
Discrete Fuzzy Multi-Objective Unrelated Parallel Machine Scheduling Problems: A 

Framework of Modified Artificial Fish Swarm Algorithm 

Azhar Mahdi Ibadi1,2* , Rosshairy Abd Rahman1

1 Institute of Strategic Industrial Decision Modelling, School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 

06010, Malaysia 
2 Department of Physics, College of Science, University of Sumer, Al Rifaee 64005, Iraq 

Corresponding Author Email: azhar_mahdi_ibadi@ahsgs.uum.edu.my

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120331 ABSTRACT 

Received: 8 October 2024 

Revised: 20 December 2024 

Accepted: 26 December 2024 

Available online: 31 March 2025 

Unrelated Parallel Machines Scheduling Problem (UPMSP) is a significant discrete 

optimization problem employed in both industrial and non-industrial decision-making 

environments. In most real-world problems, the time parameters and constraint 

conditions often have imprecise information and cannot be quantified. Implementing 

fuzzy scheduling methodologies can improve schedule equality and reflect real-world 

scheduling complexity. Additionally, decision-makers regularly attempt to optimize 

multiple objectives simultaneously; thus, multi-objective optimization significantly 

influences scheduling performance and must be applied to establish tradeoffs among 

these objectives. Therefore, this paper aims to present a framework for developing a 

modified Artificial Fish Swarm Algorithm (AFSA) to solve multi-objective fuzzy 

UPMSP. This algorithm aims to overcome vital drawbacks of AFSA and improve it in 

three aspects: proposing new behavior, adapting improved visual and step parameters, 

and then employing a transformation method to make it more suitable for discrete 

UPMSP model. The evaluation process will involve a comparison of the proposed 

algorithm with standard AFSA and five modified AFSA algorithms from the literature, 

using three different sets of randomly generated problems that consist of various sizes 

of job and machine combinations. The findings are expected to effectively solve the 

proposed problem and identify optimal solutions, particularly for medium and large 

problems. 

Keywords: 

UPMSP, AFSA, fuzzy scheduling, metaheuristic, 

makespan optimization, tardiness 

1. INTRODUCTION

Parallel Machine Scheduling Problem (PMSP) has received 

continuous attention among numerous types of manufacturing 

scheduling scholars and experts from scientific and 

engineering fields [1]. The increased interest in PMSP can be 

related to their widespread use in modern industrial systems 

such as flexible manufacturing systems [2] and plastic 

moulding industries [3], etc. Durasević and Jakobovi [4] 

defined the UPMSP as a problem model with many 

components. These components represent N jobs that need to 

be distributed across M machines with varying capacities. 

Consequently, the assigned jobs are consistently managed at 

varying rates. To address this issue, two necessary steps are 

involved: firstly, assigning jobs to machines and secondly, 

placing orders for them. UPMSP is beneficial in both 

theoretical and practical aspects. Theoretically, they can be 

regarded as an extension of the single machine problem and 

are the general form of other parallel machine problems that 

are identical and uniform. Due to the varying machine speeds, 

technologies, and machine types in production shops across 

many industries, production scheduling and manufacturing 

systems hold high practical significance in the present world. 

The use of exact methods is limited in comparison to other 

algorithms because obtaining optimal results in an acceptable 

time is extremely costly. Swarm intelligence algorithms 

outperform evolutionary and single-solution algorithms and 

have interesting methodologies because they are flexible, 

capable of searching a larger search space, exploring, and 

providing opportunities for improvement [5]. Swarm 

intelligence algorithms fall under the broader category of 

metaheuristics, which are often classified based on their 

natural inspiration. Swarm intelligence is a set of artificial 

intelligence methods inspired by the collective behaviors of 

social insects, animals, and humans and provides numerous 

fundamental advantages for solving complex problems on a 

large scale. Until now researchers are still developing new 

swarm algorithms, such as Tuna Swarm Optimization 

Algorithm [6], and the Eagle Search Algorithm [7]. 

Compared to other swarm intelligence algorithms, the 

AFSA has fewer parameters to manage, making it easier to 

implement. The computational time required to develop 

satisfactory solutions is reasonable and it has parallelism, 

robust global search ability, rapid converging, and lower 

sensitivity to the demands of the objective functions [8]. These 

advantages have led to the successful application of AFSA in 

a variety of optimization problems based on advanced 

literature [9, 10]. Nevertheless, the algorithm has multiple 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 3, March, 2025, pp. 1043-1052 

Journal homepage: http://iieta.org/journals/mmep 

1043

https://orcid.org/0009-0004-7695-721X
https://orcid.org/0000-0002-1290-4213
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120331&domain=pdf


 

drawbacks including inefficient convergence, local optimum 

trapping and weakness in the later optimization phases. In 

recent years, scholars have suggested several strategies to 

address the weaknesses of AFSA. For instance, Jin et al. [11] 

proposed a modified AFSA for unit commitment optimization 

in power systems to overcome the disadvantages of premature 

convergence and local extremes in the original algorithm. The 

improvements include a variable vision, adjusting the 

movement strategy, and combining the mutation operation of 

genetic algorithms. Wang et al. [12] proposed a modified 

AFSA in combination with a local path optimizer for the path 

planning problem for unmanned surface vehicles and 

customize four operators and an adaptive factor to improve the 

converging performance of the algorithm. Thus, until now the 

algorithm continues to be developed. 

However, the NP-hardness of UPMSP and multi-objective 

adds the dimension of complexity to the problem, making it 

difficult to obtain optimal solutions, especially for large 

problems with uncertain time parameters. As a result, 

developing efficient algorithms is a challenge that adds to the 

complexity of the problem. Therefore, this paper presents a 

framework for the proposed modified AFSA that solves fuzzy 

multi-objective UPMSP. The proposed modified AFSA is a 

new algorithm developed to solve UPMSP by leveraging the 

strengths of the AFSA which include multi-stage solution 

updates and exploration of the search domain. The framework 

focuses on three modifications that improve convergence and 

optimality which encompasses three aspects: introducing a 

new behavior to the four primary behaviors by employing the 

best solution derived from AFSA, adapting improved visual 

and step parameters, which achieves a balance between global 

search capability and convergence speed, effectively applying 

the continuous AFSA to discrete machine scheduling 

problems and make it appropriate for combinatorial 

optimization problems such as UPMSP. 

 

 

2. RELATED WORKS 

 

Both industry and academia face the fundamental issue of 

effectively scheduling and sequencing jobs on machines. 

