
Fuzzy Dynamic Load Balancing for Real-Time Systems on Heterogeneous Multiprocessors

Ridha Mehalaine* , Djamel Nessah , Meriem Djezzar , Mounir Hemam

ICOSI Laboratory, Computer Science Department, Abbes Laghrour University, Khenchela 4000, Algeria

Corresponding Author Email: r_mahalaine@univ-khenchela.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120323 ABSTRACT

Received: 26 December 2024

Revised: 14 February 2025

Accepted: 20 February 2025

Available online: 31 March 2025

The large market of real-time systems and the rapid evolution of processing capabilities

to ensure compliance with time limits or constraints have motivated researchers to

maximize the computing power, which makes the distribution and balancing of load

between the different resources a major problem in these systems. The objective of any

load balancing technique is to optimize the utilization of processors by specifying the

locality of tasks. In this paper, we propose a new dynamic load balancing approach

based on a real-time scheduling algorithm where tasks are distributed across three

heterogeneous processor classes based on the average load of each class and the task

deadline using a proposed fuzzy approach, which significantly reduces the energy

consumption by assigning tasks with far too low deadlines to processor classes. The

objective of the presented work is to distribute the load among processors fairly while

respecting the time and energy constraints. In terms of load balancing our proposed

approach gives very good results for strict periodic tasks in a multiprocessor real-time

system with a significant reduction in energy consumption, while respecting task

deadlines.

Keywords:

load balancing, real-time systems, scheduling,

multiprocessor, earliest deadline first algorithm

1. INTRODUCTION

With the increase in machine power, real-time systems were

almost exclusively developed using dedicated systems. This

operating system, attracting real-time users by its many

advantages such as ease of development and freedom of

extension of the system [1]. Real-time systems are crucial in

applications where timing is critical and where failure to meet

timing requirements can lead to serious consequences [2]. A

real-time operating system (RTOS) must respect temporal

constraints. RTOS is a multitasking operating system intended

for real-time applications. An RTOS generally uses a

scheduling algorithm specific to real-time systems, in order to

provide developers with the ability to produce applications

with deterministic and predictable behavior in the final system.

On a multiprocessor machine there are two types of

processors: those specialized for real-time that only execute

real-time tasks and those that execute all non-real-time tasks.

However, resource management in this type of infrastructure

obviously poses much more complex problems than those

posed by traditional systems. The problem of obtaining an

optimal distribution of tasks to processors in a system is very

complex and is well known to be NP-complete. The problem

of load balancing aims to ensure that no processor is

underloaded or overloaded and to establish a uniform load on

all processors. It consists in taking advantage, in the best way,

of the possibilities of using resources; in other words, load

balancing must maintain an equivalent load on all processors.

Our objective is to propose a real-time scheduling algorithm

on multiprocessor machines that meets the needs of load

balancing. We are trying to provide a new solution that is not

penalizing for time and energy.

Load balancing of tasks in real-time systems is a major

problem for industrial and academic research. Users are

increasingly demanding solutions that offer their real-time

applications features that allow them to run faster and work to

reduce their energy consumption. These needs generate

challenges to meet important constraints (deadline, energy,

load balancing).

Load balancing ensures a uniform distribution of needs

between different processors in order to generate more

computing power. Load balancing techniques allow both to

optimize the response time for each task, while avoiding

unevenly overloading the processors. Load balancing was

broadly classified into two categories, namely static load

balancing and dynamic load balancing.

The load balancer always seeks to address a specific

problem. Among others, the hardware architecture on which

the algorithms will operate, the nature of the tasks that will be

executed, the algorithmic complexity that we allow ourselves,

the energy consumption or the tolerance of errors that we agree

must be taken into account. A compromise must therefore be

found to meet the need for load balancing, but existing

standard load balancing solutions are very penalizing in terms

of performance, do not have a complete analysis and

evaluation of the algorithms designed to manage a mixture of

real-time tasks, including periodic, aperiodic and sporadic

tasks. In addition, they can easily fail in a dynamic and

adaptive context, which makes their adoption a question that

is not always obvious.

Mathematical Modelling of Engineering Problems
Vol. 12, No. 3, March, 2025, pp. 971-981

Journal homepage: http://iieta.org/journals/mmep

971

https://orcid.org/0009-0000-8723-7286
https://orcid.org/0009-0004-8671-7017
https://orcid.org/0000-0003-0004-1227
https://orcid.org/0000-0002-4410-4528
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120323&domain=pdf

2. RELATED WORK

The following section presents the existing body of related

work, providing a background for the current research effort.

Alam and Varshney [3] proposed a dynamic load balancing

strategy for a homogeneous multiprocessor system and apply

it on a cube-based interconnect network called Folded Crossed

Cube network. The experimental results show that a lower

load imbalance factor has been achieved as well as the

execution time. Parallel tasks are solved with the largest

number of tasks. As the number of tasks increases, the

execution time decreases with a lower load imbalance factor.

Efficient architecture for running thread (EARTH) is a

multithreaded programming and execution model that

supports fine-grained and non-preemptive threads in a

distributed memory environment. In this paper, the authors

present the load balancing strategies for the runtime of a

multithreaded system. They describe the design and

implementation of a set of dynamic load balancing algorithms

and study their performance in divide-and-conquer, regular,

and irregular applications. The experimental study on the

distributed memory multiprocessor IBP SP-2 indicates that a

random load balancer performs as well as, and often better

than, history-based load balancers [4].

Tan et al. [5] proposed a high-performance, real-time,

dynamic multicore load balancing method for microkernel

operating system. It has been implemented and tested on a

microkernel operating system named Mginkgo. The results

show that in case of load imbalance in the system, load

balancing can be performed automatically so that all

processors in the system can try to achieve the maximum

throughput and resource utilization.

A real-coded genetic algorithm has been proposed by

Panwar et al. [6] to balance the load on each processor. To

achieve the specified objective, a dual function is used here;

first, the fitness function is used to reduce the execution time,

while the second is used to maximize the load on the individual

processor. The proposed algorithm is tested on a total of 12

problems from the literature as well as three additional

benchmark problems. The analysis shows that the proposed

algorithm is efficient compared to what was previously

known.

