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The primary goal of this research is to detect and classify Alzheimer’s disease (AD) by 

using machine learning algorithms. The proposed method follows preprocessing, 

feature extraction, and classification techniques to distinguish between various AD 

phases. The study has demonstrated how classifiers act in recognizing and classifying 

different phases of Alzheimer's disease. The classifier's input consisted of the primary 

features of different frequency bands. Machine learning classifiers are used to assess 

recognition accuracy. After bands filtering and feature extraction, developing a novel 

model that employs K-nearest neighbors (KNN), support vector machine (SVM), and 

multi-layer perceptron (MLP) algorithms to test classification performance, which 

extracts several bands from the EEG signals, are the next steps in the study. The 

constructed machine learning classifiers use five wavelet band features to classify 

various stages of sickness. These properties are calculated with the use of wavelet-

related knowledge for learning through the use of discrete wavelet transform (DWT), 

principal component analysis (PCA), and independent component analysis (ICA). The 

suggested machine learning models are tested with EEG signals, in that SVM shows an 

average accuracy of 95% for testing data classification. 
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1. INTRODUCTION

It is already possible to determine the features of brain 

functioning disorders using EEG analysis [1-5], albeit it is 

unclear how these features link to AD. Comparing EEG to 

other imaging modalities, it offers non-invasive, affordable, 

and highly precise temporal data on electrical activity in the 

brain during neurotransmission. The EEG processing and 

analysis in the suggested framework were done by using a 

DWT [1] to break down the EEG signal into its frequency sub-

bands and extract a collection of statistical features to reflect 

the distribution of wavelet coefficients. ICA [6, 7] and PCA 

[8-12] are two methods for reducing the dimensions of data.  

After that, these characteristics were sent into a support 

vector machine and a multilayer perceptron, which could only 

yield the AD or Normal Control (NC) results. The 

performance of the classification process as a result of several 

approaches is displayed and contrasted to indicate the 

superiority of the procedure. These findings provide an 

example of how to use data from particular petit mal epileptic 

patients to train and test an Alzheimer's Detection prediction 

algorithm. These kinds of technologies will probably be 

required to customize intelligent epilepsy treatment devices to 

each individual's neurophysiology before they are placed into 

clinical usage, given the variety of epilepsy. 

Authors [13-15] applied several machine learning 

approaches, such as SVM, KNN, and others, to increase the 

accuracy of early-stage AD identification using EEG and 

employing Hjorth parameters. The author [16] investigated the 

adaptive flexible analytic wavelet transform, which adapts to 

EEG variations automatically. The use of spectral, empirical 

wavelet transforms and wavelet-based features for early 

Alzheimer's disease identification utilizing EEG signals using 

artificial neural networks was investigated by the researchers 

[17-21], and an average accuracy of 90% was attained. In 

order to predict AD, the researchers [22-25] examined six 

supervised machine learning methods, and the suggested 

model had an average accuracy of 85%. 

The paper is organized as follows: Section 2 briefly 

showcases the proposed model with dataset details, 

preprocessing steps, feature extraction methods, and 

classification models continuing with Section 3, which 

consists of result discussion and concludes the work in Section 

4. The Last Section consists of references.
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2. PROPOSED MODEL 

 

The proposed methodology for EEG-based AD detection is 

shown in Figure 1. First, the EEG brain signals are processed 

by separating them into multiple frequency bands, 

compressing them, and minimizing noise. Next, latent 

components are extracted, and AD is identified from the input 

EEG data using the feature extraction method. These features 

are then given to the SVM, KNN, and MLP classifiers so they 

can perform classification; the results from MLP are better 

than those from KNN and SVM. Finally, the model's 

performance is assessed by assessing its accuracy, sensitivity, 

and specificity. 

 

 
 

Figure 1. Proposed model for AD prediction 

 

The proposed algorithm to predict the stages of AD is given 

in Algorithm 1. The algorithm depicts that first the brain EEG 

signals are preprocessed to remove the arti facts, and then 

apply the ICA technique to extract the latent components from 

the data. With further extracted features, the model is trained. 

At the conclusion, evaluate the model using the test dataset. 

