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Shallot price fluctuations in Indonesia are caused by a lengthy supply chain and limited 

production, which makes supply control challenging. This study employed machine 

learning to forecast shallot yields and harvest times in Brebes Regency, Central Java, one 

of the major production areas. Data were collected through farmer interviews, which 

encompassed productivity and farming practices, and analyzed using twelve machine 

learning algorithms, including Gradient Boosting, AdaBoost, XGB, ElasticNet, and 

Decision Trees. Model performance was evaluated using MSE, MAE, and R-squared 

values, with ElasticNet being identified as the most accurate. Harvest time predictions 

were influenced by plant age and morning temperature, while yield depended on factors 

such as planted area, bed dimensions, daily temperature range, bulb weight, and 

phosphorus levels. Farmers' tacit knowledge was also incorporated, improving the model's 

reliability. The deployment results revealed a 13% deviation between predicted and actual 

yields, demonstrating reasonable accuracy. However, the error margin for harvest time 

predictions was 23.5%, reflecting the complexity of environmental and operational factors. 

The study provides a data-driven framework for understanding shallot productivity and 

the variables influencing it, and offers insights into improving forecasting models for more 

effective agricultural planning. 
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1. INTRODUCTION

Indonesia has a high demand for shallots, but seasonal 

production variations cause price fluctuations. The market is 

asymmetrical, as a significant increase in consumer-level 

demand directly impacts production centers. Conversely, 

supply shortages disproportionately impact farmers' prices, 

driven by high trade and transportation margins resulting from 

an extended supply chain [1]. Brebes Regency, in Central Java, 

is a shallot production center that supplies 60% of shallots to 

the Jakarta market. In Brebes, substantial changes in harvest 

area and production directly affect the sustainability of shallot 

farming. Market price information is easily accessible from 

Jakarta’s market. 

Farmers often rely on the Ijon system, a pre-harvest selling 

arrangement that provides immediate financial relief but can 

cause them to lose control over their harvest and miss potential 

price increases. This issue highlights the need for precise yield 

forecasting to empower farmers in negotiating equitable 

repayment terms and achieving better financial outcomes. 

Data analysis and machine learning can help estimate crop 

yields accurately by integrating farmers’ experience with 

environmental and production variables [2].  

Machine learning-based prediction models play a critical 

role in effective crop farming, assisting in decisions related to 

planting, irrigation, fertilization, harvesting, and trading [3]. 

Among the machine learning approaches, the MARS-ANN 

hybrid model demonstrates high prediction accuracy by 

combining ANN's predictive power with MARS's feature 

selection capabilities. For example, the model has been used 

effectively to predict wheat, rice, and maize yields based on 

meteorological and soil data [4]. Similarly, machine vision-

based yield monitoring has been employed to create geotagged 

yield maps for shallot fields, achieving a 76% detection 

accuracy [5]. In Turkey, onion yield predictions utilized 

support vector regression and polynomial regression, while in 

Bangladesh, climatic data was combined with linear 

regression for shallot yield estimations [6, 7]. Furthermore, the 

SVM classifier has been used to assess shallot quality with 

60% accuracy, highlighting its potential for integration into 

web or mobile tools [8]. 

The effectiveness of machine learning-based yield 

prediction can be evaluated across three dimensions: 

prediction horizon, scale, and crop type [9]. Predictions are 

feasible at all vegetation stages, but many studies focus on 

predictions right before harvest. The best grain forecasts for 

each model were made before harvest at the start, middle, and 

end of the growing season [10]. Scale is important because 

models at each scale serve different purposes, such as plant-

scale models aiming to understand factors affecting crop 
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growth, field-scale models assisting in crop management [11], 

and models at larger scales primarily informing policy-making 

in agriculture. Klompenburg's "Crop Prediction" model is a 

comprehensive framework that integrates 21 factors to 

enhance yield predictions on various scales [12]. 

Although machine learning has been extensively studied for 

crop yield prediction, its ability to integrate tacit knowledge, 

such as farmers’ intuition, experience, and observational skills, 

has not been thoroughly explored [13]. Tacit knowledge is 

qualitative and context-specific, often communicated through 

actions rather than words. Designing systematic yet simple 

questionnaires that elicit detailed observations from farmers 

can help encode this knowledge into machine learning 

processes, enhancing model accuracy and relevance. 