Nirmala and Girijamma [7] proposed a hybrid genetic

algorithm (HGA) combined with a stochastic development

process to designate and order real-time tasks with priority

requirements, the proposed algorithm works on the CPU

utilization, the CPU queue length and the distance to its current

load as linguistic inputs while framing the fuzzy set. The

proposed algorithm has been evaluated with similar existing

methods to prove its efficiency. The results prove that

FLLBHGATS outperforms other techniques with respect to

the quality of the solution.

Ali and Suleman [8] presented various dynamic load

balancing algorithms including round-robin, minimal

connections, and weighted load balancing in real-time

scenarios. This paper explores the implementation of dynamic

load balancing strategies that adapt to different workloads in

real-time, thereby improving user experience while

minimizing latency and resource waste. By using adaptive

techniques that consider both current workloads and future

demand forecasts, distributed systems can achieve more

balanced load distribution, resulting in improved performance

and user satisfaction.

The works that use static load balancing are often

insufficient in real-time systems, leading to inefficient

resource utilization. Dynamic load balancing addresses these

challenges by continuously monitoring system performance

metrics such as CPU utilization, energy consumption and

redistributing tasks across processors based on real-time data,

ensuring that no processor is overloaded while others remain

underutilized. Most of the existing works do not consider very

important constraints such as energy consumption and timing

constraints while solving the load balancing problem. And in

real-time systems, both of these constraints play a very

important role for the system efficiency. In order to guarantee

the processing of uncertain information (task arrival, expected

completion date, etc.) of tasks across a set of tasks that run on

multiple processors and satisfy certain constraints, the use of

fuzzy logic is more than necessary.

3. LOAD BALANCING

3.1 Components of a load balancing system

Since the balancing problem is a relatively old problem,

many approaches have been proposed to solve it in different

platforms. In computer systems and networks, load balancing

algorithms [9-11] are methods used to distribute tasks or

workloads across multiple resources (such as processors,

servers, or network links) of a system to manage a fair amount

of work. Load balancing allows distributing a set of tasks of a

parallel program among the different processors of a

multiprocessor system.

To improve the system performance, load balancing

optimizes the utilization of processors by specifying the

locality of tasks through optimal decomposition, which allows

distributing work fairly among the different processors to

reduce the average response time and idle time.

A load balancing system as shown in Figure 1 is composed

of two essential elements: policies and mechanisms.

Mechanisms physically realize the distribution of the load and

provide the information required by policies, while policies

consider the set of choices to be made to distribute a workload

[12].

Figure 1. Components of a load balancing system [12]

A load balancing mechanism can be described by two

essential elements: a system load state manager, a control and

decision-making element, and a load transfer element. The

load state of the different processors is the main source of

information for balancing techniques. Considering the

972

exchange of statistical data and the processors must provide

additional resources for communication, collecting

information on the load state of each processor causes

additional costs. Load balancing algorithms can be classified

in different ways; two main classifications are:

• Static vs. dynamic approach: In static load balancing the

assignment of tasks to processors is determined before the

execution of the program based on some predefined criteria,

such as the size, complexity or priority of the tasks, or the

deadline, availability or location of resources, and remains

fixed throughout its execution. The information about the

execution time of tasks and the dynamic characteristics of the

processors are assumed to be known a priori. Static load

balancing solves many problems (e.g. those caused by the

heterogeneity of processors) for most applications that have

regular, predictable and homogeneous workloads and

resources, because it can reduce the overhead and complexity

of load balancing. The transient load due to multiple users on

a network of workstations requires a dynamic approach to

balance the load [13]. During execution, the static approach

cannot adapt to changes in workload or resource conditions,

such as failures that also require prior knowledge of the

workload and resource characteristics, which may not be

available or accurate. The dynamic approach, is a technique in

which the assignment of tasks to processors is performed

during execution; the assignment of tasks to processors is

decided based on information that is collected about the load

state of the system. The decision-making process is based on

real-time measurements of the current state of the system and

the characteristics of the tasks. This helps to improve the

execution performance of tasks. Dynamic load balancing is

more responsive, more flexible, and more robust.

• Homogeneous and heterogeneous: resources are

homogeneous in terms of capacity, which simplifies the

estimation of the execution time of tasks. Homogeneous load

balancing algorithms are designed to evenly distribute

computational or network loads across multiple resources that

are the same or similar in terms of processing capacity. Unlike

homogeneous load balancing, heterogeneous load balancing

algorithms take into account variations in processing power,

memory, or other attributes among the available resources.

The goal of the participation policy is to determine whether

a processor is in an appropriate state to participate in the

migration of a task as a source (overloaded processor) or as a

receiver (underloaded processor). The selection policy

determines the different unbalanced processors. There are

three classes of selection policy: systematic policies based on

theoretical results, cause work exchanges in a given order and

designate processors alternately. A threshold-based policy

where a processor compares its load with one or more

thresholds. Depending on the result of this comparison, the

processor will become a load transmitter or receiver. A

comparison policy can also be used, where the processor

adopts a behavior depending on the state of the set or a subset

of processors [14].

3.2 Load assessment

More precisely, load balancing algorithms can be

distinguished by the Information Update Policy which

attempts to obtain a state on the system by collecting

information on the load state of the different processors (the

main source of information for balancing techniques). The first

goal of load measurement is to estimate the amount of

processing allocated for each processor [15]. We distinguish 3

classes of policies:

• Periodic policies: in this case the information is collected

regularly and it is stored either centrally or distributed on a set

of processors.

• On-demand policies: the information is assembled and

sent each time a processor needs the information.

• State change policies: transmit an update of the

information because they pass from one remarkable state to

another [14].

A load index is associated with each processor. The chosen

load index must be easily representable, by a number if it

represents a measured state or a logical level of load if it is

compared with a threshold. Several indices are used to

evaluate the load of a processor such as: the length of the queue

of a processor, number of tasks processed, the execution time

of the tasks currently running and the average response time

of the tasks.