 

Algorithm 1: AD disease classification using EEG signal 

Input: EEG signals 

Identify the input signals as the output. 

Start 

Step 1: Pre-process the EEG data. 

• Sort the signals that are input. 

• Acquire the EEG signal's subbands, Delta, Theta, 

Gamma, and Beta. 

Step 2: Give the dataset a label. 

Step 3: Separate the test and train datasets. 

Step 4: Use DWT, ICA, and PCA to extract the features. 

Step 5: Use the features that were extracted to train the 

MLP and SVM classifier models. 

Step 6: Acknowledge test signals and document the 

outcome. 

Finish 
 

2.1 Dataset 

 

The EEG readings from Baskent University Hospital's 

neurology department were taken into account in this planned 

endeavor [4]. The demographic information of each individual 

is given in Table 1. The dataset consists of 50 EEG signals of 

each AD and CN. The mean age of AD individuals is 75, and 

for CN, it is 69.18. There are 15 male AD individuals and 10 

female individuals [11]. 

 

Table 1. Demographic information 

 
Demographic Characteristics AD CN 

Age (mean) 75 69.18 

Gender (m:f) 15:10 18:7 

Count 25 25 

 

 
 

Figure 2. Channel electrode montage 

 

There were nineteen electrodes used to record the EEG 

waves. These electrodes were positioned in accordance with 

the global 10-20 system. Thirteen channels were referred to 

using a longitudinal bipolar montage, while the remaining 

fifteen channels were referred to using a monopolar montage. 

The channel electrode montage is shown in Figure 2 [5]. 

 

2.2 Dataset preprocessing 

 

While being recorded, EEG signals are frequently distorted 

with various aberrations. The most common types of artifacts 

are cardiac, ocular, muscular, and motion. Therefore, applying 

a bandpass filter to remove the noise is the first step in our 

suggested method. Frequencies higher than 60 Hz are usually 

classified as noise and removed. A bandpass filter and an IIR 

filter are employed in preprocessing to lower the noise. Signals 

are handled in a frequency-dependent manner by networks 

known as filters. A systematic unwanted change in a signal is 

commonly referred to as signal distortion, however, it is also 

known by other names such as signal fading, reverberations, 

echo, multipath reflections, and missing samples. A bandpass 

filter is a part of an electrical circuit or component that allows 

signals between two designated frequencies to pass through 

while discriminating against signals at other frequencies. 

prototype analog lowpass filter's poles. When Ωc=1 rad/s is 

applied to a Butterworth filter of order N, the poles are as 

follows: 

 

𝑝′𝑎𝑘 = −𝑠𝑖𝑛(𝜃) + 𝑗𝑐𝑜𝑠(𝜃)  (1) 

 

where, 

 

𝜃 =
(2𝑘 − 1)

𝜋2𝑁
𝑘 = 1: 𝑁 (2) 
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Here we place a prime superscript on p to differentiate the 

lowpass prototype poles from the as-yet-uncalculated 

bandpass poles. Determine the lower and higher -3 dB 

frequencies of the digital bandpass filter, as well as the 

corresponding frequencies of the analog bandpass filter. We 

define fcenter as the center frequency in Hz and BWHz as the -3 

dB bandwidth in Hz. At -3 dB, the discrete frequencies are as 

follows: 

 

𝑓1 = 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 − 𝐵𝑊𝐻𝑧/2  (3) 

 

𝑓2 = 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 + 𝐵𝑊𝐻𝑧/2 (4) 

 

As before, we'll pre-warp the analog frequencies to take the 

nonlinearity of the bilinear transform into consideration: 

 

𝐹1 =
𝑓𝑠

𝜋
𝑡𝑎𝑛(𝜋𝑓1𝑓𝑠) (5) 

 

𝐹2 =
𝑓𝑠

𝜋
𝑡𝑎𝑛(𝜋𝑓2𝑓𝑠)  (6) 

 

Two further quantities need to be defined: 𝐵𝑊𝐻𝑧 =
𝐹2– 𝐹1,  Hz is the pre-warped -3 dB bandwidth, and 𝐹0 =

√𝐹1𝐹1 is the geometric mean of F1 and F2.  

