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 This study optimizes diesel engine performance and emissions using biodiesel blends from 

waste cooking oil. Four blends (10%, 20%, 30%, and 40%) were tested for their impact. 

The Taguchi design's L16 orthogonal array identified optimal parameters: fuel blend, 

compression ratio (CR), injection pressure (IP), and injection timing (IT). Key performance 

metrics such as brake thermal efficiency (BTE), brake power (BP), brake mean effective 

pressure (BMEP), specific fuel consumption (SFC), and emissions (NOx, CO, HC, CO2) 

were optimized using grey analysis. The optimal conditions are 30% biodiesel blend, 18:1 

CR, 60 MPa IP, and 25° IT before the top dead center resulting in a 33.3% NOx reduction, 

22.5% HC decrease, and 14.06% CO2 reduction compared to diesel. Despite a 21.21% 

BSFC increase and 16.85% BTE reduction, biodiesel offers environmental benefits, 

making it a sustainable alternative for emission reduction. Analysis of variance revealed 

IP as the most significant factor, contributing 52.20% to the results. Artificial neural 

network predictions closely matched experimental outcomes, reducing experimental trials. 

The Grey Taguchi method effectively improved engine performance and reduced 

emissions. The optimized 30% biodiesel blend significantly lowered NOx and carbon 

emissions compared to diesel, demonstrating its potential for sustainable biodiesel 

technology. 
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1. INTRODUCTION 

 

Growing environmental concerns and the search for 

sustainable energy alternatives have focused a lot of attention 

on improving IC engine performance and emissions. we used 

cooking oil to produce biodiesel, a highly promising 

alternative fuel due to its renewable characteristics and 

potential to mitigate emissions of greenhouse gases, among 

other attributes [1]. However, biodiesel derived from edible 

oils (such as canola, palm, rapeseed, olive, sunflower, maize, 

and soybean) is a significant contributor to global food 

insecurity and expensive prices [2, 3]. However, out of all 

edible feedstocks, waste cooking oil (WCO) is a viable and 

potentially cost-effective alternative for biodiesel production 

[4]. Due to the presence of numerous contaminants (PAHs, 

PCBs, and dioxin), WCO is readily reusable from residences, 

hotels, and restaurants that discard it after frying meals [5, 6]. 

These contaminants pose a threat to the welfare of both 

animals and humans. Hence, following a pre-treatment 

procedure, WCO emerges as a viable alternative for biodiesel 

production while simultaneously addressing the issue of water 

contamination [6]. Produced from soybean waste cooking oil, 

biodiesel serves as an environmentally beneficial, cost-

effective, and renewable alternative to conventional biodiesel. 

It addresses environmental and food security concerns by 

reducing production costs, diverting waste from landfills, and 

minimizing reliance on virgin vegetable oils, all while 

substantially reducing greenhouse gas emissions. Soybean oil, 

a renewable resource, provides a sustainable and consistent 

feedstock for biodiesel production. In comparison to biodiesel 

produced from virgin vegetable oils, biodiesel derived from 

residual cooking oil is a more cost-effective alternative [7-9]. 

To fully harness the potential of biodiesel blends, this study 

investigates their performance and emission characteristics 

under various conditions. This study focuses on optimizing a 

diesel engine operating at varied input engine parameters and 

fuel blending with waste-cooking soybean biodiesel blends. 

The integration of Grey Taguchi methodology and artificial 

neural networks (ANN) aids in the optimization process, 

aiming to achieve two key objectives: improving IC engine 

performance and reducing emissions [10-13]. The Grey 

Taguchi methodology provides a strong framework for 

optimizing in the presence of uncertainty through its efficient 

approach to handling constrained and unreliable data [14, 15]. 

Compression ratio and injection time highly affect engine 

performance and emissions [16]. A study by Hirkude et al. 

[17] looked into how injection timing, injection pressure, and 

compression ratio (CR) affected the performance and 

emissions of diesel engines that used a mix of biodiesel from 

cooking waste and diesel fuel. According to the findings, 
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Enhanced brake thermal efficiency (BTE) alongside reduced 

brake-specific fuel consumption (BSFC). Although a slight 

decrease in BTE was observed as BSFC increased when CR 

was further raised from 18 to 19, this trend aligns with the 

typical behavior of engine performance characteristics. The 

optimal conditions for BSFC and BTE were identified at an 

initial IT of 27° b TDC, 250 bar IP, and a CR of 18. For the 

fuel that was tested, EGT increased in response to an increase 

in IP, IT, and CR, while smoke opacity (OP) reduced. 