3.3 Architecture of a balancing system

Schopf [16] proposed phases to follow to design and

develop a load balancing strategy in a system. As shown in the

Figure 2, the proposed scheme is composed of three main

phases: resource discovery, which generates a list of potential

resources; gathering information about these resources and

selecting candidate resources to participate in a balancing; and

task execution, which includes storing and cleaning files.

3.4 Properties of a load balancer

The way a load balancer improves task execution is by

moving a task to another processor or not moving it at all. To

distinguish the quality of different load balancers, there are

three main properties, which we seek to improve when

modifying a load balancer [14].

1). Efficiency: When there is work available, processors

should spend the minimum amount of idle time. The main

quality of a load balancer should be able to use the machine's

power to its maximum.

2). Fairness: At a given time, tasks with the same priorities

should be assigned the same execution time. This property can

consist of comparing the execution times of two tasks with the

same priority, if fairness is good, they are always very close to

each other [14].

3). Locality: Tasks that have a particular affinity for one or

more processors should be assigned to them first.

Figure 2. Architecture of a balancing system [16]

973

4. REAL-TIME SYSTEMS

Generally, current systems must respect temporal

constraints. A system is called real-time when the data it

collects and processes remains relevant for a well-defined

duration. These systems are mainly used in the field of process

control, where the execution of programs must be completed

before a specific deadline. In other words, a system is real-time

if it is able to respect temporal deadlines [17].

Real-time scheduling algorithm is an algorithm that can

provide a sequence of the work performed by the processor(s);

if the task deadlines are respected, the sequence is considered

valid. Single-processor and multiprocessor scheduling

algorithms are presented in this subsection [18].

• “Rate-monotonic” (RM): Scheduling algorithm: is a static

method that gives the highest priority to the task with the

highest frequency (i.e., the shortest period). The disadvantage

of this algorithm is that it is only used for periodic tasks with

deadlines on request.

• “Inverse deadline” (ID): In this static scheduling

algorithm, the highest priority is given to the task with the

shortest deadline. Inverse Deadline is a method where the

priorities of tasks are determined based on their respective

deadlines.

• “Least laxity first” (LLF): The “least laxity first”

algorithm grants, at time t, the highest priority to the task with

the smallest laxity. The calculation of the laxities of the tasks

can be done in two ways: The laxity of a task represents its

maximum deviation from its deadline to (re)start its execution,

when the task is executed alone.

• “Earliest deadline first” (EDF): Grants, at time t, the

highest priority to the task with the earliest deadline. The

EDF* notation is used to denote the EDF algorithm, where

among the tasks with the same deadline, the one that comes

first is selected [19].

If the tasks of our system can be executed on several

available processors then the scheduling is of the

multiprocessor type. Real-time systems must respect their

constraints, particularly in strict real-time systems. Thus, the

scheduling algorithm must be shared the tasks between the

processors in an equitable manner to meet the load balancing

needs. Our objective is to provide a new solution for load

balancing, non-penalizing in terms of time constraint with

minimized energy consumption. To achieve this objective in

this work we must propose a real-time scheduling algorithm

on a multiprocessor machine that estimates the workload of a

system and distributes the load equally between the processors

that are either overloaded or underloaded using a load

balancing scheme.

5. MULTIPROCESSOR CONCEPTS AND

ARCHITECTURE

The computational need of some applications, such as

mechanical computing, image processing, is increasing even

faster, there is a technological limit on the speed of processors;

If the workload cannot be satisfactorily handled by one

processor, the solution may be to apply multiple processors

(parallelism is an attempt at an answer that is still relevant

today). The use of multiple processors generates design

considerations that must be taken into account for satisfactory

operations and performance.

A multiprocessor is a type of computer system that contains

several processing units (processors) in a single machine.

Running a program on a multiprocessor architecture is a

difficult problem, because it involves deciding which task will

be executed by which processor. The distribution of tasks on

the different processors is a bigger problem. This can lead to a

problem called: load imbalance. The different combinations of

design solutions and trade-offs give rise to a wide variety of

architectures (hardware and software) of multiprocessor

systems (Figure 3).

There are two main types of multiprocessor architectures:

• Symmetric multiprocessor (SMP): is a simplest type of

multiprocessor architecture in which all processors have equal

access to memory and other resources. In this type of systems,

all processors can perform any task and the operating system

is responsible for distributing tasks equally among them. But

it can be difficult to scale to a large number of processors.

• Asymmetric multiprocessors (AMP): is a more difficult

type of multiprocessor architecture in which each processor

has its own local memory and access to remote memory is

slower. These systems are used in specific tasks where a more

powerful processor is required for a specific task.

To ensure that processors work efficiently and in a

coordinated manner multiprocessor systems use

synchronization and coordination techniques to avoid

conflicts. Multiprocessors are used in a wide variety of

applications, they are common in web servers and databases,

where multiple processors can handle a large number of

requests simultaneously. They are also used from industrial

process control systems to high-end supercomputers.

Figure 3. Multi-processor architecture

974

6. RESULTS AND DISCUSSIONS

6.1 The proposed approach

Our approach explores the implementation of dynamic load

balancing strategies that adapt to real-time systems. Figure 4

presents the proposed approach to solve the load balancing

problem for real-time systems. The proposed dynamic load

balancing continuously monitors system performance metrics,

such as CPU utilization, energy consumption, and allows the

system to redistribute workloads across available processors

based on real-time data, ensuring that no processor is

overloaded while others remain underutilized. The paper

presents a dynamic load balancing algorithm that uses the

EDF* real-time scheduling algorithm to schedule tasks in 03

different queues; namely, the high-speed processor queue

HSPQ, the medium-speed processor queue MSPQ, and the

low-speed processor queue LSPQ. The assignment of tasks to

queues is done by the proposed fuzzy approach based on the

task deadline and the utilization factor of each processor

category. We examine the impact of our approach on system

performance metrics such as response time, throughput and

energy consumption. By using adaptive techniques that take

into account workloads to achieve a more balanced load

distribution.