This study directly addresses the challenges Indonesian 

shallot farmers face, such as market dynamics and the Ijon 

system, by leveraging machine learning for yield and harvest 

time predictions. Based on the discussion above, this paper 

aims to: 1) identify the most effective machine learning model 

for predicting shallot crop yield and harvest time, and 2) 

determine the critical variables, including tacit knowledge, 

that influence these predictions. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS  

 

2.1 Soil conditions and fertilizer 

 

Klompenburg's 'Crop Prediction' model used 21 factors to 

enhance yield predictions, including soil properties such as pH, 

moisture, and texture, as well as weather conditions like 

temperature, rainfall, and humidity [12]. Shallots prefer 

slightly acidic soil with higher CEC, as it retains nutrients for 

roots and increases the adsorptive capacity for cations in soil 

[14]. Crop yields were often predicted using nutrients in the 

soil, NDVI, and meteorological components [15]. The 

physical size of the tubers has a strong correlation with the leaf 

area index, which is an important element in growth and 

nutrient uptake [16]. 

 

2.2 Lighting conditions 

 

Crop productivity can also be impacted by environmental 

variables like wind speed and sunshine exposure [17]. The 

development of shallots is also influenced by lighting other 

than sunlight. Their growth is influenced by two light 

mechanisms: photoperiod and gamma radiation. It has been 

demonstrated that controlled exposure to low levels of gamma 

radiation stimulates bulb development in shallots by inducing 

hormonal changes that expand bulb size and potentially have 

an impact on yield [18]. On the other hand, the amount of light 

exposure each day that impacts the shallot growth cycle is 

known as photoperiod. The best period of daily light exposure 

is when around 70% of the sunshine exposure occurs during 

the day [18]. 

 

2.3 Watering needs 

 

Shallot plants require frequent watering in the beginning, 

followed by daily irrigation during growth, and then less 

watering for bulb formation [19, 20]. Shallots can use up to 

81.17% of the available water for evapotranspiration [21]. 

Effective water management also depends on ridge size, width, 

and row layout to avoid waterlogging, which can lead to bulb 

rot and other challenges [22]. 

 

2.4 Cultivation strategies 

 

The Klompenburg model also considers agronomic 

practices like fertilizer application, irrigation methods, 

planting density, crop characteristics like variety/genotype, 

growth stage timing, pest and disease incidence, and disease 

outbreaks [12]. Planting strategies such as increasing planting 

density, variety selection, planting distance, and bed size may 

contribute to higher shallot production. Increasing planting 

density must be carefully managed with a suitable planting 

distance and supported by other agronomic methods so that 

growth does not become restricted and harvest outcomes are 

maximized [23]. Excessive density will cause shallot plants to 

compete with one another for nutrients, water, and sunshine, 

which will stunt their growth and cause their bulbs to shrink. 

Insufficient air circulation will also increase the plants' 

vulnerability to disease attacks [24].  

 

2.5 Farmer knowledge 

 

Farmers' tacit knowledge, derived from years of experience 

and local adaptations, is invaluable for tailoring practices to 

specific conditions. Farmers select shallot varieties depending 

on market demand, pest and disease resistance, and production 

levels. The Bima Brebes shallot variety has huge bulbs, 

disease resistance, and a strong flavor [25]. However, in Tapin 

Regency, many farmers have ceased planting shallots due to 

the adverse effects of climate change, including stagnant water, 

fruit, and root rot, and decreased harvest and sale prices [26]. 

Farmers' understanding of optimal harvest timing, typically at 

55-60 days post-flowering, and their ability to adapt practices 

contribute significantly to crop success [27]. Moreover, their 

knowledge helps maintain family food security and achieve 

high farming success rates, as seen in Malumbi Village, where 

motivation and competence correlate strongly with outcomes 

[28]. This tacit knowledge becomes especially critical when 

farmers face challenges such as low market prices. For 

instance, in Brebes, the lower price limit for shallots is IDR 

13,730.49, with a fluctuation coefficient of 0.20, indicating a 

low-risk scenario [29]. 

 

 

3. METHOD 

 

3.1 Experimental site 

 

The study was conducted in Brebes, in the Central Java 

province of Indonesia (7°3′0″ S, 108°54′0″ E). This area has a 

tropical climate with temperatures ranging from 24℃ to 32℃ 

within the two months, with the lowest temperatures from June 

to August. The average annual rainfall is around 1200-2000 

mm/year. In Brebes Regency, rain can occur in any month, 

although seasonal rainfall typically begins at the end of 

October and lasts until May. The probability of rain in a month 

is more than 80% in January and February. 

 

3.2 Data collection 

 

Data were collected via farmer interviews using 

questionnaires with the assistance of Brebes district extension 

personnel in nine sub-districts within the Brebes district, 

specifically Brebes, Wanasari, Ketanggungan, Larangan, 
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Bulakamba, Kersana, Jatibarang, Bantarkawung, and 

Bantarharjo. These sub-districts were selected as the main 

shallot production areas. The diversity in agroclimatic 

conditions, soil properties, and farming practices across these 

areas ensures a comprehensive dataset for modeling shallot 

yield and harvest time. 