Shrivastava and Verma [18] studied the impact of fuel 

injection pressure and engine load on biodiesel and blends 

derived from Roselle oil. it was documented that carbon 

dioxide emissions increased by 1.6% at an injection pressure 

of 220 bar, whereas smoke and nitrogen oxide emissions 

decreased by 2.20% and 3.18% respectively, for the RB20 

blend in comparison to diesel fuel. Heng Teoh et al. [19] 

optimized blends of diesel-coconut oil fuel using the grey-

Taguchi method (GTM) concerning several parameters, 

including blend, load, and speed. The optimization result 

determined the most effective blend ratio, at a speed of 3850 

rpm and the load of 25% about the CI engine's emissions, and 

performance. An optimal configuration of engine load, blend, 

and speed for a VCR diesel engine was investigated by Gul et 

al. [13] by utilizing the Taguchi design which operates on pure 

biodiesel (B100) derived from WCO and a 20% biodiesel and 

diesel. The primary aim was to attain the most substantial 

reduction in pollutants and NOx emissions feasible. They used 

Gray relational analysis to identify the optimal input 

parameters that would produce desirable output. These 

parameters include using B100 gasoline, operating at a speed 

of 2300 rpm, and maintaining a load of 100%. Moreover, the 

ANOVA approach revealed that the kind of fuel is the primary 

determining factor, accounting for a significant 44.28% 

influence on the output parameters. Both the experiment and 

the artificial neural network (ANN) simulation, which used the 

expected best combination, confirmed the big improvements 

in the response factor of the output. This proves the use of the 

Grey-Taguchi approach for lowering the amount of emissions 

while simultaneously enhancing combustion and performance. 

The use of an ANN modeling methodology is effective in 

determining the necessary output factors when sufficient 

experimental data is available [20]. Modern neural systems are 

statistical modeling tools that cater to non-linear input and 

output data. It is easy to optimize the relationship between 

input and output parameters. We can conduct optimization 

studies across all working circumstances by using neural 

networks for engine predictions [21-23]. Backward feed 

propagation, when applied to ANN, results in the best possible 

output. For forecasting outputs, we can make use of MATLAB 

software along with an artificial neural network [3]. 

Researchers have conducted several studies on applying the 

Grey Taguchi technique to optimize engine performance and 

emission characteristics. In the past, researchers have only 

looked at the Grey-Taguchi method with a few parameters [24-

27]. For example, they looked at waste-cooking biodiesel 

using the Grey-Taguchi analysis with the BTE performance 

parameter and the NOx emission parameter. Gul et al. [13] 

utilized the L9 Taguchi design to optimize fuel type, engine 

speed, and load for a diesel engine, which alternately fuels 

with waste cooking oil biodiesel (B100) and a 20% blend of 

biodiesel with neat diesel (B20). Our research uses a more 

extensive set of parameters and shows the method’s 

effectiveness in optimizing both performance and emissions 

simultaneously. ANN was used to predict the responses of the 

optimized parameters. We compare the ANN-predicted results 

with the actual experimentation. This approach addresses the 

limited parameter consideration gap in earlier studies. 

 

 

2. MATERIAL AND METHODS 

 

In this study, we prepared biodiesel from waste cooking 

soybean oil using a one-step transesterification process. H2SO4 

was used as a catalyst. We employed an L16 Taguchi 

experimental design to alter crucial input parameters such as 

injection pressure (IP), injection ratio (CR), and injection 

timing (IT). Additionally, biodiesel blends vary at 10%, 20%, 

30%, and 40% concentrations and are named as 10WCO, 

20WCO, 30WCO, and 40WCO. Next, we compute the Grey 

relational grade (GRG) to evaluate the extent of similarity 

among the performance parameters and the ideal values. 