Figure 4. The proposed approach

In this section, fuzzy logic is used to balance the load in

order to share the load equally among the processors and to

minimize the energy consumption in the real-time task

scheduling algorithm for the multiprocessor environment. The

proposed model expresses the different steps to be followed to

solve the load balancing problem for multiprocessor real-time

systems. The model we propose is based on the load balancing

mechanism to make it capable of meeting all the constraints.

Once the scheduling is triggered, it complies with the

scheduling policy, which defines which resources to assign in

priority to a given task.

This paper proposes a dynamic load balancing algorithm

that addresses the common problems that can reduce the

efficiency of a multiprocessor system. These problems are

response time, failure rate and processor utilization.

(a) Response time: This is the time required for a task to be

processed by the system. A good load balancer should reduce

this time, ensuring that critical tasks are executed in the

required time.

(b) CPU utilization: This metric measures how much CPU

resources are being used. An effective balancer should

maximize this utilization while avoiding overloading certain

processors.

(c) Task failure rate: This indicates the percentage of tasks

that fail to be processed in the expected time. A high failure

rate may signal poor load management and requires

adjustments in the balancing mechanism.

6.2 Assumptions and considerations

Some considerations and assumptions are made regarding

the multiprocessor system for which the algorithm is designed.

The main assumptions characterizing this multiprocessor

system:

the use of a system with homogeneous processors is not

always the case in reality, but most of the current systems use

heterogeneous processors to meet the needs of our system or

the needs of users, which allows us to propose an approach on

a system with heterogeneous processors (at the characteristic

point the maximum execution speed).

in reality most of the systems are multiprocessor systems

(heterogeneous) which process dependent or independent

tasks, periodic or aperiodic and in order not to complicate our

approach by several parameters, we assumed that our system

processes only independent tasks, periodic or aperiodic. In the

context of real-time systems running on multiprocessor

architectures, load balancing is crucial to ensure optimal

performance, minimize response times, and maximize the

utilization of processor resources. In this paper, the

multiprocessor system is assumed to be configured using

heterogeneous processors.

Migrating a task to another processor makes the cache

contents invalid for the first processor and the cache of the

second processor must be repopulated. When executing a task

on a specific processor, the most recently accessed data of the

task is stored in the processor cache and successive memory

accesses of the task are often satisfied in the cache. Due to the

high cost of cache invalidation and repopulation, most SMP

systems try to avoid process migration from one processor to

another and try to keep a process running on the same

processor.

Unlike many existing works that use static methods, in our

proposed approach, we used dynamic techniques that adjust

the distribution of running tasks, often in response to load

variations, to balance the load across different processors. This

can increase the efficiency of the system, but requires careful

management to avoid frequent interruptions and that can

dynamically react to load changes. Dynamic load balancing

algorithms have shown particular promise, allowing optimized

redistribution of tasks in response to load variations.

A single load manager monitors and distributes tasks across

processors. This provides a holistic view of the system, which

facilitates optimization, and to avoid inconsistencies and

inefficiencies if communications between processors are not

well managed.

In our multiprocessor system, multiple tasks must be

executed on multiple processors, each with specific timing

constraints. The scheduling of these tasks is crucial to ensure

that all tasks meet their deadlines (hard real-time system),

especially in critical applications such as embedded systems

or real-time control systems.

6.3 Task modeling

Each task will have a set of properties, including its period,

execution time, and deadline.

975

- ri: The wake-up date ri of the kth instance: ri=r0+i*P

- Pi: Period

- Di: Critical delay

- Di: The deadline of the ith instance:

𝑑𝑖 = 𝑟𝑖 + 𝐷 = 𝑟0 + 𝑖∗𝑃 + 𝐷 (1)

- Ci: induced load (execution time)

It is clear that Ci depends on the processor used, so the

duration of each instruction must be configurable. In the

following we denote a real-time task system composed of n

tasks Ti (i=1…n) by {T1(r1,C1,D1,P1), T2(r2,C2,D2,P2), ...,

Tn(rn,Cn,Dn,Pn)} or more briefly by {Ti(ri,Ci,Di,Pi)}i = 1..n.

Study period: If 𝐻 is the length of such an interval, then the

program in [0, 𝐻] is the same as that in [𝑘𝐻, (𝑘 + 1)] for any

integer 𝑘>0. This is the minimum time interval after which the

program repeats itself. For a set of periodic tasks activated

synchronously at time t=0, the study period is given by the

least common multiple of the periods: 𝐻 = 𝑃(𝑇1, . . . , 𝑇𝑛).

6.4 Feasibility

The CPU utilization factor U is the fraction of CPU time

spent on the task set execution. Since Ci/Pi is the fraction of

CPU time spent on task i execution, the utilization factor for n

tasks is given by:

𝑈 =∑𝐶𝑖/𝑃𝑖

𝑛

𝑖=0

 (2)

Processor heterogeneity: allows to integrate multiple

processor types and computing units within our system to

achieve optimized performance and efficiency. In such an

environment, various processors collaborate to execute

various computational tasks. The essence of processor

heterogeneity lies in its ability to distribute workloads based

on the strengths of each processor type. In our proposed

approach, we group processors according to their execution

speed into 03 different categories. Each processor class excels

at handling specific types of tasks: high-speed (PHV)

processors are well suited for tasks with close deadlines,

medium-speed (PMV) processors for processing tasks with

medium-term deadlines, and low-speed (PBV) processors for

tasks with long-term deadlines. This distribution improves

performance, as tasks are processed faster and more efficiently

by the most suitable processors. In addition, it improves

energy efficiency by reducing the computational load on less

suitable processors, thereby reducing energy consumption. If

the number of processors in a category I is defined by the term

nbrPr (PIV), then the utilization factor of a category of

processors 𝑈(𝑃𝐼𝑉) is given by:

𝑈(𝑃𝐼𝑉) = (∑𝐶𝑖/𝑃𝑖)

𝑛

𝑖=0

/𝑛𝑏𝑟𝑃𝑟(𝑃𝐼𝑉) (3)

To assign a task Ti to a free processor Pr(j) of category k

that belongs to the set {PHV, PMV, PBV} we must calculate

UMin (k) which represents the processor of category k with a

minimal utilization factor.