Analog bandpass poles are created by converting the analog 

lowpass poles. We obtain two bandpass poles for each lowpass 

pole pa'. 

 

𝑃𝑎 = 2π[
𝐵𝑊𝐻𝑧

2F0
𝑝𝑎

′ ± j√1 − (
𝐵𝑊𝐻𝑧𝑝𝑎

′

2F0

2

)] (7) 

 

Utilize the bilinear transform to move the poles from the s-

plane to the z-plane. The only difference is that there are 2N 

poles rather than N poles, much like with the IIR lowpass: 

 

𝑃𝑘 =
1 + 𝑝𝑎𝑘/2𝑓𝑠

1 − 𝑝𝑎𝑘/2𝑓𝑠

, 𝑘 = 1 to 2𝑁 (8) 

 

N zeros at z=-1 and N zeros at z=+1 must be added. Now we 

can write H(z) as follows: 

 

𝐻(𝑧) = 𝐾
(𝑧 + 1)𝑁(𝑧 − 1)𝑁

(𝑧 − 𝑝1)(𝑧 − 𝑝2)(𝑧 − 𝑝3) …
 (9) 

 

The N zeros at -1 and N zeros at +1 are represented as a 

vector in bp_synth: 

 

q= [-ones(1,N) ones(1,N)] (10) 

 

Poles and zeros can be converted to generate polynomials 

with coefficients a and bn. If we multiply the numerator and 

denominator of Eq. (1) by z2N and then expand the numerator 

and denominator, we get polynomials in z-n. 

 

𝐻(𝑧) = 𝐾(𝑧 + 1
𝑏0 + 𝑏1𝑧−1 + ⋯ 𝑏2𝑁𝑧−2𝑁

1 + 𝑎1𝑧−1 + ⋯ 𝑎2𝑁𝑧−2𝑁
) (11) 

 

A band pass filter that makes use of a Blackman window is 

explained in Algorithm 2. First, initialize the flag. In this case, 

the sampling frequency Fs, order N, and first and second cutoff 

frequencies are Fc1 and Fc2, respectively. In the second stage, 

N+1 window vectors are constructed using the Blackman 

approach. To obtain the coefficients, call the FIR1 function 

next. Lastly, reduce the infinite coefficient into discrete using 

dfilt.dffir() discrete-time, direct-form finite impulse response 

(FIR) filter. 

 

Algorithm 2: Filter input noise signals 

Input: EEG signal 

Output: Filtered Signal 

Step 1: Initialization 

Fs=5250000; // Sampling Frequency 

N=3500;   //Order 

Fc1=59500;  //First Cutoff Frequency 

Fc2=60500;  // Second Cutoff Frequency 

flag = 'scale'; //Sampling Flag 

Step 2: Create the window vector for the design 

algorithm. 

win=Blackman(N+1); 

Step 3: Calculate the coefficients using the FIR1 

function. 

 b=fir1(N, [Fc1 Fc2]/(Fs/2), 'bandpass', win, flag); 

 Step 4: Truncate infinite coefficients into discrete  

 Hd = dfilt.dffir(b); 

 

 
 

Figure 3. Input noise signal 

 

 
 

Figure 4. Filtered signal 

 

Figures 3 and 4 display the bandpass filter's output and the 

input noise signal, respectively. 

 

2.3 Feature extraction 
 

Depending on the frequency range, the EEG is divided into 

five subband signals before the features are retrieved. These 

signals are referred to as Gama, Beta, Alpha, Theta, and Delta. 

To extract characteristics from a signal on various scales, 

DWT is employed after executing repeated high pass and low 

pass filtering. Here, the EEG data are divided into six 
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frequency sub-bands using the DWT. According to EEG 

research, there are five main frequency bands for EEG signals, 

and there is a correlation between behavior and neuronal 

activity in a specific region of the brain. The most frequently 

utilized frequency ranges are beta (14 Hz), alpha (8 Hz), theta 

(4 Hz), gamma (30 Hz-63 Hz), and delta (0.1 Hz or 0.5 Hz). 