Extensive literature [4] suggests various approaches for 

solving UPMSP, ranging from exact methods and simple 

heuristics to complex hybrid metaheuristics. As a result, 

numerous research studies on scheduling issues have been 

done in recent years. Safarzadeh and Niaki [13] used a 

mathematical programming approach and the ϵ-constraint 

method to optimize the multi-objective makespan and the total 

cost, and their experimental findings validated the 

effectiveness of this approach. A study by Zheng et al. [14] 

created a Mixed Integer Linear Programming (MILP) model 

that solves small-scale problems more efficiently by lowering 

the weighted average of the total order completion time and 

the total processing cost of UPMSP machines. The researchers 

established two heuristic algorithms, type-based greedy and 

enhanced differential evolution, and demonstrated their 

efficiency and effectiveness in large-scale applications 

through computational experiments. Shafipour et al. [15] 

looked at the UPMSP using Simulated Annealing (SA) and the 

Artificial Immune System (AIS). They wanted to reduce total 

early and late costs while keeping different constraints in 

mind. The results show that SA using the repair strategy 

outperforms the other proposed methods. Åblad et al. [16] 

created and analyzed a method for exact solutions based on the 

Branch and Bound (BAB) method of the UPMSP to minimize 

the makespan. The suggested approach outperforms several 

MILP formulations and local search heuristics on various 

types of instances. 

Arnaout [17] presented a Worm Optimization Algorithm 

(WO) for minimizing the makespan on the UPMSP with 

sequence-dependent setup times. The WO was compared to 

existing algorithms (TS, ACO, GA, SA), and the results of the 

tests demonstrated WO's superiority. Jouhari et al. [18] 

presented a new hybrid metaheuristic combining the Harris 

Hawk Optimizer (HHO) and Salp Swarm Algorithm (SSA) to 

solve UPMSPs to minimize the makespan. The proposed 

algorithm outperforms both SSA and HHO and other methods 

in terms of convergence to the optimal solution. Fanjul-Peyro 

et al. [19] suggested a new exact method that combines some 

improvements and a new procedure with the proposed MILP 

models of the UPMSP to minimize makespan with setup 

times. The results obtained prove that the suggested technique 

significantly improves the existing approaches and can obtain 

solutions for extremely large instances. 

Due to the complexity of UPMSP, exact algorithms for the 

problem have only been proven effective for small to medium 

instances and until recently, real-world instances of the 

problem were not solved using these specific algorithms. 

When it comes to solving large-scale instances of the UPMSP, 

heuristic and metaheuristic approaches have usually been 

more effective than the exact ones. Much of the existing 

literature is concerned with heuristics and metaheuristics since 

they are simple to use, reproduce, and adaptable, thus these 

algorithms seem more appropriate. Despite the number of 

literatures dealing with UPMSPs, it is not surprising that many 

of the developed solution methods are based on modified and 

hybrid metaheuristic algorithms. 

Chi et al. [20] enhanced the Iterative Greedy Algorithm (IG) 

with Tabu Search (TS) and provided an IG-TS algorithm for 

solving UPMSPs with makespan minimization. In their study, 

three commonly hybrid algorithms were used in scheduling, 

that is the GA-TS, ABC-TS and PSO-TS algorithms, were 

used as a comparison. As seen in the results, the scheduling 

decisions made using the IG-TS algorithm were the most 

efficient and reliable. Al-Qaness et al. [21] presented a method 

for minimizing the makespan for UPMSP with sequence-

dependent setup times that combines the properties of two 

swarm intelligence algorithm, the Whale Optimization 

Algorithm (WOA) and the Firefly Algorithm (FA). Results 

show that the suggested method outperforms eight well-

known metaheuristic optimization techniques. 

Ewees et al. [22] suggested a hybrid algorithm that employs 

the operators of the Firefly Algorithm (FA) to enhance the 

SSA's exploitation ability while also providing a local search 

mechanism to improve the superiority of the solution to 

minimize the makespan and improve searchability for 

UPMSPs. Extensive comparisons show that the suggested 

approach outperforms existing metaheuristics. Meng et al. [23] 

proposed a hybrid GA with a variable neighborhood structure 

strategy to solve the multi-objective problems of total 

makespan and total tardiness for identical and UPMSPs. In 

comparison, the suggested method performs statistically better 

than the non-dominated sorting Genetic Algorithms II and III. 

Ding et al. [24] suggested a memetic method for makespan 

minimization that combines an efficient local search technique 

with an evolutionary approach of UPMSP. 

Most recent UPMSP studies have used deterministic models 

with precise problem parameters. In many real-world 

1044



 

situations with different degrees of uncertainty, it's not an 

acceptable assumption. Industry and academia have paid a lot 

of attention to fuzzy scheduling and many different objectives 

have been extensively studied. For instance, A fuzzy-based 

genetic algorithm has been developed by Yaghtin and Javid 

[25]. It could solve large instances and demonstrate good 

performance in terms of quality and run time factors to 

minimize total job tardiness, where process times and due 

dates are triangular fuzzy numbers (TFNs). Rezaeian et al. [26] 

established a fuzzy mathematical programming model to 

minimize the overall fuzzy weighted earliness and tardiness 

penalties UPMSP, where setup and processing times are TFNs 

and trapezoidal fuzzy numbers (TrFNs) for due dates. They 

proposed two algorithms: GA and modified SA to address 

such problems. Comparative results demonstrated that the 

modified SA algorithm outperformed both the GA and several 

other algorithms in solving the proposed problem. Cheng et al. 

[27] introduced a Random Forest-based metaheuristic for 

minimizing the makespan in UPMSP with uncertain setup 

times in the forging industry. Numerical experiments 

demonstrate a significant reduction in the error percentage for 

setup time estimation when the proposed method is 

implemented. This reduction is especially meaningful when 

dealing with large-scale problems. Sadati et al. [28] proposed 

two exact approaches and two metaheuristics to minimize 

fuzzy multi-objective model makespan and maximum 

tardiness for UPMSP, with each job determined by TrFNs of 

processing time-dependent machine, ready time and due date. 

Liao and Su [29] created hybrid Ant Colony Optimization 

(ACO) for the fuzzy UPMSP meanwhile TrFNs was used to 

indicate processing time, release time, and setup time. Fuzzy 

makespan and other fuzzy numbers were ranked using a fuzzy 

ranking method. In comparison to a hybrid Particle Swarm 

Optimization (PSO) and two variants of SA algorithms, the 

proposed hybrid performs better. Manupati et al. [30] utilized 

TFNs to represent processing times and due dates to create 

efficient solutions for the UPMSP model in fuzzy multi-

objective systems. The goal was to minimize the makespan, 

tardiness, flow time, and machine-load variation. The authors 

employed two metaheuristics for the purpose of achieving 

both high-quality and precise solutions. Naderi-Beni et al. [31] 

presented two metaheuristic techniques for solving a fuzzy 

multi-objective UPMSP where TrFNs are represented for 

processing times, release dates, setup times, and due dates to 

minimize workload imbalance, and overall tardiness at the 

same time. Torabi et al. [32] developed an efficient PSO 

algorithm for UPMSP by proposing a fuzzy programming 

model that reduces the sum of weighted tardiness and flow 

times, as well as the variance in machine load when processing 

times and due dates are TFNs. Test results show that the 

suggested algorithm surpasses the conventional method in all 

three-performance metrics. 