UMin (k)=Prj knowing that

(Pr) { (Pr), }U j Min U i i K=   (4)

The EDF algorithm is a dynamic scheduling rule that selects

tasks according to their absolute deadlines. More precisely,

tasks with closer deadlines will be executed at higher

priorities.

The arrival of a task Ti in the system is an event that requires

a feasibility test to ensure that the insertion of this task does

not exceed the capacity of all the processors available in our

system.

According to the reference [20], the feasibility test is

defined by a sufficient condition and a second necessary

condition. if these two conditions are verified, we ensure the

existence of a real-time scheduling of the tasks.

∑𝐶𝑖/𝑃𝑖

𝑛

𝑖=0

≤ 1

∑𝐶𝑖/𝐷𝑖

𝑛

𝑖=0

≤ 1

(5)

When our system consists of R processors and N concurrent

periodic tasks with individual timing constraints, the operating

system must guarantee that each periodic instance is regularly

activated at its own pace and completed within deadlines. The

feasibility test becomes as follows:

∑𝐶𝑖/𝑃𝑖

𝑛

𝑖=0

≤ 𝑅 (6)

6.5 The fuzzy approach

In our proposed approach, each task is inserted into one of

the existing queues (queue of high-speed processors (HSPQ),

queue of medium-speed processors (MSPQ), queue of low-

speed processors (LSPQ)) according to the following fuzzy

inference rules (Figure 5):

1)- If Di=Soon and U(PHV)≠Hight then insert Ti into

HSPQ

2)- If Di=Soon and U(PHV)=Hight and U(MSPQ)≠Hight

then insert Ti into MSPQ

3)- If Di=Soon and U(PHV)=Hight and U(MSPQ)=Hight

and U(LSPQ)≠Hight then insert Ti into LSPQ

4)- If Di=Soon and U(PHV)=Hight and U(MSPQ)=Hight

and U(LSPQ)=Hight then insert Ti in HSPQ

5)- If Di=medium and U(PMV)≠Hight then insert Ti in

MSPQ

6)- If Di=medium and U(PMV)=Hight and U(PHV)≠Hight

then insert Ti in HSPQ

7)- If Di=medium and U(PMV)=Hight and U(PHV)=Hight

and U(PBV)≠Hight then insert Ti in LSPQ

8)- If Di=medium and U(PMV)=Hight and U(PHV)=Hight

and U(PBV)=Hight then insert Ti in MSPQ

9)- If Di=far and U(PBV)≠Hight then insert Ti in LSPQ

10)- If Di=far and U(PBV)=Hight and U(PMV)≠Hight then

insert Ti in MSPQ

11)- If Di=far and U(PBV)=Hight and U(PMV)=Hight and

U(PHV)≠raise then insert Ti into HSPQ

12)- If Di=far and U(PBV)=Hight and U(PMV)=Hight and

U(PHV) = raise then insert Ti into LSPQ

Fuzzy control plays a major role in solving problems that

involve inaccurate and uncertain information. As shown in

Figure 6, the proposed fuzzy approach uses 04 input variables

976

and one output variable: U(PHV), U(PMV), U(PBV), task

deadline Di and the output variable FAPiV which represents

the 03 categories of queues (HSPQ, MSPQ and LSPQ).

Fuzzification is the transformation of numerical inputs Xi into

a set of membership values in the interval [0, 1] in

corresponding fuzzy sets. Fuzzification can be seen as a

conversion of real variables into fuzzy variables (also called

linguistic variables) defined on a representation space related

to the inputs. The number of membership functions to be

defined for each language variable is defined using human

expertise [21]. The rules are formulated on the expert's

knowledge of the system. These rules express the relationship

between the fuzzy input sets and the corresponding fuzzy

control sets. This representation space is normally a fuzzy

subset.

In our approach, each task is described with a 4tuple:

Ti=Ti(ri,Ci,Di,Pi) where each linguistic variable corresponds

to the triplet (X, T(X), U); X is a variable (U(PHV), U(PMV),

U(PBV), Di). T(X) is the range of values of the variable and

U is a finite or infinite set of fuzzy subsets. Figure 7 shows the

fuzzification of the input variable U(PHV) that models the

utilization factor of the high-speed processor category (PHV).

It is presented as follows: X=U(PHV), T(X)=[0, 1], U={Hight,

medium, low}.

Figure 5. Fuzzy inference rules

Figure 6. The approach fuzzy

We have chosen 03 linguistic values {High, medium, low}

of the input variable U(PHV) to express the utilization rate of

the high-speed processor category that allow us to decide to

which queue our task should be assigned according to the

linguistic values, knowing that if the utilization factor U(PHV)

is high then we avoid assigning the task Ti to their queue. Our

approach uses fuzzy inference rules that use 04 fuzzy input

variables and one output variable, based on the idea of

assigning the task to the queue reserved for processors with the

lowest utilization factor considering the task deadline. i.e.

avoid assigning a task with a very close deadline, to the

category of processors with medium or low speed to ensure the

execution of this task before their deadline.

Figure 8 shows the structure of the decision space of our

fuzzy approach. The decision space shows how these decisions

influence each other. To evaluate the proposed algorithms, we

performed simulations under MATLAB 7.9.0.529.

Figure 7. The input variable U (PHV)

Figure 8. The set of decisions

6.6 Simulation

The simulation of our proposed approach is based on the

implementation of our proposed scheduling algorithm under

MATLAB 7.9.0.529 and by using a HP ProBook 4530s laptop

with an Intel(R) Core TM i7 processor and a 09 GB RAM. Our

goal in this simulation is to describe the execution scenario of

tasks to meet the load balancing needs, and not the actual

execution of tasks.

In our approach, each task is described with a 4-tuple:

Ti(ri,Ci,Di,Pi); ri : The wake-up date ri of the k-th instance,

Ci: induced load (execution time), Pi: period, Di: critical

delay. The choice of values for these criteria in our case study

is based on scenarios that can apply in real machines.

