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The large market of real-time systems and the rapid evolution of processing capabilities 

to ensure compliance with time limits or constraints have motivated researchers to 

maximize the computing power, which makes the distribution and balancing of load 

between the different resources a major problem in these systems. The objective of any 

load balancing technique is to optimize the utilization of processors by specifying the 

locality of tasks. In this paper, we propose a new dynamic load balancing approach 

based on a real-time scheduling algorithm where tasks are distributed across three 

heterogeneous processor classes based on the average load of each class and the task 

deadline using a proposed fuzzy approach, which significantly reduces the energy 

consumption by assigning tasks with far too low deadlines to processor classes. The 

objective of the presented work is to distribute the load among processors fairly while 

respecting the time and energy constraints. In terms of load balancing our proposed 

approach gives very good results for strict periodic tasks in a multiprocessor real-time 

system with a significant reduction in energy consumption, while respecting task 

deadlines. 

Keywords: 

load balancing, real-time systems, scheduling, 

multiprocessor, earliest deadline first algorithm 

1. INTRODUCTION

With the increase in machine power, real-time systems were 

almost exclusively developed using dedicated systems. This 

operating system, attracting real-time users by its many 

advantages such as ease of development and freedom of 

extension of the system [1]. Real-time systems are crucial in 

applications where timing is critical and where failure to meet 

timing requirements can lead to serious consequences [2]. A 

real-time operating system (RTOS) must respect temporal 

constraints. RTOS is a multitasking operating system intended 

for real-time applications. An RTOS generally uses a 

scheduling algorithm specific to real-time systems, in order to 

provide developers with the ability to produce applications 

with deterministic and predictable behavior in the final system. 

On a multiprocessor machine there are two types of 

processors: those specialized for real-time that only execute 

real-time tasks and those that execute all non-real-time tasks. 

However, resource management in this type of infrastructure 

obviously poses much more complex problems than those 

posed by traditional systems. The problem of obtaining an 

optimal distribution of tasks to processors in a system is very 

complex and is well known to be NP-complete. The problem 

of load balancing aims to ensure that no processor is 

underloaded or overloaded and to establish a uniform load on 

all processors. It consists in taking advantage, in the best way, 

of the possibilities of using resources; in other words, load 

balancing must maintain an equivalent load on all processors. 

Our objective is to propose a real-time scheduling algorithm 

on multiprocessor machines that meets the needs of load 

balancing. We are trying to provide a new solution that is not 

penalizing for time and energy. 

Load balancing of tasks in real-time systems is a major 

problem for industrial and academic research. Users are 

increasingly demanding solutions that offer their real-time 

applications features that allow them to run faster and work to 

reduce their energy consumption. These needs generate 

challenges to meet important constraints (deadline, energy, 

load balancing). 

Load balancing ensures a uniform distribution of needs 

between different processors in order to generate more 

computing power. Load balancing techniques allow both to 

optimize the response time for each task, while avoiding 

unevenly overloading the processors. Load balancing was 

broadly classified into two categories, namely static load 

balancing and dynamic load balancing. 

The load balancer always seeks to address a specific 

problem. Among others, the hardware architecture on which 

the algorithms will operate, the nature of the tasks that will be 

executed, the algorithmic complexity that we allow ourselves, 

the energy consumption or the tolerance of errors that we agree 

must be taken into account. A compromise must therefore be 

found to meet the need for load balancing, but existing 

standard load balancing solutions are very penalizing in terms 

of performance, do not have a complete analysis and 

evaluation of the algorithms designed to manage a mixture of 

real-time tasks, including periodic, aperiodic and sporadic 

tasks. In addition, they can easily fail in a dynamic and 

adaptive context, which makes their adoption a question that 

is not always obvious. 
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2. RELATED WORK 

 

The following section presents the existing body of related 

work, providing a background for the current research effort. 

Alam and Varshney [3] proposed a dynamic load balancing 

strategy for a homogeneous multiprocessor system and apply 

it on a cube-based interconnect network called Folded Crossed 

Cube network. The experimental results show that a lower 

load imbalance factor has been achieved as well as the 

execution time. Parallel tasks are solved with the largest 

number of tasks. As the number of tasks increases, the 

execution time decreases with a lower load imbalance factor. 

Efficient architecture for running thread (EARTH) is a 

multithreaded programming and execution model that 

supports fine-grained and non-preemptive threads in a 

distributed memory environment. In this paper, the authors 

present the load balancing strategies for the runtime of a 

multithreaded system. They describe the design and 

implementation of a set of dynamic load balancing algorithms 

and study their performance in divide-and-conquer, regular, 

and irregular applications. The experimental study on the 

distributed memory multiprocessor IBP SP-2 indicates that a 

random load balancer performs as well as, and often better 

than, history-based load balancers [4]. 

Tan et al. [5] proposed a high-performance, real-time, 

dynamic multicore load balancing method for microkernel 

operating system. It has been implemented and tested on a 

microkernel operating system named Mginkgo. The results 

show that in case of load imbalance in the system, load 

balancing can be performed automatically so that all 

processors in the system can try to achieve the maximum 

throughput and resource utilization. 

A real-coded genetic algorithm has been proposed by 

Panwar et al. [6] to balance the load on each processor. To 

achieve the specified objective, a dual function is used here; 

first, the fitness function is used to reduce the execution time, 

while the second is used to maximize the load on the individual 

processor. The proposed algorithm is tested on a total of 12 

problems from the literature as well as three additional 

benchmark problems. The analysis shows that the proposed 

algorithm is efficient compared to what was previously 

known. 