Various machine environments with different objectives 

utilize AFSA in many scheduling problems. For instance, Li 

et al. [33] proposed an improved AFSA, formulating it as a 

multidimensional knapsack problem to find the optimal 

scheduling and minimize the time delay. Meanwhile, Sureja 

and Patel [34] explored a novel algorithm, inspired by the 

social behavior of food-seeking fish colonies, and applied it to 

the combinatorial problem known as the random travelling 

salesman problem. Other research by Krishnaveni and Janita 

[35] proposed modifying AFSA by incorporating oppositional 

behavior learning into standard AFSA, resulting in a reverse 

population that not only improved task scheduling but also 

significantly reduced multi-objective makespan and execution 

costs. Fortunately, the proposed algorithm outperforms PSO 

and GA algorithms. Similarly, Peng et al. [36] proposed a 

modified AFSA that integrates a random search strategy called 

Levy flight to enhance AFSA’s preying behavior and firefly 

behavior. The algorithm incorporates the firefly algorithm's 

movement strategy to adjust random movement after 

determining the direction in AFSA. The proposed approach 

outperforms the tested algorithms in convergence speed and 

optimization accuracy on several benchmark problems. 

Another research using AFSA was conducted by Sun et al. 

[37] utilizing a hybrid AFSA with Self-adaptive Differential 

Evolution (SADE) to solve the identical PMSP for minimizing 

the makespan. The hybrid model performed better than the 

three other algorithms in both efficiency and strength tests. 

Meanwhile, Tirkolaee et al. [38] also proposed a hybrid 

approach based on an interactive fuzzy solution technique and 

AFSA to reduce both total cost and total energy consumption 

in the flow shop scheduling problem. Finally, Zhu and Jiang 

[39] proposed a hybrid AFSA by incorporating TS strategy 

into the AFSA to prevent artificial fish from becoming stuck 

in the local optimum and to accelerate convergence for the job 

shop scheduling problem to reduce the makespan. These 

modifications attempted to improve the algorithm's 

performance in terms of convergence, optimality, and escape 

from local optimality. Nevertheless, the algorithm remains 

under development. Despite numerous enhancements and 

modifications to the fish swarm algorithm being regularly 

proposed, these efforts have predominantly concentrated on 

equilibrating exploration and exploitation processes, lacking 

comprehensive guidance for achieving accurate and precise 

directions [40]. 

 

 

3. METHODOLOGY 

 

Constructing a framework for solving UPMSP involves five 

phases of the research methodology as illustrated in Figure 1. 

 

1) Phase 1: Conduct relevant literature review: 

Reviewing previous research and frameworks is an 

important phase in framework development, including an in-

depth review of previously published works and established 

frameworks relevant to the subject. This phase 

comprehensively covered the existing literature on the use of 

deterministic and uncertain models to solve single and multi-

objective functions in UPMSPs, followed by many related 

works of literature that use the AFSA in several machine 

scheduling problems. 

 

 
 

Figure 1. Phases of the conceptual framework 

1045



 

2) Phase 2: Define problem description and formulation: 

An optimization technique has been employed to maximize 

or minimize a singular objective. A common challenge faced 

by decision-makers is the need to optimize multiple objectives 

simultaneously, which results in multi-objective optimization. 

A solution may be optimal for one objective function but not 

for another, which makes it often vague to define what an 

optimal solution is [41]. In recent years, much attention has 

been focused on multi-objective optimization, with nearly half 

of the publications, particularly in 2019 and 2020, focusing on 

multi-objectives [42], which must be used in practice to 

determine a trade-off between them when making scheduling 

decisions. This phase aims to adapt and extend the linear 

multi-objective model proposed by Kongsri and 

Buddhakulsomsiri [43] for UPMSP by minimizing the 

makespan and total tardiness. This step will be done by 

simplifying the mathematical model and reducing sequence 

dependent setup times constraints with the purpose of making 

them more flexible and expandable. 

 

3) Phase 3: Apply fuzzification process: 

The majority of UPMSP work is conducted using the 

deterministic optimization methodology, where each 

parameter is assumed to be well-defined. While this 

assumption may be correct in some situations, it is often 

incorrect in practical implementations. There is a widespread 

assumption among researchers regarding the presence of 

predictable conditions for characteristics such as task 

processing times, release dates and due dates. However, in 

addition to the investigations conducted in a deterministic 

setting, the various parameters associated with UPMSP are 

often not well-known, resulting in uncertainties in real-world 

scenarios. Thus, this phase identifies and describes the 

fuzzification process of the UPMSP research problem model 

by embedding TFNs for the main parameters processing times 

and due dates in the proposed mathematical model to make it 

more realistic. This helps cover unexpected occurrences that 

are common in practice, such as errors in the estimation of 

values parameters, the changing weather and the health of the 

workforce, machine breakdown and human factors making 

and improving scheduling efficiency and achieving 

satisfactory results within the constraints of time, cost, and 

quality. Jobs' processing times and due dates are considered 

here along with TFNs to deal with the unpredictable nature of 

parameters in practical settings. The first fuzzy number 

indicated processing times 𝑝𝑖𝑗 = (𝑝1
𝑖𝑗
, 𝑝2

𝑖𝑗
, 𝑝3

𝑖𝑗
),  where 

𝑝1
𝑖𝑗
 is the shortest processing time, 𝑝2

𝑖𝑗
 is the most possible 

processing time and 𝑝3
𝑖𝑗

 is the longest processing time. To 

represent job processing times, the following triangular fuzzy 

membership function is used: 

 

𝜇 𝑝𝑖𝑗(𝑥) =

{
 
 
 
 

 
 
 
 

0        𝑓𝑜𝑟 𝑥 < 𝑝1
𝑖𝑗

𝑥 − 𝑝1
𝑖𝑗

𝑝2
𝑖𝑗
− 𝑝1

𝑖𝑗

 𝑓𝑜𝑟 𝑝1
𝑖𝑗
≤ 𝑥 ≤ 𝑝2

𝑖𝑗

𝑝3
𝑖𝑗
− 𝑥

𝑝3
𝑖𝑗
− 𝑝2

𝑖𝑗
 

 𝑓𝑜𝑟 𝑝2
𝑖𝑗
≤ 𝑥 ≤ 𝑝3

𝑖𝑗

0     𝑓𝑜𝑟 𝑥 > 𝑝3
𝑖𝑗

 (1) 

 

The second fuzzy number indicated the due dates 𝑑̃𝑗 = (𝑑1𝑗,

𝑑2𝑗 , 𝑑
3
𝑗), where, 𝑑1𝑗  is the earliest due date, 𝑑2𝑗  is the most 

possible due date and 𝑑3𝑗 is the latest due date. The following 

triangular fuzzy membership function is used to represent job 

due dates: 

 

𝜇 𝑑̃𝑗(𝑥) =

{
 
 
 

 
 
 

0         for 𝑥 < 𝑑1𝑗

𝑥 − 𝑑1𝑗

𝑑2𝑗 − 𝑑
1
𝑗

 for 𝑑1𝑗 ≤ 𝑥 ≤ 𝑑2𝑗

𝑑3𝑗 − 𝑥

𝑑3𝑗 − 𝑑
2
𝑗

 

  for 𝑑2𝑗 ≤ 𝑥 ≤ 𝑑3𝑗

0      for 𝑥 > 𝑑3𝑗

 (2) 

 