The approximation and detail coefficients follow in order with 

the wavelet coefficients. It is desirable to choose a transform 

that yields the fewest coefficients necessary to precisely 

recover the original signal in applications that call for bilateral 

transformations. The DWT reduces the range of translation 

and scale change, which are typically powers of two, to attain 

this parsimony. When using DWT-based analysis, the 

majority of signal and image processing applications are best 

explained in terms of filter banks. Using a sequence of filters, 

sub-band coding divides a signal into its constituent spectral 

regions. Figures 5-14 display the five decomposed bands of 

the normal and AD signals.  

 

 
 

Figure 5. NC GAMA 

 

 
 

Figure 6. AD GAMA 

 

 
 

Figure 7. NC BETA 

 
 

Figure 8. AD BETA 
 

 
 

Figure 9. NC ALPHA 

 

 
 

Figure 10. AD ALPHA 

 

 
 

Figure 11. NC THETA 
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Figure 12. AD THETA 

 

 
 

Figure 13. NC DELTA 

 

 
 

Figure 14. AD DELTA 

 

Raw EEG data shows low-frequency activity, or delta 

activity, whereas high-frequency activity, or gamma, is 

essentially noise-like and has small amplitude. As mentioned 

in Section 2, the intensity data of the various bands 

demonstrate that the gamma band intensity declines, the alpha 

and beta band intensity decreases, and the delta and theta band 

intensity increase in AD patients when compared to NC. PCA 

is a tried-and-true method for dimensionality reduction and 

feature extraction. Our objective is to use PCA to represent the 

d-dimensional data in a lower-dimensional space. To 

accurately reflect the variance in terms of sum-squared error, 

the data must be represented in a space. As with conventional 

clustering techniques, it is very helpful if we are aware of the 

number of independent components ahead of time. The 

primary components method makes a lot of sense 

theoretically. It reduces the number of variables in a data set 

while keeping as much as is practical. It mostly performs the 

five functions listed and explained below: 

 

➢ Establish a standardization procedure for the range of 

continuous beginning variables. This will ensure that 

each variable contributes equitably to the analysis. 

[M,N] = size(data); 

• mn = mean(data,2); 

• data = data - repmat(mn,1,N); 

➢ Calculate the covariance matrix to identify 

correlations. 

covariance = 1 / (N-1) * data * data'; 

➢ Compute the covariance matrix's eigenvectors and 

eigenvalues to determine the principal components. 

[PC, V] = eig(covariance); 

➢ Make a feature vector to decide which main 

components should be kept.  

• [junk, rindices] = sort(-1*V); 

• V = V(rindices) 

• PC = PC(:,rindices);  

➢ Recasting data along the key component axes is 

recommended.  

signals = PC' *data; 

 

The PCA outputs are shown in Figure 15. 

 

 
 

Figure 15. Features extracted by PCA 

 

 
 

Figure 16. Features extracted from input signal by using ICA 
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Figure 17. Detail and approximation coefficients of original 

and DWT waves respectively 

 

 
 

Figure 18. Combined test features 

 

A feature extraction method called ICA transforms a 

multivariate random signal into a signal with independently 

variable components. With this method, individual 

components can be extracted from the mixed signals. As a 

result, independence means that one cannot infer information 

from that carried by another component. This indicates that the 

product of the probabilities of each independent item equals 

the overall probability of the independent quantities in terms 

of statistics. The ICA findings are shown in Figure 16. 

Locate the approximation and detail coefficient vectors 

using DWT after PCA and ICA have been found. This is 

accomplished by utilizing the chosen wavelet to apply the 

function dwt to the original signal. It's contained in the 

formula. [CA1,CD1]=dwt('db8', Origin_Sig); provides the 

single-level DWT of the vector x using the wavelet provided 

by wname-db1. The dwt command returns the detail 

coefficients vector CD1 and approximation coefficients vector 

CA1 of the DWT. Figure 17 shows the detail coefficient and 

approximation coefficients for the DWT signal and the 

original signal. 

Test features are ultimately formed by combining the PCA 

features, independent coefficient, and DWT detail coefficient. 

Figure 18 shows the combined test features. 