To demonstrate the effectiveness of our proposed approach,

977

we propose a case study presented in Table 1.

In our case study, our system consists of 09 processors

grouped in 03 different categories:

PHV: category of high speed processors which contains 03

processors (Pr 02, Pr 05 and Pr 07) with an execution speed

Vi=1.

PMV: category of medium speed processors which contains

04 processors (Pr 01, Pr 04, Pr 06 and Pr 08) with an execution

speed Vi=0.9.

PBV: category of low speed processors which contains 02

processors (Pr 03 and Pr 09) with an execution speed Vi=0.8.

And 20 periodic tasks; each task described with a 4-tuple:

Ti = (DA, Ci, Di, Pi).

Table 1. Tasks description

No. Arrival Date Execution Time Deadline Period

T1 00 01 05 06

T2 00 04 09 10

T3 00 03 13 15

T4 01 08 27 30

T5 01 02 05 05

T6 01 05 09 10

T7 01 06 12 15

T8 02 02 06 06

T9 03 03 09 10

T10 03 07 14 15

T11 03 06 15 15

T12 04 13 26 30

T13 04 04 15 15

T14 04 03 14 15

T15 05 02 10 10

T16 06 01 14 15

T17 07 02 14 15

T18 07 08 26 30

T19 08 03 17 30

T20 24 01 27 30

Figure 9. Execution of tasks by PHV category processors

Figure 10. Execution of tasks by PMV category processors

Figure 11. Execution of tasks by PBV category processors

Figures 8 and 9 represent the execution of tasks in the two

categories of PHV and PMV processors respectively. Figure

10 presents the execution of tasks in the category of PBV

processors.

6.7 Discussion of case study results

The feasibility test is a necessity in our approach for each

arrival of a task Ti; this requires calculating Ptot first (the

global period of all tasks), Ptot=PPCM (6,10.15, 30, 5, 10, 15,

6, 10, 15, 15, 30, 15, 15, 10, 15, 15, 30, 30, 30)=30. Calculating

feasibility after each task arrives is an important step. The 03

tasks T1, T2, T3 arrived in the system at time t=0. After the

positive feasibility test, the proposed fuzzy approach

associates for each task their appropriate queue (HSPQ,

MSPQ, LSPQ) according to the utilization factor of each

category of processors and the deadline of the task. then the 03

tasks are inserted into the 03 queues in the following manner:

- T1 insert into the HSPQ queue.

- T2 insert into the MSPQ queue.

- T3 insert into the LSPQ queue.

After inserting the tasks into the queues in the order

calculated by the EDF* real-time scheduling algorithm, the

first task of each queue must be assigned to the available

processor with a low utilization factor.

With an execution speed V2=1, the task T1 uses the

processor Pr 02 from the date t=0 for an execution duration

C1=1, at the same time the task T2 uses the processor Pr 01

with C2=4 and the execution speed V1=0.9, the task T3 used

the processor Pr 03 from the date t=0 with C3=3 and the

execution speed V3=0.8. In date t=task T1 completes

execution for its first period and the arrival of tasks T4, T5,

T6, T7 in the system. then the 04 tasks are inserted into the 03

queues in the following manner:

- T4 insert into the LSPQ queue.

- T5 insert into the MSPQ queue.

- T6 insert into the HSPQ queue.

- T7 insert into the MSPQ queue.

Task T4 used processor Pr 09 from date t=1 with C4=8 and

execution speed V9=0.8, Task T5 used processor Pr 04 from

date t=1 with C5=2 and execution speed V1=0.9, Task T6 used

processor Pr 05 from date t=1 with C6=5 and execution speed

V3=1 and Task T7 used processor Pr 06 from date t=1 with

C7=6 and execution speed V3=0.9. In date t=2 it is the arrival

of task T8 in the system and inserted into the MSPQ queue.

Processor Pr 08 is available, then task T8 is executed by Pr 08

with C8=2 and execution speed V8=0.9. In date t= 3, arrival

978

of tasks T9, T10, T11 in the system. then the 03 tasks are

inserted into the 03 queues in the following manner:

- T9 insert into the HSPQ queue.

- T10 insert into the MSPQ queue.

- T11 insert into the HSPQ queue.

Task T9 used processor Pr 07 from date t=3 with C9=3 and

execution speed V7=1, Task T11 used processor Pr 02 from

date t=3 with C11=6 and execution speed V2=1, Task T10

used processor Pr 04 from date t=3.22 (end of execution of the

T5 task for its first period) with C10=7 and execution speed

V4=0.9. In date t=4, arrival of tasks T12, T13, T14 in the

system. then the 03 tasks are inserted into the 03 queues in the

following manner:

- T12 insert into the LSPQ queue.

- T13 insert into the MSPQ queue.

- T14 insert into the MSPQ queue.

Task T12 used processor Pr 03 from date t=4 with C12=13

and execution speed V3=0.8, Task T13 used processor Pr 01

from date t=4.44(end of execution of the T2 task for its first

period) with C13=4 and execution speed V1=0.9, Task T14

used processor Pr 08 from date t=4.22 (end of execution of the

T8 task for its first period) with C14=3 and execution speed

V8=0.9.

Similarly, all tasks complete their execution and meet their

deadlines using our proposed approach. The scheduling of

tasks by our proposed approach on different processor

categories are shown in Figures 9-11.