The fuzzy environment has an impact on the objective 

functions because the fuzzy completion time of each job will 

be a TFNs due to the triangular form of the processing times 

and is defined as a 𝐶̃𝑖𝑗 = (𝐶
1
𝑖𝑗 , 𝐶

2
𝑖𝑗 , 𝐶

3
𝑖𝑗), the tardiness of 

the job 𝑗 on machine 𝑖 equals to the 𝑇̃𝑖𝑗 = (𝑇1𝑖𝑗 , 𝑇
2
𝑖𝑗 , 𝑇

3
𝑖𝑗) 

where 𝑇̃𝑖𝑗 = 𝑚𝑎𝑥(𝐶̃𝑖𝑗 − 𝑑̃𝑗 , 0), where, the zero fuzzy number 

=(0, 0, 0). The problem can be mathematically presented as 

follows: 

 

𝑀𝑖𝑛𝐹 = 𝑤𝐶𝑚𝑎𝑥̃ + (1 − 𝑤)∑∑ 𝑇̃𝑖𝑗
𝑚

𝑖=1

𝑛

𝑗=1

 (3) 

 

C̃0 = 0 (4) 

 

𝐶̃𝑖𝑗 − 𝐶̃𝑖𝑘 + 𝑣(1 − 𝑋𝑖𝑘𝑗) ≥ 𝑝𝑖𝑘 

 ∀𝑖 ∈ 𝑀, ∀𝑘 ∈ 𝑁0, ∀𝑗 ∈ 𝑁: 𝑗 ≠ 𝑘 
(5) 

 

𝐶𝑚𝑎𝑥̃ ≥ 𝐶̃𝑗    ∀𝑗 ∈ 𝑁 (6) 

 

𝑇̃𝑖𝑗 = 𝑚𝑎𝑥(0, 𝐶̃𝑖𝑗 − 𝑑̃𝑗)    ∀𝑖 ∈ 𝑀, ∀j ∈ 𝑁 (7) 

 

𝑃̃𝑖𝑗 , 𝐶̃𝑖𝑗 , 𝑇̃𝑖𝑗 , 𝐶𝑚𝑎𝑥̃ ≥ 0 (8) 

 

X𝑖𝑘𝑗 ∈ {0,1} (9) 

 

Eq. (3) represents the multi-objective functions to reduce 

the makespan and total tardiness. Constraint (4) sets the 

dummy job's completion time to zero. Constraint (5) 

guarantees the completion time of job k equals the previous 

job's completion time plus the processing time of job k at each 

machine. Constraint (6) indicates that the makespan is 

equivalent to the maximum completion time among all 

machines, Constraint (7) determines the tardiness value for 

every job. Constraint (8) indicates that all decision variables 

must assume non-negative values. Constraint (9) clarifies the 

binary variables. 

 

4) Phase 4: Develop a modified algorithm: 

AFSA, described by Li [44] has been effectively applied to 

solve several optimization problems. Because of its simple 

principle and excellent features such as robustness and 

parameter setting tolerance [36], AFSA has grown in 

importance in swarm intelligence optimization. It is an 

iterative algorithm that progressively converges to the 

optimum global solutions. The basic idea is to mimic different 

environmental behaviors of schooling fish in the water by 

displaying social search behaviors and moving to regions with 

greater food availability, where a fish represents a point or 

1046



 

fictitious entity of a true fish in a population and swarm 

movements occur at random [45]. 

In AFSA, all artificial fish (AF) are trained to react to real-

time situations. Each AF learns how to execute four types of 

basic behaviors: prey, swarm, follow, and random. Figure 2 

shows the flowchart of the standard AFSA algorithm. 

• Prey behavior is the basis for the algorithm’s convergence, 

• Swarm behavior enhances the algorithm's global 

convergence and stability, 

• Follow behavior accelerates the algorithm's convergence, 

• Random behavior balances out the conflict between the 

other three behaviors. 

 

 
 

Figure 2. Flowchart of standard AFSA 

 

 
 

Figure 3. Framework for a proposed modified algorithm 

 

AF behaves in response to current conditions and 

environmental conditions, and it has an impact on the 

environment through its own and other AF's activities. Each 

AF receives two input parameters: visual (perception) and step 

(moving step length). AFs will collect information and then 

move using visual and step guidance. AFs' behaviors tend to 

affect each other's fitness as well. 

We propose employing a three-stage framework that 

effectively modifies the AFSA algorithm. The proposed 

modified algorithm allows for increasing the effectiveness of 

traditional AFSA behaviors to make it suitable to the proposed 

problem. As illustrated in Figure 3, the framework can be 

divided into three stages: adding new behavior, adopting 

improved parameters, and using the transformation method. 

Each stage includes distinct activities as outlined below: 

 

• Add a new behavior 

Creating aspiration behavior depends on the best solution 

reached by AFs of all AFSA behaviors and adopted its position 

to compare with the current position in order to enhance the 

search process and help AFs to escape from the local 

optimums. 

The update processes are formulated as: Suppose that 𝑋𝑏𝑒𝑠𝑡  
represents the potential position of AF in the step range and ∥
𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖 ∥≤ 𝑆𝑡𝑒𝑝2, which can be stated as: 

 

𝑋𝐴𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑋𝑖 +
𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖

∥ 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖 ∥
× 𝑆𝑡𝑒𝑝2 × 𝑅(0,1) (10) 

 

The aspiration behavior guarantees that the computing time 

is greatly reduced because AF can determine the best position 

in just one cycle of calculations. The following illustrates the 

pseudocode of the proposed aspiration behavior. 

 

Pseudocode of the Aspiration behavior 

 

Adapt the best solution found ever on the bulletin board 

Generate and calculate food concentration at the new 

position 

   within improved visual parameter 

   Move along a particular direction based on Eq. (10) 
   within improved step parameter to select the best optimal 
        solution and update the current position of AF 

        If  the solution value gets no improvement 

             Stay in the best position, and the best solution is the 
               final optimal solution 
        Else 

        Move to a new position and consider it global 
                     optimal solution 
       Update the current best solution of AF in the bulletin 
                     board. 

 

 

1. Add a new behavior 

2. Adopted  improved parameters 

3. Using transformation method 

1047



 

• Adopted improved parameters 

The visual and step parameters in the standard AFSA are 

fixed through iterative processes. Large visual and step values 

at the beginning of the algorithm speed up its convergence. 

However, the large values will result in problems like local 

optimum or iterative jumps when AFs approach the final 

position. However, if the values are too low, the effectiveness 

decreases [46]. As a result, the algorithm has specific 

requirements about the visual and step at different stages. 