The dataset gathered from Brebes' extension staff totaled 

368, with the condition that the shallot plants were 45 days old 

when the samples were collected. This age was chosen as it is 

a critical growth phase where vegetative development and 

early bulb formation occur, allowing for accurate observation 

of key yield predictors. 

Three samples were taken from each farmer's field to ensure 

representative and reliable data. This approach minimizes the 

impact of within-field variability caused by uneven soil 

properties, microclimatic differences, or irrigation patterns, 

thereby improving the robustness of the data. The sample size 

and distribution were designed to capture sufficient variability 

while maintaining feasibility for field data collection. 

Tools such as rulers, scales, and vernier calipers are used to 

measure growth parameters. Information on the use of 

fertilizer in shallot plants was recorded. We also used 

smartphone weather applications to obtain climate data, 

including temperature, humidity, and precipitation. 

Agricultural extension conducts data gathering to minimize 

measurement mistakes. Farmers were then interviewed again 

after thirty days following the first interview to collect data on 

the harvest day and yields. All data was collected and stored 

in Microsoft Excel. They also take note of each field's soil type, 

texture, and pH. Farmers were also asked about how much 

water is consumed and how to water it. Several questions 

related to the condition of plant area, bed size, cultivation 

methods and farmers' tacit knowledge are detailed in the 

questionnaire in Table 1. 
 

Table 1. The questions for farmer respondents 
 

Klompenburg Data 

Structure 
Questions Data Type Unit 

Crop Information 

How old will your shallot plants be when harvested? 

What is the height of a shallot plant at 45 days old? 

How many leaves will there be on a 45-day-old shallot plant? 

How many shallot bulbs will there be at 45 days old? 

What was the physical size of the tubers and the number of tubers per 

clump after 45 days? 

Main; weighed; 

measured; 

calculated 

days 

cm 

leaves 

bulb 

cm 

Leaf Area Index What size is the shallot plant leaf area at 45 days old? Primary; measured cm2 

Soil Type What is the soil type? Primary cat. 

pH Soil What is the pH of the growing medium? Primary; measured value 

Rainfall 
Does the amount of rainfall affect the productivity and yield of shallots, 

and is the availability of water in the fields sufficient? 
Secondary cat. 

Wind Speed What is the wind speed in a day? Primary m/s 

Humidity What is the average humidity in a day? Primary; measured % 

Nutrients in Soil 
What types of nutrients in the soil are needed for plant shallot growth? 

How much is the percentage of N, P, and K? 
Secondary % 

Irrigation How much watering is needed per day at each stage of the shallot plant? Primary cat. 

Fertilization 
What is the dose of fertilizer for plant development and shallot bulb yield? 

What is the fertilizer requirement in percentages of N, P, and K? 
Primary kg 

Temperature What is the morning temperature in a day? Primary ℃ 

Variety What variety of shallots are currently being planted on the land? Primary cat. 

Land Size What is the current area of shallot land planted? Primary m2 

Planting Space What is the planting distance? Primary m2 

Width and Number of 

Beds -Planting Area 

What is the current width and length of the shallot bed? 

How many beds are there in the area you are currently planting? 
Primary 

m 

beds 

Elevation 
How high is your shallot field? Calculating the height can be helped by 

using the extension officer's smartphone. 
Primary m 

Weed, Pest, and 

Diseases 

What is the weed infestation rate? 

Do you carry out pest and disease control regularly? 
Primary % 

Farmer's Tacit 

Knowledge 
   

Rainfall Is the quantity of rain sufficient? Primary cat. 

Reason for Planting 
What are the considerations for planting? Primary cat. 

If shallot prices are low, is the farmer still considering planting? Primary cat. 

Price 
Estimated price at harvest time: is it profitable? 

What is the price of the product when planting? 
Primary cat. 

Harvest Time 
Do you hurry up the harvest, and how long does it take to speed up if prices 

are high as the harvest gets close? 
Primary cat. 

Wind Is there any benefit to the wind blowing faster this month? Primary cat. 

Motivation Are you confident that you will get good results this planting season? Primary cat. 

 

3.3 Dataset enhancement 

 

The acquired data is then prepared and segregated into 

numerical and categorical data. The data underwent cleaning 

and pre-processing, including tasks such as encoding category 

data, normalizing numerical data, and scaling the data. 