An independent variable component signal is produced 

from a multivariate random signal using the feature extraction 

technique known as ICA. The independent components of the 

mixed signals can be separated using this technique. In light of 

this, independence denotes the inability to deduce information 

carried by one component from that carried by another. This 

means that the total probability of the independent quantities 

is the product of the probabilities of each independent 

quantity, as far as statistics are concerned. fastICA was utilized 

in this investigation. Aapo Hyvärinen of Helsinki University 

of Technology created this popular and successful ICA 

algorithm. Algorithm 3 provides an explanation of how 

fastICA operates. 

 

Algorithm 3: fastICA algorithm 

Step 1: Initialization 

        W = normRows(rand(r,size(Z,1))); % Random 

initial weights 

        k = 0; 

        delta = inf; 

Step 2: While delta > TOL && k < MAX_ITERS 

 k = k + 1; 

  % Update weights 

 Wlast = W; % Save last weights 

 Sk = permute(W * Zcw,[1, 3, 2]); 

 if USE_KURTOSIS  

% Kurtosis--- is a measure of the tailedness of a 

distribution. Tailedness is how often outliers occur. 

    G = 4 * Sk.3; 

  Gp = 12 * Sk.2; 

  else 

  % Negentropy 

  G = Sk .* exp(-0.5 * Sk.2); 

   Gp = (1 - Sk.2) .* exp(-0.5 * Sk.2); 

  end 

         end 

Step 3: Return fastICA component 

% Independent components 

fastICA = mean(unique(Wlast(:))); 

 

2.4 Classification model 

 

As many authors have succeeded in their classification 

experiment by using the machine learning models like SVM, 

KNN and MLP [9, 10] here also chosen these models for 

binary classification. The SVM is a discriminative classifier 

defined by a separating hyperplane. A two-dimensional plane 

is divided into two sections by a hyperplane, with one class on 

each side. There are many advantages to using a support vector 

classifier. Standard tools can be used to improve its properties 

in order to identify a single global optimum. A little bit more 

work is needed when using nonlinear bounds. Additionally, in 

comparison to other approaches, its performance is really 

good. One disadvantage is the inverse correlation between the 

number of samples and the difficulty of the problem rather 

than the size of the samples. 

 

 
 

Figure 19. MLP layer summary 
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MLP: Because of binary classification, the MLP consists of 

an input layer with 50 neurons, two hidden layers with 256 

neurons, and an output layer with 2 neurons. The input signals 

are additionally classified as AD or normal using the model. 

The leakyrelu activation function activates the neurons in the 

hidden layer, whereas the Softmax activation function 

activates the neurons in the output layer. Adam optimizes the 

MLP model with a cross entropy loss function. Figure 19 

provides an overview of the layers. 

KNN: One of the simplest and most popular classification 

algorithms is the KNN method, which ranks new data points 

according to how similar they are to their closest neighbors. 

There is competition as a result. The algorithms determine the 

distances between a given data point and each of the K nearby 

datapoints before choosing the category with the highest 

frequency for that particular data point. The commonly used 

unit of measurement for distance is the Euclidean distance. 

Thus, the final model consists just of the annotated data 

arranged spatially. Numerous industries, including genetics 

and forecasting, use this technique. In this case, the method 

outperforms SVM when there are more features. Additionally, 

KNN does better in our proposed 

 

 

3. RESULTS 

 

We completed the recommended task with Mat lab R2015b. 

MATLAB is an interactive environment and high-level 

technical computing language used for constructing 

algorithms, analyzing, visualizing, and executing numerical 

calculations. Technical computer problems can be solved 

more quickly with MATLAB than with more conventional 

programming languages like C, C++, and Fortran. This study 

employed the EEG values from two distinct classes: AD and 

normal. With a 1:5 ratio, the dataset is divided into training 

and test datasets. The training dataset is used to train the SVM. 

MLP and KNN models. The MLP with 40 iterations and a 

learning rate of 0.00050. After the networks have been trained 

using test features using the Adam optimizer, the network 

weight is adjusted using the category cross-entropy function. 

The parameters that were considered for this experiment are 

listed in Table 2. 