Nirmala and Girijamma [7] proposed a hybrid genetic 

algorithm (HGA) combined with a stochastic development 

process to designate and order real-time tasks with priority 

requirements, the proposed algorithm works on the CPU 

utilization, the CPU queue length and the distance to its current 

load as linguistic inputs while framing the fuzzy set. The 

proposed algorithm has been evaluated with similar existing 

methods to prove its efficiency. The results prove that 

FLLBHGATS outperforms other techniques with respect to 

the quality of the solution. 

Ali and Suleman [8] presented various dynamic load 

balancing algorithms including round-robin, minimal 

connections, and weighted load balancing in real-time 

scenarios. This paper explores the implementation of dynamic 

load balancing strategies that adapt to different workloads in 

real-time, thereby improving user experience while 

minimizing latency and resource waste. By using adaptive 

techniques that consider both current workloads and future 

demand forecasts, distributed systems can achieve more 

balanced load distribution, resulting in improved performance 

and user satisfaction. 

The works that use static load balancing are often 

insufficient in real-time systems, leading to inefficient 

resource utilization. Dynamic load balancing addresses these 

challenges by continuously monitoring system performance 

metrics such as CPU utilization, energy consumption and 

redistributing tasks across processors based on real-time data, 

ensuring that no processor is overloaded while others remain 

underutilized. Most of the existing works do not consider very 

important constraints such as energy consumption and timing 

constraints while solving the load balancing problem. And in 

real-time systems, both of these constraints play a very 

important role for the system efficiency. In order to guarantee 

the processing of uncertain information (task arrival, expected 

completion date, etc.) of tasks across a set of tasks that run on 

multiple processors and satisfy certain constraints, the use of 

fuzzy logic is more than necessary. 

 

 

3. LOAD BALANCING 

 

3.1 Components of a load balancing system 

 

Since the balancing problem is a relatively old problem, 

many approaches have been proposed to solve it in different 

platforms. In computer systems and networks, load balancing 

algorithms [9-11] are methods used to distribute tasks or 

workloads across multiple resources (such as processors, 

servers, or network links) of a system to manage a fair amount 

of work. Load balancing allows distributing a set of tasks of a 

parallel program among the different processors of a 

multiprocessor system. 

To improve the system performance, load balancing 

optimizes the utilization of processors by specifying the 

locality of tasks through optimal decomposition, which allows 

distributing work fairly among the different processors to 

reduce the average response time and idle time. 

A load balancing system as shown in Figure 1 is composed 

of two essential elements: policies and mechanisms. 

Mechanisms physically realize the distribution of the load and 

provide the information required by policies, while policies 

consider the set of choices to be made to distribute a workload 

[12]. 

 

 
 

Figure 1. Components of a load balancing system [12] 

 

A load balancing mechanism can be described by two 

essential elements: a system load state manager, a control and 

decision-making element, and a load transfer element. The 

load state of the different processors is the main source of 

information for balancing techniques. Considering the 
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exchange of statistical data and the processors must provide 

additional resources for communication, collecting 

information on the load state of each processor causes 

additional costs. Load balancing algorithms can be classified 

in different ways; two main classifications are: 

• Static vs. dynamic approach: In static load balancing the 

assignment of tasks to processors is determined before the 

execution of the program based on some predefined criteria, 

such as the size, complexity or priority of the tasks, or the 

deadline, availability or location of resources, and remains 

fixed throughout its execution. The information about the 

execution time of tasks and the dynamic characteristics of the 

processors are assumed to be known a priori. Static load 

balancing solves many problems (e.g. those caused by the 

heterogeneity of processors) for most applications that have 

regular, predictable and homogeneous workloads and 

resources, because it can reduce the overhead and complexity 

of load balancing. The transient load due to multiple users on 

a network of workstations requires a dynamic approach to 

balance the load [13]. During execution, the static approach 

cannot adapt to changes in workload or resource conditions, 

such as failures that also require prior knowledge of the 

workload and resource characteristics, which may not be 

available or accurate. The dynamic approach, is a technique in 

which the assignment of tasks to processors is performed 

during execution; the assignment of tasks to processors is 

decided based on information that is collected about the load 

state of the system. The decision-making process is based on 

real-time measurements of the current state of the system and 

the characteristics of the tasks. This helps to improve the 

execution performance of tasks. Dynamic load balancing is 

more responsive, more flexible, and more robust. 

• Homogeneous and heterogeneous: resources are 

homogeneous in terms of capacity, which simplifies the 

estimation of the execution time of tasks. Homogeneous load 

balancing algorithms are designed to evenly distribute 

computational or network loads across multiple resources that 

are the same or similar in terms of processing capacity. Unlike 

homogeneous load balancing, heterogeneous load balancing 

algorithms take into account variations in processing power, 

memory, or other attributes among the available resources. 

The goal of the participation policy is to determine whether 

a processor is in an appropriate state to participate in the 

migration of a task as a source (overloaded processor) or as a 

receiver (underloaded processor). The selection policy 

determines the different unbalanced processors. There are 

three classes of selection policy: systematic policies based on 

theoretical results, cause work exchanges in a given order and 

designate processors alternately. A threshold-based policy 

where a processor compares its load with one or more 

thresholds. Depending on the result of this comparison, the 

processor will become a load transmitter or receiver. A 

comparison policy can also be used, where the processor 

adopts a behavior depending on the state of the set or a subset 

of processors [14]. 