Therefore, to achieve a balance between convergence rate and 

global search capability, the algorithm has adopted improved 

parameters as described in Tan and Mohamad-Saleh [40], and 

can presented as follows: 

 

𝑣𝑖𝑠𝑢𝑎𝑙𝑡+1 = 𝑣𝑖𝑠𝑢𝑎𝑙𝑡 − 𝑣𝑖𝑠𝑢𝑎𝑙𝑡 × 𝜆 + 𝑣𝑖𝑠𝑢𝑎𝑙𝑚𝑖𝑛 (11) 

 

𝑠𝑡𝑒𝑝𝑡+1 = 𝑠𝑡𝑒𝑝𝑡 − 𝑠𝑡𝑒𝑝𝑡 × 𝜆 + 𝑠𝑡𝑒𝑝𝑚𝑖𝑛  (12) 

 

𝜆 = 𝑒
(−

𝜎

√(𝑡𝑚𝑎𝑥)
34 ∗(𝑡𝑚𝑎𝑥−𝑡)

 (13) 

 

where, 𝑣𝑖𝑠𝑢𝑎𝑙𝑚𝑖𝑛 is the minimum visual value; 𝑠𝑡𝑒𝑝𝑚𝑖𝑛  is the 

minimum step value; t=(1, 2, …, 𝑡𝑚𝑎𝑥) is the index number of 

iterations; 0.5 < 𝜎 < 1 at any stage. Therefore, it improves 

the algorithm's local search at a later stage. 

 

• Using transformation method 

AFSA was initially developed as a continuous algorithm for 

solving continuous problems, making it challenging to deal 

with combinatorial optimization problems like UPMSP that 

have a discrete solution space. Hence, in the optimization 

algorithm, the process of solution encoding is critical. It is 

essential to enable the AFSA algorithm to solve discrete 

UPMSPs and enhance the search capabilities of the original 

algorithm. The major stage of the proposed algorithm is the 

use of the transformation method to transform the continuous 

search space of AFSA into a discrete search space to make it 

appropriate for discrete optimization problems such as 

UPMSP. The following illustrates the pseudocode for the 

transformation method. 

 

Pseudocode of the transformation method 

 

function [a]=trans(q) 

   n=length(q); 

   s=random('uniform',0.1,0.2,1,1); 
for i=1: n 
 

  a(q(i))=s; 

  s=s+random('uniform',0.1,0.2,1,1); 
end 

a=a./norm(a); 

 

 

This code uses a trans function to transform the input vector 

q, which represents the continuous solution, into the output 

vector a, representing the discrete solution. It starts by: 

Step 1: Determine the length of q to find the number of 

elements in q and store it in n. 

Step 2: Initialize s with a random value generated from a 

uniform distribution in the range [0.1, 0.2]. This value will 

serve as the starting point for the assignment process. 

Step 3: Loop through each element of q. For every element 

in q, perform the following steps inside the loop: 

• a(q(i))=s;: The current value of s would be assigned to the 

position in a for which q(i) is specified. This step maps 

the continuous solution to a discrete position. 

• s=s+random('uniform', 0.1, 0.2, 1, 1);: A new random 

number from the same uniform distribution is added to 

update s. By doing this, the solution's randomness is 

maintained, and every next assignment in a is based on a 

new random value. 

Step 4: Normalize the vector a to ensure its Euclidean norm 

(length) equals one. This step checks that the final discrete 

solution is appropriately scaled. 

This method is used to compute the best solution in the 

population according to the value of multi objective function. 

Subsequently, the pseudocode of the proposed modified 

AFSA algorithm is presented as below, while Figure 4 

represents the flowchart. The yellow color represents the 

modification steps that have been made in the proposed 

modified version of AFSA. 

 

Pseudocode of the proposed modified AFSA algorithm: 

 

Input: npop number of fish in the swarm 

       MaxIt maximum number of iterations for optimization 

        Visual the visual range 

        Step the maximum step length that a fish can take at 

each movement 

        Try- number the number of attempts in preying 

behavior, µ is the crowding factor 

Input: Optimal fish position and its fitness 

Initialize a population of npop fish’ positions at random; 

While the stopping condition is not satisfied 

    for each AFs do 

    compute the visual range  

     if visual range is empty, then 

            f (𝑋𝑖)                      random (𝑋𝑖) 
      else 

         if visual range is crowded, then 

            f (𝑋𝑖)                      follow (𝑋) 

            else 

              calculate swarm center 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , if fitness of 𝑋𝑐𝑒𝑛𝑡𝑒𝑟  

                        (f (𝑋𝑐𝑒𝑛𝑡𝑒𝑟)) better than fitness of AFs, then 

              f(𝑋𝑖
1)                       swarm (𝑋𝑖) 

             else 

               f(𝑋𝑖
1)                       follow (𝑋𝑖) 

             end  

              if fitness of AFs worse than global best then 

                 f(𝑋𝑖
2)                       pray (𝑋𝑖) 

              else  

                 f(𝑋𝑖
2)                       follow (𝑋𝑖) 

              end 

               f (𝑋𝑖)=argmin fitness (f(𝑋𝑖
1), f(𝑋𝑖

2)) 

          end 

     end 

         for each AFs do 

          𝑋𝑖                         select (𝑋𝑖, f (𝑋𝑖)) 
          if 𝑋𝑏𝑒𝑠𝑡 is the best postion found ever in the globel 

             best for t iterations then 

              f (𝑋𝑏𝑒𝑠𝑡 )                      aspiration (𝑋𝑏𝑒𝑠𝑡) 
          else  

           randomly choose a fish 𝑋𝑖 and f (𝑋𝑖)        random (𝑋𝑖) 
          end 

end 

1048



  

 

 

Figure 4. Flowchart of the proposed modified AFSA algorithm 

𝑋𝑠𝑤𝑎𝑟𝑚 = 𝑋𝑖 +
𝑋𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑋𝑖

∥ 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑋𝑖 ∥
× 𝑆𝑡𝑒𝑝 × 𝑅(0,1) 

𝑋𝑖 

𝑋𝐴𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑋𝑖 +
𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖

∥ 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖 ∥
× 𝑆𝑡𝑒𝑝2 × 𝑅(0,1) 

Aspiration behaviors: 

Comparing objective functions and selecting 

behaviors 

Saving the Best Solution, so far 

Initialize  artificial fish swarm 

Algorithm parameter initialization 

Searching 

𝑋𝑖  

Determine the number of partners 𝑛𝑓 for 𝑑𝑖𝑗 < 𝑉𝑖𝑠𝑢𝑎𝑙 and 

𝑋𝑐𝑒𝑛𝑡𝑒𝑟 be the central position of the swarm 

Xi execute preying 

behavior 

𝑋𝑖  

𝑋𝐹𝑜𝑙𝑙𝑜𝑤 = 𝑋𝑖 +
𝑋𝑗−𝑋𝑖

∥𝑋𝑗−𝑋𝑖∥ 
 × 𝑆𝑡𝑒𝑝 × 𝑅(0,1) 

Following Behavior: Swarming Behavior: 

No No 

Yes 

Yes 

Preying Behavior: 𝑋𝑖 

Let 𝑋𝑗 be an arbitrary state such as: 

𝑋𝑗 = 𝑋𝑖 + 𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅(0,1) 

Xi execute random 

behavior 

𝑋𝑝𝑟𝑒𝑦 = 𝑋𝑖 +
𝑋𝑗 −𝑋𝑖

∥ 𝑋𝑗 −𝑋𝑖 ∥
× 𝑆𝑡𝑒𝑝 × 𝑅(0,1) 

No 

Yes 

Update bulletin board 

Update parameters 

Yes 

𝑖𝑓 𝑌𝑖 > 𝑌𝑗  

if 𝑌𝑐𝑒𝑛𝑡𝑒𝑟 < 𝑌𝑖  and 
𝑛𝑓

𝑛
< 𝜇 

If 𝑌𝑖 > 𝑌𝑗 and 

 
𝑛𝑓

𝑛
< 𝜇 

Xi execute preying 

behavior 

Determine the number of partners 𝑛𝑓 for 𝑑𝑖𝑗 < 𝑉𝑖𝑠𝑢𝑎𝑙 and the 

biggest partner 𝑋𝑗 of 𝑌𝑗 

If the 
predetermined 

number of 

iterations exceeds  

The algorithm has finished executing 

Yes 

No 

1049



The proposed modified AFSA algorithm outlined in Figure 

4 initiates by setting up the population size of AFs along with 

the parameters for both the AFSA and the proposed algorithm. 