Subsequently, both quantitative and qualitative data are 

merged. The dataset of 368 obtained when used directly in the 

machine learning process is still relatively small, so additional 

data is needed through data synthesis activities. The data 

synthesis process was conducted to replicate real-world 

conditions of shallot farming, ensuring the synthetic data 

retained the statistical and contextual integrity of the original 

dataset. Machine learning models require large volumes of 
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data to be trained and validated. By using large data sizes, they 

can find meaningful patterns in real-life data [30]. It is known 

that most conventional machine learning methods produce 

good accuracy results when the dataset has high 

dimensionality [31].  

The synthesis process involved the following steps: 

1. Data preprocessing: The real data was first cleaned and 

analyzed for patterns, distributions, and correlations to 

understand the underlying statistical properties.  

2. Synthetic data generation using SDV-CTGAN. The 

Synthetic Data Vault (SDV) library, in combination with the 

Conditional Tabular Generative Adversarial Network 

(CTGAN), was utilized. CTGAN is particularly effective in 

generating realistic tabular data with a small dataset, as it 

captures the distribution and dependencies between features. 

The model was trained iteratively, adjusting hyperparameters 

to achieve replication values above 75%. 

3. Validation of synthetic data. The synthetic dataset was 

evaluated by comparing statistical properties such as mean, 

variance, and feature correlations with the original data. This 

step confirmed that the synthetic data retained the 

characteristics of shallot farming conditions. 

4. Augmentation using Gretel AI. A cloud-based synthetic 

data platform was used to complement SDV-CTGAN. This 

platform employed advanced algorithms to generate additional 

synthetic data, offering a user-friendly interface and API for 

seamless integration. It also provided tools to compare 

synthetic data against real data for quality assurance. 

5. Final Merging. The validated synthetic data was merged 

with the original dataset, creating a more comprehensive 

dataset for machine learning. This combined dataset was then 

split into training, validation, and test sets to ensure robust 

model evaluation. 

 

3.4 Predictive modeling 

 

A crucial step in machine learning is analyzing algorithm 

models using the train-test procedure. The machine learning 

process for estimating harvest time and yield of shallot crops 

consists of three phases: optimizing the hyperparameters of the 

base estimator model, optimizing the hyperparameters of the 

competitor model, and selecting the superior estimator 

between the base model and the competitor model. The 

training process uses synthetic data with 12 model algorithms, 

according to Figure 1. 

The next step involves applying machine learning 

algorithms to the modeling process. We experimented with 

several methods to achieve improved performance. The 

algorithms used in this study included FNN, AdaBoost, XGB, 

SVR, Lasso, Ridge CV, decision tree, gradient boosting, 

ElasticNet, extra trees, and linear regression. Both 

hyperparameter tuning and optimum model selection utilize 

evaluation metrics given by the Sklearn library. Various 

metrics are utilized to assess the reliability of the optimal 

model across multiple tests. Based on 70% of the synthesis 

dataset, we trained the models to produce several alternative 

models, and the remaining 30% of the data was used in the 

validation phases. The models are compared using a mean 

square error (MSE) and a mean absolute error (MAE) to see 

which performs the best and has the lowest MAE and MSE 

values. Furthermore, the biggest R-squared value is also 

evaluated. All data sets without synthesis are reused in the 

testing and validation process. 

 

 
 

Figure 1. Machine learning workflow was used in this study 

 

3.5 Feature selection to coefficient model 

 

The best prediction model can perform feature selection 

during the model fitting process. This means it can identify 

and potentially remove irrelevant or redundant features that 

might not contribute significantly to predicting yield or harvest 

time. The best prediction model shrinks coefficients of less 

important features and eliminates some, resulting in a more 

interpretable model. This reduces model complexity, enhances 

prediction accuracy, and ensures efficient models. This tool is 

used in machine learning models to identify important 

characteristics that determine shallot yield and harvest time, as 

well as key tacit knowledge variables. 

 

3.6 Feature selection to coefficient model deployment 

machine learning model into Google spreadsheet 

 

The model acquired from the training and testing analysis 

in the machine learning process in the form of linear 

programming is then entered into a Google spreadsheet with 

the code "= array formula (if (row (B:B) = 1)); formula 

calculation". After the farmers' data is input, all variables are 

normalized. This normalization method involves scaling the 

input variables to a specific range, often 0 to 1, which helps 

alleviate difficulties associated with varied input feature scales 

and improves the model's numerical stability. Each input's 

value is calculated using the linear programming equation, 

which includes categorical data. The model calculation results 

are transformed with the resulting data's normalized range 

value to provide the desired prediction results. 

The model that was deployed in the Google spreadsheet was 

then evaluated on 15 shallot farmers who were interviewed, 

and samples of shallot plants were collected at the age of 45 

days as in method 3.2 and then interviewed again following 

the first interview to discuss the harvest day and results. The 

data supplied into Google spreadsheet was then calculated and 

reported via an email sent by the system. The computation 

results must be compared to the data from farmer interviews 

to determine the difference in error. 