 

3.2 Load assessment 

 

More precisely, load balancing algorithms can be 

distinguished by the Information Update Policy which 

attempts to obtain a state on the system by collecting 

information on the load state of the different processors (the 

main source of information for balancing techniques). The first 

goal of load measurement is to estimate the amount of 

processing allocated for each processor [15]. We distinguish 3 

classes of policies: 

• Periodic policies: in this case the information is collected 

regularly and it is stored either centrally or distributed on a set 

of processors. 

• On-demand policies: the information is assembled and 

sent each time a processor needs the information. 

• State change policies: transmit an update of the 

information because they pass from one remarkable state to 

another [14]. 

A load index is associated with each processor. The chosen 

load index must be easily representable, by a number if it 

represents a measured state or a logical level of load if it is 

compared with a threshold. Several indices are used to 

evaluate the load of a processor such as: the length of the queue 

of a processor, number of tasks processed, the execution time 

of the tasks currently running and the average response time 

of the tasks. 

 

3.3 Architecture of a balancing system 

 

Schopf [16] proposed phases to follow to design and 

develop a load balancing strategy in a system. As shown in the 

Figure 2, the proposed scheme is composed of three main 

phases: resource discovery, which generates a list of potential 

resources; gathering information about these resources and 

selecting candidate resources to participate in a balancing; and 

task execution, which includes storing and cleaning files. 

 

3.4 Properties of a load balancer 

 

The way a load balancer improves task execution is by 

moving a task to another processor or not moving it at all. To 

distinguish the quality of different load balancers, there are 

three main properties, which we seek to improve when 

modifying a load balancer [14]. 

1). Efficiency: When there is work available, processors 

should spend the minimum amount of idle time. The main 

quality of a load balancer should be able to use the machine's 

power to its maximum. 

2). Fairness: At a given time, tasks with the same priorities 

should be assigned the same execution time. This property can 

consist of comparing the execution times of two tasks with the 

same priority, if fairness is good, they are always very close to 

each other [14]. 

3). Locality: Tasks that have a particular affinity for one or 

more processors should be assigned to them first. 

 

 
 

Figure 2. Architecture of a balancing system [16] 
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4. REAL-TIME SYSTEMS 

 

Generally, current systems must respect temporal 

constraints. A system is called real-time when the data it 

collects and processes remains relevant for a well-defined 

duration. These systems are mainly used in the field of process 

control, where the execution of programs must be completed 

before a specific deadline. In other words, a system is real-time 

if it is able to respect temporal deadlines [17]. 

Real-time scheduling algorithm is an algorithm that can 

provide a sequence of the work performed by the processor(s); 

if the task deadlines are respected, the sequence is considered 

valid. Single-processor and multiprocessor scheduling 

algorithms are presented in this subsection [18]. 

• “Rate-monotonic” (RM): Scheduling algorithm: is a static 

method that gives the highest priority to the task with the 

highest frequency (i.e., the shortest period). The disadvantage 

of this algorithm is that it is only used for periodic tasks with 

deadlines on request. 

• “Inverse deadline” (ID): In this static scheduling 

algorithm, the highest priority is given to the task with the 

shortest deadline. Inverse Deadline is a method where the 

priorities of tasks are determined based on their respective 

deadlines. 

• “Least laxity first” (LLF): The “least laxity first” 

algorithm grants, at time t, the highest priority to the task with 

the smallest laxity. The calculation of the laxities of the tasks 

can be done in two ways: The laxity of a task represents its 

maximum deviation from its deadline to (re)start its execution, 

when the task is executed alone. 

• “Earliest deadline first” (EDF): Grants, at time t, the 

highest priority to the task with the earliest deadline. The 

EDF* notation is used to denote the EDF algorithm, where 

among the tasks with the same deadline, the one that comes 

first is selected [19]. 

If the tasks of our system can be executed on several 

available processors then the scheduling is of the 

multiprocessor type. Real-time systems must respect their 

constraints, particularly in strict real-time systems. Thus, the 

scheduling algorithm must be shared the tasks between the 

processors in an equitable manner to meet the load balancing 

needs. Our objective is to provide a new solution for load 

balancing, non-penalizing in terms of time constraint with 

minimized energy consumption. To achieve this objective in 

this work we must propose a real-time scheduling algorithm 

on a multiprocessor machine that estimates the workload of a 

system and distributes the load equally between the processors 

that are either overloaded or underloaded using a load 

balancing scheme. 
 

 

5. MULTIPROCESSOR CONCEPTS AND 

ARCHITECTURE 
 

The computational need of some applications, such as 

mechanical computing, image processing, is increasing even 

faster, there is a technological limit on the speed of processors; 

If the workload cannot be satisfactorily handled by one 

processor, the solution may be to apply multiple processors 

(parallelism is an attempt at an answer that is still relevant 

today). The use of multiple processors generates design 

considerations that must be taken into account for satisfactory 

operations and performance. 

A multiprocessor is a type of computer system that contains 

several processing units (processors) in a single machine. 

Running a program on a multiprocessor architecture is a 

difficult problem, because it involves deciding which task will 

be executed by which processor. The distribution of tasks on 

the different processors is a bigger problem. This can lead to a 

problem called: load imbalance. The different combinations of 

design solutions and trade-offs give rise to a wide variety of 

architectures (hardware and software) of multiprocessor 

systems (Figure 3). 