Furthermore, the signal-to-noise (S/N) ratio gives significant 

insights into the quality characteristics under diverse 

operational conditions. We computed a grey relational grade 

to evaluate the optimized input combinations. We employed 

an analysis of variance (ANOVA) to investigate the impact of 

input parameters on output variables. Finally. We conducted 

an artificial neural network analysis to validate the 

optimization technique. 

 

2.1 Characteristics and formulations of fuel 

 

It is especially at risk of contamination when the mixing of 

biodiesel with diesel is done to produce a blend that is uniform 

in composition and beneficial for the smooth functioning of 

unaltered diesel engines. Nevertheless, biodiesel exhibits 

increased viscosity and density compared with conventional 

fuel as a result of its increased molecular mass. These 

characteristics lead to ineffective breakdown and blending. 

Additionally, it produces a significant amount of carbon 

dioxide while needing plenty of energy for fuel pumping. The 

biodiesel, which has a high viscosity, leads to reduced 

atomization and inadequate evaporation [28]. The 

physicochemical characteristics of both waste-cooking 

soybean biodiesel and diesel have been evaluated to determine 

the compatibility of both in diesel engines. The fuel properties 

considered are kinematic viscosity, lower calorific value, and 

density which are carried out as per ASTM standards like 

D287, D4809, D93-58T, and D445. Table 1 provides the name, 

make and model of the equipment, as well as the standard for 

testing fuel blends that were used in the testing. Table 2 depicts 

the properties of biodiesel blends and diesel.   

 

2.2 Experimental configuration 

 

The equipment utilized in the present investigation is 

illustrated in Figure 1. In this experiment, a VCR CRDI diesel 

engine was the equipment utilized in the present investigation 

as illustrated in Figure 1. In this experiment, a VCR CRDI 

diesel engine was utilized. Table 3 details the engine 

specifications. All fuel experiments were conducted within the 

unaltered engine at ambient temperatures of 298.15 K.  
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Table 1. Fuel properties test equipments  

 

Equipment Name Make, Model, Serial No. 
Properties 

Testing 
Unit Standard 

Semiautomatic Digital Bomb 

Calorimeter 

HAMCO, HAMCO 6B, 

Sr.190621 
Calorific Value Cal/gm-℃ IS1350-1966, IP 12/63 T 

Cloud and Pour Point Apparatus HAMCO 9, Sr.190622 Cloud & Pour Point ℃ ASTM D97, IP-15/67 

Kinematic Viscosity Bath 
HAMCO, 48H2-STD6, 

Sr.190623 
Kinematic Viscosity 

cSt or 

mm²/sec 
ASTM D 445 

Pensky Martens Flash Point 

Apparatus 
RICO Flash Point ℃ 

ASTM D93-58-T, IS1448, 

IP 34 

Hydrometer Leimco, M-50SP Specific Gravity - D1448 

Biodiesel Preparation Set-Up Glassware and chemicals 
Transesterification 

Reaction 
% Yield ASTM6751 

 

Table 2. Fuel properties of biodiesel blends  

 

Properties Unit B10WCO B20WCO B30WCO B40WCO B00 Diesel 
ASTM 

Standard 

Density at 25℃ kg/m3 825 828 836 841 816 D287 

LCV Calorific Value Cal/gm 10191 10168 9995 9890 10235 D 4809 

Flash Point ℃ 66 72 79 81 53 D93-58T 

Fire Point ℃ 68 74 81 84 56 D93-58T 

Kinematic Viscosity 

@40℃ 
cSt 2.08 2.21 2.43 2.58 2.09 D445 

Dynamic Viscosity 

@40℃ 
cP 1.72 1.83 2.03 2.17 1.73 D445 

 

 
 

Figure 1. Engine test facility 

 

Table 3. Engine specifications 

 
Make Kirloskar 

Engine Cycle 4-stroke 

Rated Speed 1500 rpm 

Rated Power 3.5 kilowatts 

Type of Dynamometer Eddy current 

Bore Diameter 87.5 millimetres 

Stroke Length 110 millimetres 

Cooling System Water cooled 

Cubic Capacity 0.661 litres (661 cc) 

Ignition System Compression-Ignition 

Compression Ratio 12-18 

 

We conducted experiments on a VCR engine operating at 

1500 revolutions per minute, with compression ratios ranging 

from 15 to 18. The panel box consists of a digital speed 

indicator, manometer, gasoline tank, air box, digital 

temperature indicator, and fuel measuring unit. PT100, RTD, 

and thermocouple sensors are now in stock. Utilize a strain 

gauge load sensor to measure loads within the range of 0 to 50 

kilograms. The engine allows for tilting blocks to shift the 

compression ratio (CR). The tilting cylinder block setup 

consists of a tilting block, six Allen bolts, an adjuster to adjust 

the compression ratio, a locking nut, and an indicator. To 

adjust the compression ratio, loosen the Allen bolts slightly. 