 

 

4. RESULTS AND DISCUSSION  
 

4.1 Verification structure 
 

The crop forecasting model proposed by Klompenburg 

divides several groups of 21 variables that are arranged like 

groups of latent variables. The grouped latent variables can be 

analysed using factor analysis techniques. The Kaiser-Meyer-
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Olkin (KMO) and Bartlett tests are commonly used to assess 

whether factor analysis requirements can be performed on a 

set of numerical data. The KMO test, which ranges from 0 to 

1, tests the fit of each observed variable as well as the overall 

model. Bartlett's sphericity test tests whether the observed 

variables are correlated. 

The results of the KMO test are 0.66 and the Bartlett test 

values are 245784.0 and 0.0. In the Bartlett test with a highly 

significant p-value (0.0), we can suggest the null hypothesis 

(all variances are identical) can be rejected. Both the KMO 

(borderline) and Bartlett's tests show that the dataset is suitable 

for factor analysis. Figure 2 shows the results of the factor 

analysis of the data set, which shows the existence of factor 

grouping with green to yellow cells. However, the number of 

latent variables formed is not as many as those grouped by 

Klompenburg. Some of the remaining cells do not form groups 

and remain unique. 

 

 
 

Figure 2. Factor loading of the dataset using varimax rotation having numerical part of dataset 

 

4.2 Best model selection 

 

The score values from MAE, MAPE, MSE, and R-squared 

were taken into consideration during a prediction model 

analysis to determine the best prediction value, as shown in 

Table 2. RidgeCV is the best model when considering the 

mean absolute error, mean squared error, and R-squared scores 

combined. However, several linear regression models, such as 

ElasticNet and Lasso, predict TTH and yield with negligible 

variations in the outcomes. ElasticNet was chosen as the best 

prediction model by a different method that employed the best 

estimator application. Combining L1 and L2 penalties from 

the Lasso and Ridge models, ElasticNet is a linear regression 

model. This model can successfully handle data with many 

associated characteristics, preventing overfitting and 

preserving model stability. When applied to various and 

complicated data sets, the Elasticnet model performs better 

than the Lasso model in the event of outlier data, resulting in 

more consistent and dependable findings. This makes 

ElasticNet more consistent and reliable in various data sets. In 

addition, Table 2 also demonstrates that the model predicts 

TTH better than yield. 

 

4.3 Influence factor of yield and time to harvest 

 

The best prediction model chosen is the Elasticnet model. 

ElasticNet may arrange the regression coefficient values, 

which are shown in Table 3, from largest to smallest to 

perform feature selection during the model fitting process. On 

the left side of the table, the time to harvest (TTH) regression 

coefficients are presented in ascending order, and on the right 

side, the Yield is displayed in decreasing order. 

Among the most significant predictors for TTH, plant age 

prediction (HST) and morning temperature range stand out. 

The negative coefficient for plant age prediction suggests that 

farmers' ability to predict optimal harvest times, based on 

experience and growth pace, is critical. A negative coefficient 

value indicates that the prediction of harvest time is getting 

closer to plant age (HST).  

Morning temperature, a proxy for daily heat accumulation, 

correlates with physiological processes in plants, aligning with 

the heat unit method [32]. These two factors interact 

synergistically: consistent morning temperatures provide 

reliable data for growth rate estimation, enhancing the 

accuracy of farmers’ harvest predictions. Additionally, the 

influence of rainfall, moisture levels, and soil type indicates 

the interplay between climatic and edaphic factors. While 

rainfall contributes to water availability, excessive amounts 

can delay harvest by prolonging vegetative growth. The 

morning temperature's moderation of daily heat accumulation 

further supports timely harvesting under variable rainfall 

conditions. 

In Table 3, the yield predictors include planting area, bed 

structure (number and width), and day temperature range, 
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emphasizing the interplay between agronomic practices and 

environmental conditions. The planting area is also influenced 

by the number of beds and the width of the beds and affects 

the density of plants in one area [33]. 

Larger planting areas and optimized bed dimensions 

influence plant density, which can enhance sunlight exposure 

and nutrient uptake. The day temperature range, with its 

positive coefficient, underscores how moderate fluctuations 

promote metabolic activities that boost bulb size and quality 

[34]. 