There are two main types of multiprocessor architectures: 

• Symmetric multiprocessor (SMP): is a simplest type of 

multiprocessor architecture in which all processors have equal 

access to memory and other resources. In this type of systems, 

all processors can perform any task and the operating system 

is responsible for distributing tasks equally among them. But 

it can be difficult to scale to a large number of processors. 

• Asymmetric multiprocessors (AMP): is a more difficult 

type of multiprocessor architecture in which each processor 

has its own local memory and access to remote memory is 

slower. These systems are used in specific tasks where a more 

powerful processor is required for a specific task. 

To ensure that processors work efficiently and in a 

coordinated manner multiprocessor systems use 

synchronization and coordination techniques to avoid 

conflicts. Multiprocessors are used in a wide variety of 

applications, they are common in web servers and databases, 

where multiple processors can handle a large number of 

requests simultaneously. They are also used from industrial 

process control systems to high-end supercomputers. 

 

 
 

Figure 3. Multi-processor architecture 
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6. RESULTS AND DISCUSSIONS 

 

6.1 The proposed approach 

 

Our approach explores the implementation of dynamic load 

balancing strategies that adapt to real-time systems. Figure 4 

presents the proposed approach to solve the load balancing 

problem for real-time systems. The proposed dynamic load 

balancing continuously monitors system performance metrics, 

such as CPU utilization, energy consumption, and allows the 

system to redistribute workloads across available processors 

based on real-time data, ensuring that no processor is 

overloaded while others remain underutilized. The paper 

presents a dynamic load balancing algorithm that uses the 

EDF* real-time scheduling algorithm to schedule tasks in 03 

different queues; namely, the high-speed processor queue 

HSPQ, the medium-speed processor queue MSPQ, and the 

low-speed processor queue LSPQ. The assignment of tasks to 

queues is done by the proposed fuzzy approach based on the 

task deadline and the utilization factor of each processor 

category. We examine the impact of our approach on system 

performance metrics such as response time, throughput and 

energy consumption. By using adaptive techniques that take 

into account workloads to achieve a more balanced load 

distribution. 

 

 
 

Figure 4. The proposed approach 

 

In this section, fuzzy logic is used to balance the load in 

order to share the load equally among the processors and to 

minimize the energy consumption in the real-time task 

scheduling algorithm for the multiprocessor environment. The 

proposed model expresses the different steps to be followed to 

solve the load balancing problem for multiprocessor real-time 

systems. The model we propose is based on the load balancing 

mechanism to make it capable of meeting all the constraints. 

Once the scheduling is triggered, it complies with the 

scheduling policy, which defines which resources to assign in 

priority to a given task. 

This paper proposes a dynamic load balancing algorithm 

that addresses the common problems that can reduce the 

efficiency of a multiprocessor system. These problems are 

response time, failure rate and processor utilization. 

(a) Response time: This is the time required for a task to be 

processed by the system. A good load balancer should reduce 

this time, ensuring that critical tasks are executed in the 

required time. 

(b) CPU utilization: This metric measures how much CPU 

resources are being used. An effective balancer should 

maximize this utilization while avoiding overloading certain 

processors. 

(c) Task failure rate: This indicates the percentage of tasks 

that fail to be processed in the expected time. A high failure 

rate may signal poor load management and requires 

adjustments in the balancing mechanism. 

 

6.2 Assumptions and considerations 

 

Some considerations and assumptions are made regarding 

the multiprocessor system for which the algorithm is designed. 

The main assumptions characterizing this multiprocessor 

system: 

the use of a system with homogeneous processors is not 

always the case in reality, but most of the current systems use 

heterogeneous processors to meet the needs of our system or 

the needs of users, which allows us to propose an approach on 

a system with heterogeneous processors (at the characteristic 

point the maximum execution speed). 

in reality most of the systems are multiprocessor systems 

(heterogeneous) which process dependent or independent 

tasks, periodic or aperiodic and in order not to complicate our 

approach by several parameters, we assumed that our system 

processes only independent tasks, periodic or aperiodic. In the 

context of real-time systems running on multiprocessor 

architectures, load balancing is crucial to ensure optimal 

performance, minimize response times, and maximize the 

utilization of processor resources. In this paper, the 

multiprocessor system is assumed to be configured using 

heterogeneous processors. 

Migrating a task to another processor makes the cache 

contents invalid for the first processor and the cache of the 

second processor must be repopulated. When executing a task 

on a specific processor, the most recently accessed data of the 

task is stored in the processor cache and successive memory 

accesses of the task are often satisfied in the cache. Due to the 

high cost of cache invalidation and repopulation, most SMP 

systems try to avoid process migration from one processor to 

another and try to keep a process running on the same 

processor. 

Unlike many existing works that use static methods, in our 

proposed approach, we used dynamic techniques that adjust 

the distribution of running tasks, often in response to load 

variations, to balance the load across different processors. This 

can increase the efficiency of the system, but requires careful 

management to avoid frequent interruptions and that can 

dynamically react to load changes. Dynamic load balancing 

algorithms have shown particular promise, allowing optimized 

redistribution of tasks in response to load variations. 

A single load manager monitors and distributes tasks across 

processors. This provides a holistic view of the system, which 

facilitates optimization, and to avoid inconsistencies and 

inefficiencies if communications between processors are not 

well managed. 

In our multiprocessor system, multiple tasks must be 

executed on multiple processors, each with specific timing 

constraints. The scheduling of these tasks is crucial to ensure 

that all tasks meet their deadlines (hard real-time system), 

especially in critical applications such as embedded systems 

or real-time control systems. 