After each iteration, each AF is evaluated individually, and the 

best fitness is recorded on the bulletin board by employing 

preying, swarming, following, and random behaviors 

simultaneously. Current and environmental factors determine 

AF movement, which affects the environment through its and 

other artificial fish's actions. The modification steps that have 

been made in AFSA started by executing aspiration behavior 

by selecting the best possible solution after implementing 

these behaviors and improving the search process by 

comparing the aspiration state with the current state of the fish. 

The proposed algorithm employs preying behavior when the 

conditions for executing behaviors are unmet or when no 

improvement is seen. Furthermore, the AFSA's fixed value 

will be substituted with improved visual and step parameters, 

and the performance will be revised according to the best and 

contemporary individual employing aspiration behavior 

expression. The fitness value of the best individual is then 

determined through a transformation method that converts the 

continuous solution into a discrete solution. All solutions will 

be updated in accordance with previous steps and executed 

until the termination criterion is met. The three proposed 

modification steps, which are related and rely on the quality of 

the solution, will be performed and run simultaneously to 

optimize the entire process, which focuses on the primary 

shortcomings of the standard AFSA. 

 

5) Phase 5: Test and compare: 

The crucial phase in the framework development process is 

the test and compare phase, which involves a practical 

assessment of the proposed algorithm to confirm the 

algorithm's efficiency in UPMSP environment. 

Throughout this phase, the framework is subjected to 

simulations and computational experiments using MATLAB 

R2023a. These experiments are conducted randomly and 

involve three different problem sizes: small, medium, and 

large sets of jobs and machine combinations. Each set of 

problems consists of 10 instances and will be run 10 times. 

Small size problems will consist of the number of jobs N=[5, 

10, 15, 20, 25, 30, 35, 40, 45, 50], and the number of machines 

M  =[3, 3, 4, 4, 5, 5, 6, 6, 7, 7]. Medium size problems 

instances, N=[60, 80, 100, 120, 140, 160, 180, 200, 220, 240], 

and M=[8, 8, 9, 9, 10, 10, 11, 11, 12, 12], while large size 

problems, N=[250, 270, 290, 310, 330, 350, 370, 390, 410, 

430] and M=[13, 13, 14, 14, 15, 15, 16, 16, 17, 17]. The 

performance evaluation criteria for the whole computational 

experiments included minimum, maximum, mean, and 

standard deviation. The best performance metrics of the 

proposed algorithm on the test problems will be defined by the 

minimum values in the proposed minimization problem. 

The performance of the proposed modified algorithm will 

be examined by comparing it with other versions of AFSA. 

The algorithms include standard AFSA [44], and five modified 

versions of AFSA which are presented in previous works by 

Tan and Mohamad-Saleh [40], Zhao et al. [46], and three 

methods from Huang et al. [47]. The comparison process will 

be employed based on the standardized predefined parameter 

settings to ensure the fairness of comparisons. These 

comparisons will be employed to evaluate the effectiveness of 

the proposed algorithm and identify any possible weaknesses 

in certain cases. Instead of comparing based solely on 

minimum values, the Wilcoxon signed-ranks test will also be 

conducted among all compared algorithms to assess 

significant differences. 

 

 

4. THEORETICAL IMPLICATIONS OF THE 

PROPOSED ALGORITHM 

 

The proposed algorithm has main theoretical implications 

to increase the effectiveness of traditional AFSA and make it 

suitable to solve the proposed problem. Firstly, the aspiration 

behavior aims to overcome the random searches of AF in its 

visual range for the next state before moving to the next 

position, which means AF must attempt every direction until 

the position is found and this position generated may not be 

optimal since the process is random. This has caused a 

drawback in the AFSA’s behavior and consumes a lot of time. 

Aspiration behavior is inspired by the best position of AFs that 

has been found recorded on the bulletin board after performing 

all AFSA behaviors. Secondly, in the AFSA, the AF seeks a 

local solution within its visual range, while the global optimal 

solution is achieved through the collaboration of the fish 

swarm. Therefore, the balance between local and local search 

is controlled by visual and step [10]. For reaching a balance 

between convergence rate and global search capability, the 

algorithm improves its local search in later stages through 

specific equations for visual and step parameters, which 

gradually decrease throughout the iterations before adjusting 

at a value that approximately corresponds to 𝑣𝑖𝑠𝑢𝑎𝑙𝑚𝑖𝑛  and 

𝑠𝑡𝑒𝑝𝑚𝑖𝑛, will therefore be incapable of performing any further 

local searches. 

Finally, another theoretical importance is to be capable of 

making the algorithm solve the discrete machine scheduling 

models by converting solutions from the continuous vectors to 

discrete solutions space. 

 

 

5. CONCLUSION 

 

This paper proposes a framework for the development of a 

modified algorithm of AFSA aimed at addressing the multi-

objective makespan and total tardiness in the UPMSP within a 

fuzzy environment, by using triangular fuzzy membership 

functions for the main parameters of processing times and due 

dates. The research framework is structured into five distinct 

phases: Conduct relevant literature review, adapt and extend a 

mathematical model, apply fuzzification process, modify the 

AFSA algorithm, and the evaluation process. The performance 

of the proposed modified algorithm will be evaluated using 

evaluation criteria that include Minimum, Maximum, Mean, 

Standard Deviation, and the Wilcoxon signed-rank test 

statistic. The proposed algorithm attempts to improve the 

exploitation capability of the AFSA, thereby further 

stabilizing the overall performance of the algorithm. The 

expected outcomes will involve efficient problem-solving and 

the determination of optimal solutions when evaluated against 

comparative algorithm results, especially for medium and 

large-size problems. Furthermore, for any possible 

shortcomings or unsatisfactory performance due to falling into 

a local optimum, future investigations could explore a hybrid 

approach by combining the proposed modified algorithm with 

other metaheuristic algorithms to enhance the performance 

and achieve more precise solutions. 

 

1050



ACKNOWLEDGMENT 

This work was a part of PhD study in the School of 

Quantitative Sciences, Universiti Utara Malaysia.  