 

Table 2. Comparison of model’s performance because of best model selection 

 
Score MAE MSE MAPE R-squared 

FNN (adam) 

TTH 0.0773 0.0096 1.8502E-13 0.7225 

Yield 0.0994 0.0156 4.1366E-13 0.4845 

Overall 0.0884 0.0126  0.6035 

Decision Tree Regressor 

TTH 0.0985 0.0157 3.1768E-13 0.5475 

Yield 0.1275 0.0254 7.4422E-13 0.1574 

Overall 0.1130 0.0206  0.3525 

Ada Boost Regressor 

TTH 0.0892 0.0122 5.3668E-13 0.6477 

Yield 0.1138 0.0187 9.9146E-13 0.3814 

Overall 0.1015 0.0155  0.5146 

Gradient Boosting Regressor 

TTH 0.0791 0.0098 2.4870E-13 0.7177 

Yield 0.0995 0.0153 5.5496E-13 0.4938 

Overall 0.0893 0.0125  0.6136 

XGB Regressor 

TTH 0.0821 0.0106 2.8848E-13 0.6956 

Yield 0.1041 0.0164 6.4942E-13 0.4552 

Overall 0.0931 0.0135  0.5837 

SVR Regressor 

TTH 0.0774 0.0094 2.5630E-13 0.7293 

Yield 0.0981 0.0146 5.7628E-13 0.5162 

Overall 0.0877 0.0120  0.6301 

ElasticNet 

TTH 0.0773 0.0094 2.5419E-13 0.7304 

Yield 0.0979 0.0146 5.6932E-13 0.5164 

Overall 0.0875 0.0120  0.6309 

Lasso 

TTH 0.0770 0.0093 2.5313E-13 0.7310 

Yield 0.0979 0.0146 5.6525E-13 0.5164 

Overall 0.0875 0.0120  0.6312 

Ridge CV 

TTH 0.0770 0.0093 2.5361E-13 0.7312 

Yield 0.0979 0.0146 5.6645E-13 0.5164 

Overall 0.0874 0.0120  0.6313 

Random Forest Regressor 

TTH 0.0834 0.0109 3.3871E-13 0.6871 

Yield 0.1069 0.0172 7.1030E-13 0.4315 

Overall 0.0874 0.0140  0.5682 

Extra Trees Regressor 

TTH 0.0830 0.0106 3.2207E-13 0.6934 

Yield 0.1068 0.0171 7.2378E-13 0.4325 

Overall 0.0949 0.0139  0.5721 

Linear Regression 

TTH 0.0770 0.0093 2.5313E-13 0.7310 

Yield 0.0979 0.0146 5.6525E-13 0.5164 

Overall 0.0875 0.0120  0.6312 

 

Table 3. Regression coefficient list produced by tuned ElasticNet regressor 

 
Model Coefficient for Time to Harvest Coefficient Model Coefficient for Yield Coefficient 

Plant Age Prediction (day after plant) -0.846 Area (m2) 0.520 

Morning Temperature Range -0.139 Number of Beds 0.293 

Rainfall amount in the last month -0.082 Bed Width 0.167 

Moisture Value (%) -0.078 Day Temperature Range 0.146 

Paint-Type of Soil (sand, colour, clay, crumb, hard) -0.060 Bulb Weight (gram) 0.143 

Bed Width -0.056 Phosphor Weight (kg) 0.131 

Tuber Diameter (cm) -0.050 Plant Height (cm) 0.084 

Weed Grown Area (%) -0.050 Number of Tubers (Cloves) 0.055 

Nitrogen Weight (kg) -0.050 How many times a week watered? 0.044 

Potassium Weight (kg) -0.047 Watering Methods 0.038 

Area (m2) -0.040 
Estimated harvest during high price period (How 

many days earlier?) 
0.036 

Last Watering Close to Harvest (day after plant) -0.039 Number of Leaves (Sheet) 0.033 

Location Altitude -0.037 Sulphur Weight (kg) 0.028 

Estimated Harvest During High Price Period (How 

many days earlier?) 
-0.037 Moisture Value (%) 0.028 

Number of Tubers (Cloves) -0.025 Plant Age Prediction (day after plant) 0.028 

What determines the start of the season (Price, 

weather, pest infestation, planting)? 
-0.021 

What determines the start of the season (price, 

weather, pest infestation, planting)? 
0.019 
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Model Coefficient for Time to Harvest Coefficient Model Coefficient for Yield Coefficient 

Watering Methods -0.020 
Paint-Are you confident of good yields this 

planting season? 
0.016 

Using POC/Mo/Soil Improver -0.019 Morning Temperature Range 0.016 

Paint- Are you confidence of good yields this planting 

season? 
-0.011 Paint-Plant Spacing 0.015 

Weight of Plant with Tuber (gram) -0.003 
Paint-Type of Soil (Sand, colour, clay, crumb, 

hard) 
0.013 

If the price is low will you plant? 0.000 Weed grown area (%) 0.000 

Is the weather favourable for the crop? 0.000 Total Fertilizer (kg) 0.000 

Is the wind blowing faster this month useful? 0.000 Last watering close to harvest (day after plant) 0.000 