Table 2. Case study statistics

No.
Response Time

for Each Period

Respect

Deadline
Processor

Utilization

Factor

T1 0, 1.55, 0, 0, 1 Yes Pr 01 70.67 %

T2 0, 0, 0 Yes Pr 02 67.67 %

T3 0, 0 Yes Pr 03 67.67 %

T4 0 Yes Pr 04 67.67 %

T5 0, 0, 0, 0, 1.33, 0 Yes Pr 05 67.67 %

T6 0, 0, 1.77 Yes Pr 06 70.33 %

T7 0, 0 Yes Pr 07 67.67 %

T8 0, 0, 0, 0, 0 Yes Pr 08 68.13 %

T9 0, 0, 2.44 Yes Pr 09 67.67 %

T10 0.22, 0 Yes PHV 67.67 %

T11 0, 1 Yes PMV 69.20 %

T12 0 Yes PBV 67.67 %

T13 0.44, 0 Yes Task failure rate

T14 0.22, 0 Yes 00 %

T15 1, 0, 0 Yes Average utilization factor

T16 1.77, 1.77 Yes 68.35 %

T17 1.66, 1 Yes Average response time

T18 4 Yes 0.43 %

T19 0.88 Yes Number of migrations

T20 0.55 Yes 00 %

The results presented in Table 2 express that the proposed

approach for dynamic load balancing is efficient by the fair

distribution of load between the different processors and the

respect of deadline for all the tasks. The utilization factor of

each processor is very close for the average utilization factor

and that the average response time is very low equal to 0.43.

Without using the migration our proposed approach allows the

optimization of the performances and the use of the resources

in an efficient way.

The most studied energy calculation model in the literature

is defined as follows: if the speed of a machine is equal to a

value ‘V’ for a given duration ∆, then the energy consumption

power is given by Vα for a constant α>1, and the total energy

consumed is Vα×∆. If we now assume that the speed of the

machine is given by a function of time, V(t), then the total

energy consumed during the duration ∆ is calculated by

integrating the power over the duration ∆: ∫∆ S(t)αdt (15)

[FAD 12]:

Energy (Pr 02)=1*(1)2+6*(1)2+2*(1)2+2*(1)2+7*(1)2+

2*(1)2=20 joules.

Energy (Pr 05)=5*(1)2+2*(1)2+4*(1)2+6*(1)2+1*(1)2+

2*(1)2=20 joules.

Energy (Pr 07)=3*(1)2+2*(1)2+2*(1)2+1*(1)2+2*(1)2+

1*(1)2+6*(1)2+1*(1)2+2*(1)2=20 joules.

Energy (Pr 01)=4.44*(0.9)2+4.44*(0.9)2+5.55*(0.9)2+

4.44*(0.9)2+2.22*(0.9)2=17.08 joules.

Energy (Pr 04)=1.11*(0.9)2+7.77*(0.9)2+3.33*(0.9)2+

3.33*(0.9)2+2.22*(0.9)2+ 1.11*(0.9)2=15.28 joules

Energy (Pr 06)=6.66*(0.9)2+1.11*(0.9)2+2.22*(0.9)2+

2.22*(0.9)2+4.44*(0.9)2+ 4.44*(0.9)2=17.08 joules

Energy (Pr 08)=2.22*(0.9)2+3.33*(0.9)2+2.22*(0.9)2+

3.33*(0.9)2+2.22*(0.9)2+6.66*(0.9)2=16.18 joules.

Energy (Pr 03)=3.75*(0.8)2+16.25*(0.8)2=12.80 joules

Energy (Pr 09)=10*(0.8)2+10*(0.8)2=12.80 joules

Total energy our approach=20+20+20+17.08+15.28+

17.08+16.18+12.80+12.80= 151.22 joules

Total energy by EDF*.=5+12+6+8+12+15+12+ 10+9+14+

12+13+8+6+6+2+4+8+3+1=166 joules

Table 3 compares between our work and some pertinent

related works. We defined nine comparison criteria that are:

• Level: at what level, load balancing is considered

(managed) (RTOS for Real Time Operating System)

• TP: Tasks Periodicity (P: periodic/ A: aperiodic/ S:

sporadic/ M: Mix)

• TD: Tasks Dependency (I: independent, D: dependent)

• TC: Temporal Constraints (H: hard, S: soft, F: firm, M:

Mix)

• SP: HM: homogeneous, HT: heterogeneous

• EC: Energy consumption reduction

• LB: Load balancing (D: dynamic, S: static)

• UD: Uncertain Data support

Table 3. Comparison between our work and some pertinent

related works

Work Level TP TD TC SP EC LB UD

MAH16 Application A I S HM No D No

PRA 01 RTOS A I S HT No S No

KUN21 RTOS M D M HM No S No

OOP22 RTOS A I S HM No D No

NIR22 RTOS A I H HM No D Yes

ASA24 Application A I S HM Yes D No

Our work RTOS P I H HT Yes D Yes

7. CONCLUSION

Dynamic load balancing is an essential strategy to ensure

the equitable distribution of tasks among different processors

in real-time systems, which allows for the optimization of

performance and efficient resource utilization.

979

The work of this paper will allow designers and developers

of real-time systems to implement more efficient and reliable

systems in terms of load balancing, also meeting the

requirements of energy consumption and respecting the

deadline of all tasks. By implementing efficient techniques for

assigning tasks to processors and by continuously monitoring

performance indicators to ensure that the system remains

efficient under varying loads. Due to the uncertainty of task

information such as the exact execution time (before the task

execution) and the arrival dates of future tasks arrive, which

justify the use of fuzzy logic for the assignment of tasks in

different queues.

A significant improvement in the efficiency of real-time

systems by the proposed dynamic load balancing presented by

the results of our approach despite the arrival of a large number

of tasks at different dates and with different execution times,

in a system that uses heterogeneous processors. The 20 tasks

of our case study their utilization factors do not exceed 1.98%

as a difference compared to the average utilization factor equal

to 68.35% in a system that uses heterogeneous processors for

the execution of different tasks.

The work in this paper opens the way for interesting future

research in real-time systems and load balancing. We plan to

make a comparative study on the impact of different

scheduling strategies on load balancing. Moreover, the

effectiveness of the EDF algorithm in more complex scenarios

such as sporadic and not only periodic task usage could be

promising research avenues.

REFERENCES

[1] Daraghmi, E., Hamoudi, A., Abu Helou, M. (2024).