REFERENCES 

[1] Ezugwu, A.E., Akutsah, F. (2018). An improved firefly

algorithm for the unrelated parallel machines scheduling

problem with sequence-dependent setup times. IEEE

Access, 6: 54459-54478.

https://doi.org/10.1109/ACCESS.2018.2872110

[2] Dang, Q.V., van Diessen, T., Martagan, T., Adan, I.

(2021). A matheuristic for parallel machine scheduling

with tool replacements. European Journal of Operational

Research, 291(2): 640-660.

https://doi.org/10.1016/j.ejor.2020.09.050

[3] Salimifard, K., Mohammadi, D., Moghdani, R.,

Abbasizad, A. (2019). Green fuzzy parallel machine

scheduling with sequence-dependent setup in the plastic

moulding industry. Asian Journal of Management

Science and Applications, 4(1): 27-48.

https://doi.org/10.1504/AJMSA.2019.101423

[4] Đurasević, M., Jakobović, D. (2021). Heuristic and

metaheuristic methods for the unrelated machines

scheduling problem: A survey. arXiv Preprint arXiv:

2107.13106. https://doi.org/10.48550/arXiv.2107.13106

[5] Arık, O.A. (2020). Comparisons of metaheuristic

algorithms for unrelated parallel machine weighted

earliness/tardiness scheduling problems. Evolutionary

Intelligence, 13(3): 415-425.

https://doi.org/10.1007/s12065-019-00305-7

[6] Ledmi, A., Ledmi, M., Souidi, M.E.H., Haouassi, H.,

Bardou, D. (2024). Optimizing task scheduling in cloud

computing using Discrete Tuna Swarm Optimization.

Ingénierie des Systèmes d’Information, 29(1): 323-335.

https://doi.org/10.18280/isi.290132

[7] Alsattar, H.A., Zaidan, A.A., Zaidan, B.B. (2020). Novel

meta-Heuristic bald eagle search optimisation algorithm.

Artificial Intelligence Review, 53: 2237-2264.

https://doi.org/10.1007/s10462-019-09732-5

[8] Wang, H.B., Fan, C.C., Tu, X.Y. (2016). AFSAOCP: A

novel artificial fish swarm optimization algorithm aided

by ocean current power. Applied Intelligence, 45: 992-

1007. https://doi.org/10.1007/s10489-016-0798-7

[9] Alhaqbani, A., Kurdi, H.A., Hosny, M. (2022). Fish-

inspired heuristics: A survey of the state-of-the-art

methods. Archives of Computational Methods in

Engineering, 29(6): 3655-3675.

https://doi.org/10.1007/s11831-022-09711-0

[10] Pourpanah, F., Wang, R., Lim, C.P., Wang, X.Z.,

Yazdani, D. (2023). A review of artificial fish swarm

algorithms: Recent advances and applications. Artificial

Intelligence Review, 56(3): 1867-1903.

https://doi.org/10.1007/s10462-022-10214-4

[11] Jin, J., Zhang, Z., Zhang, L. (2023). A modified artificial

fish swarm algorithm for unit commitment optimization.

In the 8th International Conference on Electromechanical

Control Technology and Transportation (ICECTT 2023),

2023, Hangzhou, China, pp. 760-767.

https://doi.org/10.1117/12.2689449

[12] Wang, F., Zhao, L., Bai, Y. (2022). Path planning for

unmanned surface vehicles based on modified artificial

fish swarm algorithm with local optimizer. Mathematical

Problems in Engineering, 2022(1): 1283374. 

https://doi.org/10.1155/2022/1283374 

[13] Safarzadeh, H., Niaki, S. (2023). Unrelated parallel

machine scheduling with machine processing cost.

International Journal of Industrial Engineering

Computations, 14(1): 33-48.

https://doi.org/10.5267/j.ijiec.2022.10.004

[14] Zheng, F., Jin, K., Xu, Y., Liu, M. (2022). Unrelated

parallel machine scheduling with processing cost,

machine eligibility and order splitting. Computers &

Industrial Engineering, 171: 108483.

https://doi.org/10.1016/j.cie.2022.108483

[15] Shafipour, M., Rezaeian, J., Foroutan, R.A. (2022).

Minimizing JIT scheduling of unrelated parallel machine

with family setups and soft time window constraints.

Research Square. https://doi.org/10.21203/rs.3.rs-

1917932/v1

[16] Åblad, E., Strömberg, A.B., Spensieri, D. (2021). Exact

makespan minimization of unrelated parallel machines.

Open Journal of Mathematical Optimization, 2: 1-15.

https://doi.org/10.5802/ojmo.4

[17] Arnaout, J.P. (2020). A worm optimization algorithm to

minimize the makespan on unrelated parallel machines

with sequence-dependent setup times. Annals of

Operations Research, 285(1): 273-293.

https://doi.org/10.1007/s10479-019-03138-w

[18] Jouhari, H., Lei, D., Al-Qaness, M.A., Elaziz, M.A.,

Damaševičius, R., Korytkowski, M., Ewees, A.A.

(2020). Modified Harris Hawks optimizer for solving

machine scheduling problems. Symmetry, 12(9): 1460.

https://doi.org/10.3390/sym12091460

[19] Fanjul-Peyro, L., Ruiz, R., Perea, F. (2019).

Reformulations and an exact algorithm for unrelated

parallel machine scheduling problems with setup times.

Computers & Operations Research, 101: 173-182.

https://doi.org/10.1016/j.cor.2018.07.007

[20] Chi, X., Liu, S., Li, C. (2022). Research on optimization

of unrelated parallel machine scheduling based on IG-TS

algorithm. Bulletin of the Polish Academy of Sciences

Technical Sciences, 70(4): e141724.

https://doi.org/10.24425/bpasts.2022.141724

[21] Al-Qaness, M.A., Ewees, A.A., Abd Elaziz, M. (2021).

Modified whale optimization algorithm for solving

unrelated parallel machine scheduling problems. Soft

Computing, 25(14): 9545-9557.

https://doi.org/10.1007/s00500-021-05889-w

[22] Ewees, A.A., Al-Qaness, M.A., Abd Elaziz, M. (2021).

Enhanced salp swarm algorithm based on firefly

algorithm for unrelated parallel machine scheduling with

setup times. Applied Mathematical Modelling, 94: 285-

305. https://doi.org/10.1016/j.apm.2021.01.017

[23] Meng, R., Rao, Y., Luo, Q. (2020). Modeling and solving

for bi-objective cutting parallel machine scheduling

problem. Annals of Operations Research, 285(1): 223-

245. https://doi.org/10.1007/s10479-019-03208-z

[24] Ding, J., Shen, L., Lü, Z., Xu, L., Benlic, U. (2019). A

hybrid memetic algorithm for the parallel machine

scheduling problem with job deteriorating effects. IEEE

Transactions on Emerging Topics in Computational

Intelligence, 4(3): 385-397.

https://doi.org/10.1109/TETCI.2019.2935773

[25] Yaghtin, M., Javid, Y. (2023). Genetic algorithm based

on greedy strategy in unrelated parallel-machine

scheduling problem using fuzzy approach with periodic

1051



maintenance and process constraints. International 

Journal of Supply and Operations Management, 10(3): 

319-336.

https://doi.org/10.22034/ijsom.2023.109377.2359

[26] Rezaeian, J., Mohammad-Hosseini, S., Zabihzadeh, S.,

Shokoufi, K. (2020). Fuzzy scheduling problem on

unrelated parallel machine in JIT production system.