Total Fertilizer (kg) 0.000 Is the wind blowing faster this month? 0.000 

Widest Leaf Width (cm) 0.000 Is the wind blowing faster useful? 0.000 

Whether there are many weeds this planting season? 0.000 Is the weather favourable for the crop 0.000 

Paint-Plant Spacing 0.002 
Is the amount of rain sufficient in the past two 

months? 
-0.002 

Is the wind blowing faster this month? 0.002 Using POC/Mo/soil improver -0.004 

Number of Beds 0.002 Widest Leaf Width (cm) -0.005 

Bulb Weight (gram) 0.014 If the price is low will you plant? -0.006 

The expected soil condition after watering 0.025 The expected soil condition after watering -0.006 

How many times a week watered? 0.026 
Whether there are many weeds this planting 

season? 
-0.032 

Number of leaves (Sheet) 0.029 Location Altitude (masl) -0.039 

Phosphor Weight (kg) 0.040 Weight of plant with tuber (gram) -0.074 

Is the amount of rain sufficient in the past two months? 0.040 Potassium Weight (kg) -0.082 

Plant Height (cm) 0.052 Rainfall amount in the last month -0.085 

Other Weight (kg) 0.065 Other Weight (kg) -0.090 

Sulphur Weight (kg) 0.077 Tuber Diameter (cm) -0.118 

Day Temperature Range 0.086 Nitrogen Weight (kg) -0.146 

 

Balanced fertilization plays a critical role in maximizing 

shallot yields, with phosphorus standing out as a key nutrient. 

Phosphorus significantly impacts yield by fostering healthy 

root systems, which enhance the plant's ability to efficiently 

absorb water and nutrients from the soil. This nutrient is also 

integral to various metabolic processes that convert energy and 

support plant growth, ultimately leading to improved yields. 

While nitrogen and potassium are essential for overall growth, 

their lower regression coefficients suggest that balanced 

fertilization holds greater importance than the dominance of 

individual nutrients. 

Interestingly, the absence of potassium (K) does not 

substantially reduce shallot yields, whereas deficiencies in 

nitrogen, phosphorus, magnesium, or sulfur can lead to a 

noticeable decrease in bulb dry weight [35]. Adequate 

phosphate levels, therefore, not only promote robust root 

development but also ensure the efficient execution of 

metabolic functions critical for plant health and productivity. 

This reinforces the need for a balanced approach to 

fertilization, where each nutrient plays a synergistic role in 

achieving optimal yields. 

 

4.4 Statistical evidence supporting factor importance 

 

The ElasticNet model assigns coefficients based on their 

predictive power, removing redundant or negligible variables 

(coefficients = 0). For example, total fertilizer and wind 

conditions have zero coefficients in both TTH and Yield 

models, suggesting limited direct impact. Conversely, bulb 

weight and bed width consistently exhibit positive coefficients, 

underscoring their critical roles in Yield predictions. These 

statistical insights reinforce the importance of prioritizing key 

agronomic and environmental factors. 

Table 3 outlines tacit knowledge components in the 

machine learning model related to harvest time and yield 

prediction. For harvest time, key factors include 1) prediction 

of harvest time, 2) day length (which increases when product 

prices are high), 3) reasons for planting season timing, and 4) 

confidence in crop yields. Experienced farmers can predict 

harvest timing using plant indicators, weather data, and 

historical trends. In the yield section, factors such as day 

length, harvest time prediction, planting season reasons, 

confidence in harvest results, and weed attacks influence the 

model. Watering during planting has a greater influence on 

yield than planting distance, with coefficients of 0.038 and 

0.015, respectively. 

The comparison of regression models (linear regression and 

random forest) in Table 4 shows that while average predictions 

are similar, standard deviations vary. No model matches the 

standard deviation of the given test, and the random forest 

regressor weakly maintains minimum and maximum values. 

This comparative analysis highlights the strengths and 

weaknesses of each method, guiding the selection of the most 

suitable model. 

 

4.5 Model performance and qualitative discussion 

 

The model calculations that have been implemented on 

Google spreadsheet are then compared with the actual results 

at harvest age and production results shown in Table 5. The 

ElasticNet model achieves a TTH error deviation of 

approximately 1.9 days (23.5%) and a yield error of 166.9 

kg/m² (13%), with prediction accuracy exceeding 80% as 

demonstrated in the study of Apriyanti et al. [36], which used 

feature extraction for orchid identification. However, these 

numerical results should be contextualized with on-ground 

realities. Farmers value timely and accurate predictions, 

especially when aligning harvests with market demands. For 

instance, predicting harvest timing during high-price periods 

can significantly enhance economic returns despite a minor 

trade-off in prediction accuracy. 