 

Table 2. Parameters 

 
Parameters MLP Model 

Optimizer Adam 

Activation function Leakyrelu and Softmax  

Loss function Categorical cross entropy 

Batch size 128 

Dataset EEG 

Epoch 40 

Learning rate 0.00050 

Normalization Batch normalization 

Pooling Maxpooling 

 

For classification, the SVM and KNN are also taken into 

account. The training set of this model is cross-validated ten 

times. Ten subsets are chosen at random from the training set, 

which is made up of the label set and data collection. The 

remaining part 9 samples are utilized as input in the training 

sample set process, and the remaining 1 in 10 holds are 

randomly selected as a test to assess the use of the sample set.  

 

 

4. DISCUSSION 

 

The effectiveness of the system is evaluated using the 

confusion matrix. The confusion matrices for SVM, KNN, and 

MLP can be seen in Tables 3-5. The KNN was able to 

accurately anticipate each test EEG signal with 100% accuracy 

rate by giving true positive and false positive rate of ten each 

respectively. 

 

Table 3. KNN confusion matrix 

 
Classes AD NC Accuracy Sensitivity Specificity 

AD 10 0 100% 100% 100% 

NC 0 10 100% 100% 100% 

Average 100% 100% 100% 

 

Table 4. SVM confusion matrix 

 
Classes AD NC Accuracy Sensitivity Specificity 

AD 7 3 75% 70% 80% 

NC 2 8 75% 80% 70% 

Average 75% 75% 75% 

 

Table 5. MLP confusion matrix 

 
Classes AD NC Accuracy Sensitivity Specificity 

AD 8 2 85% 80% 90% 

NC 1 9 85% 90% 80% 

Average 85% 80% 80% 

 

The SVM performs poorly, with an accuracy of 75%, where 

among ten AD test data 7 are displayed as AD and 3 are 

classified as NC, that is it gives false negative rate (FNR) of 5. 

The MLP gives an average accuracy of 85 percent, in that 2 

ADs are predicted as FNR, and 1 NC is predicted as AD. The 

confusion matrix of the SVM displays the frequency of missed 

test feature predictions. For both sensitivity and specificity, the 

model gives 80 percent. 

Figure 20 displays the MLP, SVM, and KNN performance 

for proposed method using EEG signals. Based on the 

comparison, KNN performs optimally, offering 100% 

accuracy, sensitivity, and specificity. As can be seen from the 

comparison graph, the SVM performs the worst, earning only 

45% of the possible points for specificity, sensitivity, and 

accuracy. The performance of existing models and the 

proposed model is given in Table 6. As compared to existing 

models, the proposed model shows better performance by 

giving an accuracy of 100%, 75%, and 85% for KNN, SVM, 

and MLP respectively. 

 

 
 

Figure 20. Performance comparison graph 
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Table 6. The performance comparison 

 
References Features Classifier Classes Subject Numbers Accuracy 

[6] Wavelet features SVM NC vs. AD 50, 50 96% 

[7] Wavelet features SVM NC vs. AD 50, 50 92% 

[8] Spectral and complex features KNN NC vs. AD 50, 50 94% 

Proposed method Complex features-PCA, ICA, and DWT 

KNN 

SVM 

MLP 

NC vs. AD 35, 31 

100% 

75% 

85% 

 

 

5. CONCLUSION 

 

Since AD requires a different kind of therapy, doctors 

treating suspected epilepsy can benefit from a useful 

diagnostic decision-support tool. Individuals are classified by 

KNN as either having an AD or not. Utilizing statistical 

characteristics taken from the DWT sub-bands of the EEG 

data, the accuracy of two feature extraction methods—PCA 

and ICA—was compared with SVM, KNN, and CNN in order 

to determine how well they understood the observed AD/NC 

patterns. Two scalar performance measures—specificity and 

sensitivity and accuracy—that were obtained from the 

confusion matrices served as the basis for the comparisons. 

Our research indicates that KNN, in conjunction with 

nonlinear feature extraction, may one day successfully replace 

intelligent diagnosis technologies. For this experiment, an 

Intel Pentium MATLAB R2015b with a 64-bit operating 

system and 8 GB of RAM was utilized. 
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