 

6.3 Task modeling 

 

Each task will have a set of properties, including its period, 

execution time, and deadline. 
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- ri: The wake-up date ri of the kth instance: ri=r0+i*P 

- Pi: Period 

- Di: Critical delay 

- Di: The deadline of the ith instance: 

 

𝑑𝑖 = 𝑟𝑖 + 𝐷 = 𝑟0 + 𝑖∗𝑃 + 𝐷 (1) 

 

- Ci: induced load (execution time) 

It is clear that Ci depends on the processor used, so the 

duration of each instruction must be configurable. In the 

following we denote a real-time task system composed of n 

tasks Ti (i=1…n) by {T1(r1,C1,D1,P1), T2(r2,C2,D2,P2), ..., 

Tn(rn,Cn,Dn,Pn)} or more briefly by {Ti(ri,Ci,Di,Pi)}i = 1..n. 

Study period: If 𝐻 is the length of such an interval, then the 

program in [0, 𝐻] is the same as that in [𝑘𝐻, (𝑘 + 1)] for any 

integer 𝑘>0. This is the minimum time interval after which the 

program repeats itself. For a set of periodic tasks activated 

synchronously at time t=0, the study period is given by the 

least common multiple of the periods: 𝐻 = 𝑃(𝑇1, . . . , 𝑇𝑛). 
 

6.4 Feasibility 

 

The CPU utilization factor U is the fraction of CPU time 

spent on the task set execution. Since Ci/Pi is the fraction of 

CPU time spent on task i execution, the utilization factor for n 

tasks is given by: 

 

𝑈 =∑𝐶𝑖/𝑃𝑖

𝑛

𝑖=0

 (2) 

 

Processor heterogeneity: allows to integrate multiple 

processor types and computing units within our system to 

achieve optimized performance and efficiency. In such an 

environment, various processors collaborate to execute 

various computational tasks. The essence of processor 

heterogeneity lies in its ability to distribute workloads based 

on the strengths of each processor type. In our proposed 

approach, we group processors according to their execution 

speed into 03 different categories. Each processor class excels 

at handling specific types of tasks: high-speed (PHV) 

processors are well suited for tasks with close deadlines, 

medium-speed (PMV) processors for processing tasks with 

medium-term deadlines, and low-speed (PBV) processors for 

tasks with long-term deadlines. This distribution improves 

performance, as tasks are processed faster and more efficiently 

by the most suitable processors. In addition, it improves 

energy efficiency by reducing the computational load on less 

suitable processors, thereby reducing energy consumption. If 

the number of processors in a category I is defined by the term 

nbrPr (PIV), then the utilization factor of a category of 

processors 𝑈(𝑃𝐼𝑉) is given by: 

 

𝑈(𝑃𝐼𝑉) = (∑𝐶𝑖/𝑃𝑖)

𝑛

𝑖=0

/𝑛𝑏𝑟𝑃𝑟(𝑃𝐼𝑉) (3) 

 

To assign a task Ti to a free processor Pr(j) of category k 

that belongs to the set {PHV, PMV, PBV} we must calculate 

UMin (k) which represents the processor of category k with a 

minimal utilization factor. 

UMin (k)=Prj knowing that 

 

(Pr ) { (Pr ), }U j Min U i i K=    (4) 

The EDF algorithm is a dynamic scheduling rule that selects 

tasks according to their absolute deadlines. More precisely, 

tasks with closer deadlines will be executed at higher 

priorities. 

The arrival of a task Ti in the system is an event that requires 

a feasibility test to ensure that the insertion of this task does 

not exceed the capacity of all the processors available in our 

system. 

According to the reference [20], the feasibility test is 

defined by a sufficient condition and a second necessary 

condition. if these two conditions are verified, we ensure the 

existence of a real-time scheduling of the tasks. 

 

∑𝐶𝑖/𝑃𝑖

𝑛

𝑖=0

≤ 1 

∑𝐶𝑖/𝐷𝑖

𝑛

𝑖=0

≤ 1 

(5) 

 

When our system consists of R processors and N concurrent 

periodic tasks with individual timing constraints, the operating 

system must guarantee that each periodic instance is regularly 

activated at its own pace and completed within deadlines. The 

feasibility test becomes as follows: 

 

∑𝐶𝑖/𝑃𝑖

𝑛

𝑖=0

≤ 𝑅 (6) 

 

6.5 The fuzzy approach 

 

In our proposed approach, each task is inserted into one of 

the existing queues (queue of high-speed processors (HSPQ), 

queue of medium-speed processors (MSPQ), queue of low-

speed processors (LSPQ)) according to the following fuzzy 

inference rules (Figure 5): 

 

1)- If Di=Soon and U(PHV)≠Hight then insert Ti into 

HSPQ 

2)- If Di=Soon and U(PHV)=Hight and U(MSPQ)≠Hight 

then insert Ti into MSPQ 

3)- If Di=Soon and U(PHV)=Hight and U(MSPQ)=Hight 

and U(LSPQ)≠Hight then insert Ti into LSPQ 

4)- If Di=Soon and U(PHV)=Hight and U(MSPQ)=Hight 

and U(LSPQ)=Hight then insert Ti in HSPQ 

5)- If Di=medium and U(PMV)≠Hight then insert Ti in 

MSPQ 

6)- If Di=medium and U(PMV)=Hight and U(PHV)≠Hight 

then insert Ti in HSPQ 

7)- If Di=medium and U(PMV)=Hight and U(PHV)=Hight 

and U(PBV)≠Hight then insert Ti in LSPQ 

8)- If Di=medium and U(PMV)=Hight and U(PHV)=Hight 

and U(PBV)=Hight then insert Ti in MSPQ 

9)- If Di=far and U(PBV)≠Hight then insert Ti in LSPQ 

10)- If Di=far and U(PBV)=Hight and U(PMV)≠Hight then 

insert Ti in MSPQ 

11)- If Di=far and U(PBV)=Hight and U(PMV)=Hight and 

U(PHV)≠raise then insert Ti into HSPQ 

12)- If Di=far and U(PBV)=Hight and U(PMV)=Hight and 

U(PHV) = raise then insert Ti into LSPQ 

 