Decentralizing democracy: Secure and transparent E-

Voting systems with blockchain technology in the

context of Palestine. Future Internet, 16(11): 388.

https://doi.org/10.3390/fi16110388

[2] Nelaturi, N.P., Rajesh, V., Syed, I. (2024). Real-time

liver tumor detection with a multi-class ensemble deep

learning framework. Engineering, Technology &

Applied Science Research, 14(5): 16103-16108.

https://doi.org/10.48084/etasr.8106

[3] Alam, M., Varshney, A.K. (2016). A new approach of

dynamic load balancing scheduling algorithm for

homogeneous multiprocessor system. International

Journal of Applied Evolutionary Computation (IJAEC),

7(2): 61-75. https://doi.org/10.4018/IJAEC.2016040104

[4] Kakulavarapu, P., Maquelin, O.C., Amaral, J.N., Gao,

G.R. (2001). Dynamic load balancers for a multithreaded

multiprocessor system. Parallel Processing Letters,

11(1): 169-184.

https://doi.org/10.1142/S0129626401000506

[5] Tan, Q., Xiao, K., He, W., Lei, P., Chen, L. (2021). A

global dynamic load balancing mechanism with low

latency for micokernel operating system. In 2021 7th

International Symposium on System and Software

Reliability (ISSSR), Chongqing, China, pp. 178-187.

https://doi.org/10.1109/ISSSR53171.2021.00026

[6] Panwar, P., Kaushal, C., Singla, A., Rattan, V. (2022).

Load balancing in multiprocessor systems using

modified real-Coded genetic algorithm. In Innovations in

Computational Intelligence and Computer Vision:

Proceedings of ICICV 2021. Singapore: Springer Nature

Singapore, pp. 201-210. https://doi.org/10.1007/978-

981-19-0475-2_18

[7] Nirmala, H., Girijamma, H.A. (2022). Fllbhgats:

Efficient load balancing and task scheduling algorithm

for real-time multiprocessor. Journal of Algebraic

Statistics, 13(3): 433-450.

[8] Ali, A., Suleman, M. (2024). Implementing dynamic

load balancing for real-time user requests in distributed

systems. ResearchGate: Distributed Computing-Load

Balancing.

https://doi.org/10.13140/RG.2.2.29397.64484

[9] Khawatreh, S.A. (2018). An efficient algorithm for load

balancing in multiprocessor systems. International

Journal of Advanced Computer Science and

Applications, 9(3): 160-164.

https://doi.org/10.14569/IJACSA.2018.090324

[10] Leinberger, W., Karypis, G., Kumar, V., Biswas, R.

(2000). Load balancing across near-Homogeneous multi-

Resource servers. In Proceedings 9th Heterogeneous

Computing Workshop (HCW 2000) (Cat. No.PR00556),

Cancun, Mexico, pp. 60-71.

https://doi.org/10.1109/HCW.2000.843733

[11] Ghomi, E.J., Rahmani, A.M., Qader, N.N. (2017). Load-

balancing algorithms in cloud computing: A survey.

Journal of Network and Computer Applications, 88: 50-

71. https://doi.org/10.1016/j.jnca.2017.04.007

[12] Yagoubi, B., Meddeber, M. (2010). Distributed load

balancing model for grid computing. Revue Africaine de

Recherche en Informatique et Mathématiques

Appliquées, 12: 43-60.

https://doi.org/10.46298/arima.1931

[13] Djennane, N., Aoudjit, R., Bouzefrane, S. (2018).

Energy-efficient algorithm for load balancing and VMs

reassignment in data centers. In 2018 6th International

Conference on Future Internet of Things and Cloud

Workshops (FiCloudW), Barcelona, Spain, pp. 225-230.

https://doi.org/10.1109/W-FiCloud.2018.00043

[14] Piel, É., Marquet, P., Soula, J., Dekeyser, J.L. (2006).

Asymmetric scheduling and load balancing for real-time

on Linux SMP. In: Wyrzykowski, R., Dongarra, J.,

Meyer, N., Waśniewski, J. (eds) Parallel Processing and

Applied Mathematics. PPAM 2005. Lecture Notes in

Computer Science, Springer.

https://doi.org/10.1007/11752578_108

[15] Robilliard, D., Marion-Poty, V. Fonlupt, C. (2009).

Genetic programming on graphics processing units.

Genetic Programming and Evolvable Machines, 10: 447-

471. https://doi.org/10.1007/s10710-009-9092-3

[16] Schopf, J.M. (2004). Ten Actions When Grid

Scheduling. In: Nabrzyski, J., Schopf, J.M., Węglarz, J.

(eds) Grid Resource Management. International Series in

Operations Research & Management Science, Springer,

Boston, USA. https://doi.org/10.1007/978-1-4615-0509-

9_2

[17] Morchid, A., Jebabra, R., Ismail, A., Khalid, H.M., El

Alami, R., Qjidaa, H., Jamil, M.O. (2024). IoT-enabled

fire detection for sustainable agriculture: A real-time

system using flask and embedded technologies. Results

in Engineering, 23: 102705.

https://doi.org/10.1016/j.rineng.2024.102705

[18] Mehalaine, R., Djezzar, M., Nessah, D., Saiad, Z., Saidi,

A. (2024). Watchdog timer for fault tolerance in

embedded systems. Journal Européen des Systèmes

Automatisés, 57(6): 1713-1720.

https://doi.org/10.18280/jesa.570619

980

[19] Mehalaine, R., Boutekkouk, F. (2020). A new intelligent

biologically-inspired model for fault tolerance in

distributed embedded systems. International Journal of

Embedded and Real-Time Communication Systems,

11(3): 22-47.

https://doi.org/10.4018/IJERTCS.2020070102

[20] Mayank, J., Mondal, A. (2019). An integer linear

programming framework for energy optimization of non-

preemptive real time tasks on multiprocessors. Journal of

Low Power Electronics, 15(2): 162-167.

https://doi.org/10.1166/jolpe.2019.1604

[21] Nadeem, A., Rizvi, A.A., Noor, M.Y. (2024). Applying

a higher number of output membership functions to

enhance the precision of a fuzzy system. IEEE

Transactions on Emerging Topics in Computational

Intelligence, 9(1): 394-405.

https://doi.org/10.1109/TETCI.2024.3425309

981

https://doi.org/10.1109/TETCI.2024.3425309

