu, B., Liu, M. (2023). Application of 

near-infrared spectroscopy and fuzzy improved null 

linear discriminant analysis for rapid discrimination of 

milk brands. Foods, 12(21): 3929. 

https://doi.org/10.3390/foods12213929 

[3] Temizkan, R., Can, A., Dogan, M.A., Mortas, M., Ayvaz, 

H. (2020). Rapid detection of milk fat adulteration in 

yoghurts using near and mid-infrared spectroscopy. 

International Dairy Journal, 110: 104795. 

https://doi.org/10.1016/j.idairyj.2020.104795 

[4] Susilowati, A.Y., Jannah, S.N., Kusumaningrum, H.P., 

Sulistiani, S.S. (2022). Isolasi dan identifikasi bakteri 

asam laktat dari susu kambing sebagai bakteri antagonis 

listeria monocytogenes dan escherichia coli penyebab 

foodborne disease. Jurnal Teknologi Pangan, 6(2): 24-31. 

https://doi.org/10.14710/jtp.2022.29488 

[5] Denamur, E., Clermont, O., Bonacorsi, S., Gordon, D. 

(2021). The population genetics of pathogenic 

Escherichia coli. Nature Reviews Microbiology, 19(1): 

37-54. https://doi.org/10.1038/s41579-020-0416-x 

[6] Lecuit, M. (2020). Listeria monocytogenes, a model in 

infection biology. Cellular Microbiology, 22(4): e13186. 

https://doi.org/10.1111/cmi.13186 

[7] Tian, Y., Gao, X., Qi, W. L., Wang, Y., Wang, X., Zhou, 

J., Lu, D., Chen, B. (2021). Advances in differentiation 

and identification of foodborne bacteria using near 

infrared spectroscopy. Analytical Methods, 13(23): 

2558-2566. https://doi.org/10.1039/D1AY00124H 

[8] Pasquini, C. (2018). Near infrared spectroscopy: A 

mature analytical technique with new perspectives-A 

review. Analytica Chimica Acta, 1026: 8-36. 

https://doi.org/10.1016/j.aca.2018.04.004 

[9] Treguier, S., Couderc, C., Tormo, H., Kleiber, D., 

Levasseur-Garcia, C. (2019). Identification of lactic acid 

bacteria Enterococcus and Lactococcus by near-infrared 

spectroscopy and multivariate classification. Journal of 

Microbiological Methods, 165: 105693. 

https://doi.org/10.1016/j.mimet.2019.105693 

[10] Qi, Z., Wu, X., Yang, Y., Wu, B., Fu, H. (2022). 

Discrimination of the red jujube varieties using a portable 

NIR spectrometer and fuzzy improved linear 

discriminant analysis. Foods, 11(5): 763. 

https://doi.org/10.3390/foods11050763 

[11] Caballero-Agosto, E.R., Sierra-Vega, N.O., Rolon-

Ocasio, Y., Hernandez-Rivera, S.P., Infante-Degró, R.A., 

Fontalvo-Gomez, M., Pacheco-Londoño, L.C., Infante-

Castillo, R. (2024). Detection and quantification of corn 

starch and wheat flour as adulterants in milk powder by 

near-and mid-infrared spectroscopy coupled with 

chemometric routines. Food Chemistry Advances, 4: 

100582. https://doi.org/10.1016/j.focha.2023.100582 

[12] Iskandar, C.D., Zainuddin, Munawar, A.A. (2019). Beef 

freezing optimization by means of Planck model through 

simulation. IOP Conference Series: Earth and 

Environmental Science, 365: 012072. 

https://doi.org/10.1088/1755-1315/365/1/012072 

[13] Kamboj, U., Kaushal, N., Jabeen, S. (2020). Near 

infrared spectroscopy as an efficient tool for the 

qualitative and quantitative determination of sugar 

adulteration in milk. In Journal of Physics: Conference 

Series. IOP Publishing, 1531(1): 012024. 

https://doi.org/10.1088/1742-6596/1531/1/012024 

[14] Prieto, N., Pawluczyk, O., Dugan, M.E.R., Aalhus, J.L. 

(2017). A review of the principles and applications of 

near-infrared spectroscopy to characterize meat, fat, and 

meat products. Applied Spectroscopy, 71(7): 1403-1426. 

https://doi.org/10.1177/0003702817709299 

[15] Chen, H., Tan, C., Lin, Z., Wu, T. (2021). Classification 

of different liquid milk by near-infrared spectroscopy 

and ensemble modeling. Spectrochimica Acta Part A: 

Molecular and Biomolecular Spectroscopy, 251: 119460. 

https://doi.org/10.1016/j.saa.2021.119460 

[16] Dina, R.M., Safliany, F.C., Al-Annari, H., Ananta, D.A., 

Zulfahrizal, Z. (2023). Pendugaan kadar patchouli 

alkohol pada minyak nilam variasi menggunakan 

teknologi near infrared reflectance spectroscopy dengan 

metode partial least square regression. Rona Teknik 

Pertanian, 16(1): 35-44. 

https://doi.org/10.17969/rtp.v16i1.29108 

688

https://doi.org/10.1016/j.saa.2021.119460


 

[17] Krepelka, P., Hynstova, I., Pytel, R., Pérez-Rodríguez, F., 

Roger, J.M., Drexler, P. (2017). Curve fitting in Fourier 

transform near infrared spectroscopy used for the 

analysis of bacterial cells. Journal of Near Infrared 

Spectroscopy, 25(3): 151-164. 

https://doi.org/10.1177/0967033517705032 

[18] Krepelka, P., Pérez-Rodríguez, F., Bartusek, K. (2014). 