Fuzzy control plays a major role in solving problems that 

involve inaccurate and uncertain information. As shown in 

Figure 6, the proposed fuzzy approach uses 04 input variables 
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and one output variable: U(PHV), U(PMV), U(PBV), task 

deadline Di and the output variable FAPiV which represents 

the 03 categories of queues (HSPQ, MSPQ and LSPQ). 

Fuzzification is the transformation of numerical inputs Xi into 

a set of membership values in the interval [0, 1] in 

corresponding fuzzy sets. Fuzzification can be seen as a 

conversion of real variables into fuzzy variables (also called 

linguistic variables) defined on a representation space related 

to the inputs. The number of membership functions to be 

defined for each language variable is defined using human 

expertise [21]. The rules are formulated on the expert's 

knowledge of the system. These rules express the relationship 

between the fuzzy input sets and the corresponding fuzzy 

control sets. This representation space is normally a fuzzy 

subset. 

In our approach, each task is described with a 4tuple: 

Ti=Ti(ri,Ci,Di,Pi) where each linguistic variable corresponds 

to the triplet (X, T(X), U); X is a variable (U(PHV), U(PMV), 

U(PBV), Di). T(X) is the range of values of the variable and 

U is a finite or infinite set of fuzzy subsets. Figure 7 shows the 

fuzzification of the input variable U(PHV) that models the 

utilization factor of the high-speed processor category (PHV). 

It is presented as follows: X=U(PHV), T(X)=[0, 1], U={Hight, 

medium, low}. 

 

 
 

Figure 5. Fuzzy inference rules 

 

 
 

Figure 6. The approach fuzzy 

 

We have chosen 03 linguistic values {High, medium, low} 

of the input variable U(PHV) to express the utilization rate of 

the high-speed processor category that allow us to decide to 

which queue our task should be assigned according to the 

linguistic values, knowing that if the utilization factor U(PHV) 

is high then we avoid assigning the task Ti to their queue. Our 

approach uses fuzzy inference rules that use 04 fuzzy input 

variables and one output variable, based on the idea of 

assigning the task to the queue reserved for processors with the 

lowest utilization factor considering the task deadline. i.e. 

avoid assigning a task with a very close deadline, to the 

category of processors with medium or low speed to ensure the 

execution of this task before their deadline. 

Figure 8 shows the structure of the decision space of our 

fuzzy approach. The decision space shows how these decisions 

influence each other. To evaluate the proposed algorithms, we 

performed simulations under MATLAB 7.9.0.529. 

 

 
 

Figure 7. The input variable U (PHV) 

 

 
 

Figure 8. The set of decisions 

 

6.6 Simulation 

 

The simulation of our proposed approach is based on the 

implementation of our proposed scheduling algorithm under 

MATLAB 7.9.0.529 and by using a HP ProBook 4530s laptop 

with an Intel(R) Core TM i7 processor and a 09 GB RAM. Our 

goal in this simulation is to describe the execution scenario of 

tasks to meet the load balancing needs, and not the actual 

execution of tasks. 

In our approach, each task is described with a 4-tuple: 

Ti(ri,Ci,Di,Pi); ri : The wake-up date ri of the k-th instance, 

Ci: induced load (execution time), Pi: period, Di: critical 

delay. The choice of values for these criteria in our case study 

is based on scenarios that can apply in real machines. 

To demonstrate the effectiveness of our proposed approach, 
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we propose a case study presented in Table 1. 

In our case study, our system consists of 09 processors 

grouped in 03 different categories: 

PHV: category of high speed processors which contains 03 

processors (Pr 02, Pr 05 and Pr 07) with an execution speed 

Vi=1. 

PMV: category of medium speed processors which contains 

04 processors (Pr 01, Pr 04, Pr 06 and Pr 08) with an execution 

speed Vi=0.9. 

PBV: category of low speed processors which contains 02 

processors (Pr 03 and Pr 09) with an execution speed Vi=0.8. 

And 20 periodic tasks; each task described with a 4-tuple: 

Ti = (DA, Ci, Di, Pi). 

 

Table 1. Tasks description 

 
No. Arrival Date Execution Time Deadline Period 

T1 00 01 05 06 

T2 00 04 09 10 

T3 00 03 13 15 

T4 01 08 27 30 

T5 01 02 05 05 

T6 01 05 09 10 

T7 01 06 12 15 

T8 02 02 06 06 

T9 03 03 09 10 

T10 03 07 14 15 

T11 03 06 15 15 

T12 04 13 26 30 

T13 04 04 15 15 

T14 04 03 14 15 

T15 05 02 10 10 

T16 06 01 14 15 

T17 07 02 14 15 

T18 07 08 26 30 

T19 08 03 17 30 

T20 24 01 27 30 

 

 
 

Figure 9. Execution of tasks by PHV category processors 

 

 
 

Figure 10. Execution of tasks by PMV category processors 

 
 

Figure 11. Execution of tasks by PBV category processors 

 

Figures 8 and 9 represent the execution of tasks in the two 

categories of PHV and PMV processors respectively. Figure 

10 presents the execution of tasks in the category of PBV 

processors. 