Qualitatively, farmers express satisfaction when models 

reduce uncertainty, particularly in dynamic climates. However, 

challenges like yield variability due to unforeseen weather 
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changes or suboptimal input availability highlight areas for 

improvement. These insights suggest that while the model is 

robust, integrating real-time environmental monitoring and 

farmer feedback loops could further enhance its utility. 

 

Table 4. Comparison of statistical description prediction model produced by linear regression and random forest regressor 

 

Stats. 
Data for Testing Linear Regression Random Forest Regressor 

TTH (days) Yield (kg) TTH (days) Yield (kg) TTH (days) Yield (kg) 

Data Count 300 300 300 300 300 300 

Mean 9.35 2369.81 9.39 2319.66 9.4 2337.86 

Std 5.51 1525.63 4.81 1120.44 4.37 961.48 

Min 0 200 0 202 0.85 474.98 

25% 5 1181.46 6.21 1459.98 6.34 1561.84 

50% 9 2262.59 9.39 2225.51 9.33 2268.53 

75% 13 3377.69 12.64 3090.02 12.29 2995.75 

Max 30 7601.94 26.39 7236.06 22.25 5338.76 

 

Table 5. Result prediction of farmers' field data (harvest time and yield) 

 

Code 
Field Data Result of Model Prediction TTH 

Error Dev. 

Yield 

Error Dev. TTH (Day) Area (m2) Yield (kg) TTH (Day) Yield (kg) 

F.A (J1) 55 1350 1750 54.6 1292.95 -0.4 -457.05 

F.B (J2) 53 875 875 52.8 877.90 -0.2 2.9 

F.C (J3) 53 875 875 54.6 997.98 1.6 122.98 

F.D (Sis1) 52 875 900 55.5 752.53 3.5 -147.47 

F.E (Sis2) 55 875 875 53.8 808.16 -1.2 -66.84 

F.F (Suh1) 53 1750 1200 54.8 1274.63 1.8 74.63 

F.G (Suh2) 55 1750 1200 53.9 1171.22 -1.1 -28.78 

F.H (Suk1) 55 875 875 51.3 767.45 -3.7 -107.55 

F.I (Suk2) 55 1350 1350 53.6 1100.47 -1.5 -249.53 

F.J (Suk3) 52 875 875 53.5 808.16 1.5 -66.84 

F.K (IR1) 55 1350 1500 52.6 1173.69 -2.4 -326.31 

F.L (IR2) 55 875 900 51.1 903.77 -3.9 3.77 

F.M (R1) 51 1350 1600 53.6 1004.55 2.6 -595.45 

F.N (R2) 51 875 1000 52.6 912.92 1.6 -87.08 

Average      1.9 166.9 

 

 

5. CONCLUSION 

 

This study utilized machine learning models, including 

classical linear regression, random forest, decision trees, and 

FNN, to estimate shallot harvest time and production yields. 

Among these models, the linear model demonstrated the 

highest R-squared value for both estimating harvest time (TTH) 

and yields. While RidgeCV outperformed the linear model in 

predicting TTH and yields by a small margin, the ElasticNet 

model was identified as the best prediction model through the 

best estimator application. These models effectively estimated 

the critical factors influencing shallot harvest time and yield. 

Harvest time is influenced by factors such as plant age and 

morning temperature, while yield predictions are determined 

by area, number of beds, bed width, temperature range, bulb 

weight, and phosphorus weight. Additionally, tacit knowledge 

such as farmers' calculations for harvest timing, day length, 

reasons for planting, and confidence in crop yields, was found 

to significantly impact the model's accuracy. Farmers can 

leverage this tacit knowledge, including historical data and 

environmental cues, to estimate the optimal harvest date and 

predict yield outcomes more accurately. 

The study's findings have practical implications for farmers 

and agricultural planners. By applying these machine learning 

models and integrating tacit knowledge, farmers can make 

more informed decisions regarding planting and harvesting 

schedules, optimizing yield predictions. This could lead to 

better resource allocation and improved shallot production 

efficiency. The model performed well in Brebes Regency but 

may require further adjustments and validation for use in other 

regions or with different crops. The forecasted TTH deviation 

was 23.5%, with a yield inaccuracy of 13%. Comparing these 

results with actual farm data will be crucial for refining the 

prediction models and enhancing their applicability in broader 

agricultural contexts. 
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