Artificial Intelligence Evolution, 17-33.

https://doi.org/10.37256/aie.112020202

[27] Cheng, C.Y., Pourhejazy, P., Ying, K.C., Li, S.F., Chang,

C.W. (2020). Learning-based metaheuristic for

scheduling unrelated parallel machines with uncertain

setup times. IEEE Access, 8: 74065-74082.

https://doi.org/10.1109/ACCESS.2020.2988274

[28] Sadati, A., Tavakkoli-Moghaddam, R., Naderi, B.,

Mohammadi, M. (2019). A bi-objective model for a

scheduling problem of unrelated parallel batch

processing machines with fuzzy parameters by two fuzzy

multi-objective meta-heuristics. Iranian Journal of Fuzzy

Systems, 16(4): 21-40.

https://doi.org/10.22111/ijfs.2019.4779

[29] Liao, T.W., Su, P. (2017). Parallel machine scheduling in

fuzzy environment with hybrid ant colony optimization

including a comparison of fuzzy number ranking

methods in consideration of spread of fuzziness. Applied

Soft Computing, 56: 65-81.

https://doi.org/10.1016/j.asoc.2017.03.004

[30] Manupati, V.K., Rajyalakshmi, G., Chan, F.T., Thakkar,

J. (2017). A hybrid multi-objective evolutionary

algorithm approach for handling sequence-and machine-

dependent set-up times in unrelated parallel machine

scheduling problem. Sādhanā, 42: 391-403.

https://doi.org/10.1007/s12046-017-0611-2

[31] Naderi-Beni, M., Ghobadian, E., Ebrahimnejad, S.,

Tavakkoli-Moghaddam, R. (2014). Fuzzy bi-objective

formulation for a parallel machine scheduling problem

with machine eligibility restrictions and sequence-

dependent setup times. International Journal of

Production Research, 52(19): 5799-5822.

https://doi.org/10.1080/00207543.2014.916430

[32] Torabi, S.A., Sahebjamnia, N., Mansouri, S.A.,

Bajestani, M.A. (2013). A particle swarm optimization

for a fuzzy multi-objective unrelated parallel machines

scheduling problem. Applied Soft Computing, 13(12):

4750-4762. http://doi.org/10.1016/j.asoc.2013.07.029

[33] Li, T., Yang, F., Zhang, D., Zhai, L. (2021). Computation

scheduling of multi-access edge networks based on the

artificial fish swarm algorithm. IEEE Access, 9: 74674-

74683. https://doi.org/10.1109/ACCESS.2021.3078539

[34] Sureja, N.M., Patel, S.P. (2020). Solving a combinatorial

optimization problem using artificial fish swarm

algorithm. International Journal of Engineering Trends

and Technology, 68(5): 27-32.

https://doi.org/10.14445/22315381/ijett-v68i5p206s

[35] Krishnaveni, H., Janita, V.S. (2019). Modified artificial

fish swarm algorithm for efficient task scheduling in

cloud environment. International Journal of Computer

Sciences and Engineering, 7(5): 1363-71.

https://doi.org/10.26438/ijcse/v7i5.13631371

[36] Peng, Z., Dong, K., Yin, H., Bai, Y. (2018). Modification

of fish swarm algorithm based on levy flight and firefly

behavior. Computational Intelligence and Neuroscience,

2018(1): 9827372. 

https://doi.org/10.1155/2018/9827372 

[37] Sun, Y., Qian, X., Liu, S. (2019). Scheduling

deteriorating jobs and module changes with incompatible

job families on parallel machines using a hybrid SADE-

AFSA algorithm. In Learning and Intelligent

Optimization: 12th International Conference, LION 12,

Kalamata, Greece, pp. 455-472.

https://doi.org/10.1007/978-3-030-05348-2_40

[38] Tirkolaee, E.B., Goli, A., Weber, G.W. (2020). Fuzzy

mathematical programming and self-adaptive artificial

fish swarm algorithm for just-in-time energy-aware flow

shop scheduling problem with outsourcing option. IEEE

Transactions on Fuzzy Systems, 28(11): 2772-2783.

https://doi.org/10.1109/TFUZZ.2020.2998174

[39] Zhu, K., Jiang, M. (2010). The optimization of job shop

scheduling problem based on Artificial Fish Swarm

Algorithm with tabu search strategy. In Third

International Workshop on Advanced Computational

Intelligence, Suzhou, China, pp. 323-327.

https://doi.org/10.1109/IWACI.2010.5585118

[40] Tan, W.H., Mohamad-Saleh, J. (2020). Normative fish

swarm algorithm (NFSA) for optimization. Soft

Computing, 24(3): 2083-2099.

https://doi.org/10.1007/s00500-019-04040-0

[41] Deb, K., Sindhya, K., Hakanen, J. (2016). Multi-

objective optimization. In Decision Sciences. Springer,

Boston, MA, 2014, pp. 403-449.

https://doi.org/10.1201/9781315183176-4

[42] Fu, Y., Hou, Y., Wang, Z., Wu, X., Gao, K., Wang, L.

(2021). Distributed scheduling problems in intelligent

manufacturing systems. Tsinghua Science and 

Technology, 26(5): 625-645.

https://doi.org/10.26599/tst.2021.9010009 

[43] Kongsri, P., Buddhakulsomsiri, J. (2020). A mixed

integer programming model for unrelated parallel

machine scheduling problem with sequence dependent

setup time to minimize makespan and total tardiness. In

2020 IEEE 7th International Conference on Industrial

Engineering and Applications (ICIEA), Bangkok,

Thailand, pp. 605-609.

https://doi.org/10.1109/iciea49774.2020.9102086

[44] Li, X. (2003). A new intelligent optimization method-

artificial fish school algorithm. Doctor Thesis of

Zhejiang University, Hangzhou, China.

[45] Crawford, B., Soto, R., Olgun, E., Mansilla Villablanca,

S., Gomez Rubio, A., Jaramillo, A., Salas, J. (2016). An

artificial fish swarm algorithm to solve the set covering

problem. https://ibook.pub/an-artificial-fish-swarm-

optimization-algorithm-to-solve-set-covering-

problem.html.

[46] Zhao, L., Wang, F., Bai, Y. (2023). Route planning for

autonomous vessels based on improved artificial fish

swarm algorithm. Ships and Offshore Structures, 18(6):

897-906.

https://doi.org/10.1080/17445302.2022.2081423

[47] Huang, J., Zeng, J., Bai, Y., Cheng, Z., Feng, Z., Qi, L.,

Liang, D. (2021). Layout optimization of fiber Bragg

grating strain sensor network based on modified artificial

fish swarm algorithm. Optical Fiber Technology, 65:

102583. https://doi.org/10.1016/j.yofte.2021.102583

1052