 

6.7 Discussion of case study results 

 

The feasibility test is a necessity in our approach for each 

arrival of a task Ti; this requires calculating Ptot first (the 

global period of all tasks), Ptot=PPCM (6,10.15, 30, 5, 10, 15, 

6, 10, 15, 15, 30, 15, 15, 10, 15, 15, 30, 30, 30)=30. Calculating 

feasibility after each task arrives is an important step. The 03 

tasks T1, T2, T3 arrived in the system at time t=0. After the 

positive feasibility test, the proposed fuzzy approach 

associates for each task their appropriate queue (HSPQ, 

MSPQ, LSPQ) according to the utilization factor of each 

category of processors and the deadline of the task. then the 03 

tasks are inserted into the 03 queues in the following manner: 

 

- T1 insert into the HSPQ queue. 

- T2 insert into the MSPQ queue. 

- T3 insert into the LSPQ queue. 

 

After inserting the tasks into the queues in the order 

calculated by the EDF* real-time scheduling algorithm, the 

first task of each queue must be assigned to the available 

processor with a low utilization factor. 

With an execution speed V2=1, the task T1 uses the 

processor Pr 02 from the date t=0 for an execution duration 

C1=1, at the same time the task T2 uses the processor Pr 01 

with C2=4 and the execution speed V1=0.9, the task T3 used 

the processor Pr 03 from the date t=0 with C3=3 and the 

execution speed V3=0.8. In date t=task T1 completes 

execution for its first period and the arrival of tasks T4, T5, 

T6, T7 in the system. then the 04 tasks are inserted into the 03 

queues in the following manner: 

 

- T4 insert into the LSPQ queue. 

- T5 insert into the MSPQ queue. 

- T6 insert into the HSPQ queue. 

- T7 insert into the MSPQ queue. 

 

Task T4 used processor Pr 09 from date t=1 with C4=8 and 

execution speed V9=0.8, Task T5 used processor Pr 04 from 

date t=1 with C5=2 and execution speed V1=0.9, Task T6 used 

processor Pr 05 from date t=1 with C6=5 and execution speed 

V3=1 and Task T7 used processor Pr 06 from date t=1 with 

C7=6 and execution speed V3=0.9. In date t=2 it is the arrival 

of task T8 in the system and inserted into the MSPQ queue. 

Processor Pr 08 is available, then task T8 is executed by Pr 08 

with C8=2 and execution speed V8=0.9. In date t= 3, arrival 
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of tasks T9, T10, T11 in the system. then the 03 tasks are 

inserted into the 03 queues in the following manner: 

 

- T9 insert into the HSPQ queue. 

- T10 insert into the MSPQ queue. 

- T11 insert into the HSPQ queue. 

 

Task T9 used processor Pr 07 from date t=3 with C9=3 and 

execution speed V7=1, Task T11 used processor Pr 02 from 

date t=3 with C11=6 and execution speed V2=1, Task T10 

used processor Pr 04 from date t=3.22 (end of execution of the 

T5 task for its first period) with C10=7 and execution speed 

V4=0.9. In date t=4, arrival of tasks T12, T13, T14 in the 

system. then the 03 tasks are inserted into the 03 queues in the 

following manner: 

 

- T12 insert into the LSPQ queue. 

- T13 insert into the MSPQ queue. 

- T14 insert into the MSPQ queue. 

 

Task T12 used processor Pr 03 from date t=4 with C12=13 

and execution speed V3=0.8, Task T13 used processor Pr 01 

from date t=4.44(end of execution of the T2 task for its first 

period) with C13=4 and execution speed V1=0.9, Task T14 

used processor Pr 08 from date t=4.22 (end of execution of the 

T8 task for its first period) with C14=3 and execution speed 

V8=0.9. 

Similarly, all tasks complete their execution and meet their 

deadlines using our proposed approach. The scheduling of 

tasks by our proposed approach on different processor 

categories are shown in Figures 9-11. 

 

Table 2. Case study statistics 

 

No. 
Response Time 

for Each Period 

Respect 

Deadline 
Processor 

Utilization 

Factor 

T1 0, 1.55, 0, 0, 1 Yes Pr 01 70.67 % 

T2 0, 0, 0 Yes Pr 02 67.67 % 

T3 0, 0 Yes Pr 03 67.67 % 

T4 0 Yes Pr 04 67.67 % 

T5 0, 0, 0, 0, 1.33, 0 Yes Pr 05 67.67 % 

T6 0, 0, 1.77 Yes Pr 06 70.33 % 

T7 0, 0 Yes Pr 07 67.67 % 

T8 0, 0, 0, 0, 0 Yes Pr 08 68.13 % 

T9 0, 0, 2.44 Yes Pr 09 67.67 % 

T10 0.22, 0 Yes PHV 67.67 % 

T11 0, 1 Yes PMV 69.20 % 

T12 0 Yes PBV 67.67 % 

T13 0.44, 0 Yes Task failure rate 

T14 0.22, 0 Yes 00 % 

T15 1, 0, 0 Yes Average utilization factor 

T16 1.77, 1.77 Yes 68.35 % 

T17 1.66, 1 Yes Average response time 

T18 4 Yes 0.43 % 

T19 0.88 Yes Number of migrations 

T20 0.55 Yes 00 % 

 

The results presented in Table 2 express that the proposed 

approach for dynamic load balancing is efficient by the fair 

distribution of load between the different processors and the 

respect of deadline for all the tasks. The utilization factor of 

each processor is very close for the average utilization factor 

and that the average response time is very low equal to 0.43. 