Bacterial pattern identification in near-ibfrared spectrum. 

Informatyka, Automatyka, Pomiary w Gospodarce i 

Ochronie Środowiska, (3): 58-60. 

http://dx.doi.org/10.5604%2F20830157.1121369 

[19] Muhammad, S., Munawar, A.A. (2021). Rapid detection 

of patchouli oil mixed by coconut oil using NIRS 

technology and chemometrics method. IOP Conference 

Series: Earth and Environmental Science, 644(1): 

012005. https://doi.org/10.1088/1755-

1315/644/1/012005 

[20] Cozzolino, D., Cynkar, W.U., Shah, N., Smith, P. (2011). 

Multivariate data analysis applied to spectroscopy: 

Potential application to juice and fruit quality. Food 

Research International, 44(7): 1888-1896. 

https://doi.org/10.1016/j.foodres.2011.01.041 

[21] Hassan, H.W., Mota-Silva, E., Grasso, V., Riehakainen, 

L., Jose, J., Menichetti, L., Mirtaheri, P. (2023). Near-

Infrared spectroscopy for the in vivo monitoring of 

biodegradable implants in rats. Sensors, 23(4): 2297. 

https://doi.org/10.3390/s23042297 

[22] Kuswandi, B., Cendekiawan, K.A., Kristiningrum, N., 

Ahmad, M. (2015). Pork adulteration in commercial 

meatballs determined by chemometric analysis of NIR 

Spectra. Journal of Food Measurement and 

Characterization, 9: 313-323. 
https://doi.org/10.1007/s11694-015-9238-3 

[23] da Silva Pereira, E., Cruz-Tirado, J.P., Lourenço Crippa, 

B., Martins Morasi, R., de Almeida, J.M., Barbin, D.F., 

Barbon, S.B., Silva, N.C.C. (2024). Portable near 

infrared (NIR) spectrometer coupled with machine 

learning to classify milk with subclinical mastitis. Food 

Control, 163: 110527. 

https://doi.org/10.1016/j.foodcont.2024.110527 

[24] Colak, S., Uzunsoy, I., Narin, A., Duran, U. (2025). 

Adulteration detection of cow milk in buffalo milk using 

Fourier-transform infrared spectroscopy and artificial 

intelligence-based techniques, Journal of Food 

Composition and Analysis, 140: 107203. 

https://doi.org/10.1016/j.jfca.2025.107203 

[25] Franzoi, M., Niero, G., Meoni, G., Tenori, L., Luchinat, 

C., Penasa, M., Cassandro, M., De Marchi, M. (2023). 

Effectiveness of mid-infrared spectroscopy for the 

prediction of cow milk metabolites. Journal of Dairy 

Science, 106(8): 5288-5297. 

https://doi.org/10.3168/jds.2023-23226 

[26] Treguier, S., Couderc, C., Tormo, H., Kleiber, D., 

Levasseur-Garcia, C. (2019). Identification of lactic acid 

bacteria Enterococcus and Lactococcus by near-infrared 

spectroscopy and multivariate classification. Journal of 

Microbiological Methods, 165: 105693. 

https://doi.org/10.1016/j.mimet.2019.105693 

[27] Rodríguez-Hernández, P., Núñez-Sánchez, N., Molina-

Gay, S., Rodríguez-Estévez, V., Cardoso-Toset, F. 

(2025). Near infrared spectroscopy analysis as a 

screening tool to classify milk from bovine subclinical 

mastitis and promote pathogen-based therapy. Applied 

Food Research, 5(1): 100651. 

https://doi.org/10.1016/j.afres.2024.100651 

[28] Chu, C., Wen, P., Li, W.Q., Yang, G., Wang, D., et al. 

(2025). Prediction of individual total amino acids and 

free amino acids in Chinese Holstein cows milk using 

mid-infrared spectroscopy and their phenotypic 

variability. Food Research International, 200: 115482. 

https://doi.org/10.1016/j.foodres.2024.115482 

[29] dos Santos, V.J., Baqueta, M.R., Março, P.H., 

Valderrama, P., Visentainer, J.V. (2022). Proof-of-

concept on the effect of human milk storage time: Lipid 

degradation and spectroscopic characterization using 

portable near-infrared spectrometer and chemometrics. 

Food Chemistry, 368: 130675. 

https://doi.org/10.1016/j.foodchem.2021.130675 

689