Without using the migration our proposed approach allows the 

optimization of the performances and the use of the resources 

in an efficient way. 

The most studied energy calculation model in the literature 

is defined as follows: if the speed of a machine is equal to a 

value ‘V’ for a given duration ∆, then the energy consumption 

power is given by Vα for a constant α>1, and the total energy 

consumed is Vα×∆. If we now assume that the speed of the 

machine is given by a function of time, V(t), then the total 

energy consumed during the duration ∆ is calculated by 

integrating the power over the duration ∆: ∫∆ S(t)αdt (15) 

[FAD 12]: 

 

Energy (Pr 02)=1*(1)2+6*(1)2+2*(1)2+2*(1)2+7*(1)2+ 

2*(1)2=20 joules. 

Energy (Pr 05)=5*(1)2+2*(1)2+4*(1)2+6*(1)2+1*(1)2+ 

2*(1)2=20 joules. 

Energy (Pr 07)=3*(1)2+2*(1)2+2*(1)2+1*(1)2+2*(1)2+ 

1*(1)2+6*(1)2+1*(1)2+2*(1)2=20 joules. 

Energy (Pr 01)=4.44*(0.9)2+4.44*(0.9)2+5.55*(0.9)2+ 

4.44*(0.9)2+2.22*(0.9)2=17.08 joules. 

Energy (Pr 04)=1.11*(0.9)2+7.77*(0.9)2+3.33*(0.9)2+ 

3.33*(0.9)2+2.22*(0.9)2+ 1.11*(0.9)2=15.28 joules 

Energy (Pr 06)=6.66*(0.9)2+1.11*(0.9)2+2.22*(0.9)2+ 

2.22*(0.9)2+4.44*(0.9)2+ 4.44*(0.9)2=17.08 joules 

Energy (Pr 08)=2.22*(0.9)2+3.33*(0.9)2+2.22*(0.9)2+ 

3.33*(0.9)2+2.22*(0.9)2+6.66*(0.9)2=16.18 joules. 

Energy (Pr 03)=3.75*(0.8)2+16.25*(0.8)2=12.80 joules 

Energy (Pr 09)=10*(0.8)2+10*(0.8)2=12.80 joules 

Total energy our approach=20+20+20+17.08+15.28+ 

17.08+16.18+12.80+12.80= 151.22 joules 

Total energy by EDF*.=5+12+6+8+12+15+12+ 10+9+14+ 

12+13+8+6+6+2+4+8+3+1=166 joules 

 

Table 3 compares between our work and some pertinent 

related works. We defined nine comparison criteria that are: 

 

• Level: at what level, load balancing is considered 

(managed) (RTOS for Real Time Operating System) 

• TP: Tasks Periodicity (P: periodic/ A: aperiodic/ S: 

sporadic/ M: Mix) 

• TD: Tasks Dependency (I: independent, D: dependent) 

• TC: Temporal Constraints (H: hard, S: soft, F: firm, M: 

Mix) 

• SP: HM: homogeneous, HT: heterogeneous 

• EC: Energy consumption reduction 

• LB: Load balancing (D: dynamic, S: static) 

• UD: Uncertain Data support 

 

Table 3. Comparison between our work and some pertinent 

related works 

 
Work Level  TP TD TC SP EC LB UD 

MAH16 Application A I S HM No D No 

PRA 01 RTOS A I S HT No S No 

KUN21 RTOS M D M HM No S No 

OOP22 RTOS A I S HM No D No 

NIR22 RTOS A I H HM No D Yes 

ASA24 Application A I S HM Yes D No 

Our work RTOS P I H HT Yes D Yes 

 

 

7. CONCLUSION 

 

Dynamic load balancing is an essential strategy to ensure 

the equitable distribution of tasks among different processors 

in real-time systems, which allows for the optimization of 

performance and efficient resource utilization. 
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The work of this paper will allow designers and developers 

of real-time systems to implement more efficient and reliable 

systems in terms of load balancing, also meeting the 

requirements of energy consumption and respecting the 

deadline of all tasks. By implementing efficient techniques for 

assigning tasks to processors and by continuously monitoring 

performance indicators to ensure that the system remains 

efficient under varying loads. Due to the uncertainty of task 

information such as the exact execution time (before the task 

execution) and the arrival dates of future tasks arrive, which 

justify the use of fuzzy logic for the assignment of tasks in 

different queues. 

A significant improvement in the efficiency of real-time 

systems by the proposed dynamic load balancing presented by 

the results of our approach despite the arrival of a large number 

of tasks at different dates and with different execution times, 

in a system that uses heterogeneous processors. The 20 tasks 

of our case study their utilization factors do not exceed 1.98% 

as a difference compared to the average utilization factor equal 

to 68.35% in a system that uses heterogeneous processors for 

the execution of different tasks. 

The work in this paper opens the way for interesting future 

research in real-time systems and load balancing. We plan to 

make a comparative study on the impact of different 

scheduling strategies on load balancing. Moreover, the 

effectiveness of the EDF algorithm in more complex scenarios 

such as sporadic and not only periodic task usage could be 

promising research avenues. 
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