After loosening the lock nut, twist the adjuster to set a 

compression ratio using the indicator and lock it. Gently 

tighten all Allen bolts. To lower the CR, tilt the block to 

enhance clearance volume and maintain swept volume. We 

used a digital voltmeter to measure voltage within the range of 

0 to 20 volts. The K-type sensor is used to measure 

temperature in many zones. We conducted the airflow 

measurement using an air box. We monitored the cylinder 

pressure for every one-degree increment in the crank angle. 

The water flow rate ranges from 40 to 400 liters per hour, 

whereas the calorimeter flow rate ranges from 25 to 250 liters 

per hour. A self-priming pump is responsible for circulating 

water in both the engine and the calorimeter. Conducted 

tailpipe emissions measurements using a portable AVL Digas 

444 gas analyzer. Exhaust emissions from the gas analyzer 

include HC, CO, NOx, and CO2. 

 

2.3 Taguchi analysis 

 

Dr. Genichi Taguchi developed a statistical method to 

minimize process variation through carefully designed 

experiments. This method uses orthogonal array patterns to 

speed up the experimental process and provide comprehensive 

information on every single factor that determines output 

responses [29, 30]. Taguchi with grey relational analysis 

(GRA) is the most effective method for analyzing multi-

performance characteristics with minimal experimentation [1]. 

To select an orthogonal array, the control parameters and the 

number of levels that are related to each factor are taken into 

consideration. Taguchi organizes quality attributes into three 

categories by employing a statistical metric known as the 

signal-to-noise ratio. These categories are as follows: Larger 

is better, smaller is better, and nominal is the best. On the other 

hand, Eq. (2) is used to compute the larger-is-better SNR, 

whereas Eq. (1) is used to estimate the smaller-is-better SNR 

for lower output responses [31]. 
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SNRs = −10log
1

n
{∑y2

i

n

i=1

} (1) 

 

SNRL = −10log
1

n
{∑

1

y2
i

n

i=1

} (2) 

 

In this research, the Larger is better SN ratio was used for 

BTE, BP, and BMEP While the Smaller is better is used for 

SFC, NOx, CO, HC, and CO2. The Grey-Taguchi method has 

been used for generating a single response based on several 

performance characteristics. There are four levels for each of 

the four control parameters: Blend, CR, IP, and IT. The DOF 

of four factors at four levels is computed by considering the 

interaction between factors. The levels of the control 

parameters are detailed in Table 4. L16 represents the 

orthogonal array that has been chosen for DOE, as illustrated 

in Table 5. 

 

Table 4. Input controllable parameters with levels 

 

Input Controllable 

Parameters 

Levels 

L1 L2 L3 L4 

Blend ratio of fuel % 
B10W

CO 

B20W

CO 

B30W

CO 

B40W

CO 

Compression ratio 15 16 17 18 

Injection Pressure, 

MPa 
30 40 50 60 

Injection 

Timing, °Before TDC 
16 19 22 25 

 

Table 5. L16 orthogonal array  

 
Exp. No. Blend CR IP MPa IT °Before TDC 

1 B10WCO 15 30 16 

2 B10WCO 16 40 19 

3 B10WCO 17 50 22 

4 B10WCO 18 60 25 

5 B20WCO 15 40 22 

6 B20WCO 16 30 25 

7 B20WCO 17 60 16 

8 B20WCO 18 50 19 

9 B30WCO 15 50 25 

10 B30WCO 16 60 22 

11 B30WCO 17 30 19 

12 B30WCO 18 40 16 

13 B40WCO 15 60 19 

14 B40WCO 16 50 16 

15 B40WCO 17 40 25 

16 B40WCO 18 30 22 

 

2.4 Grey analysis  

 

Grey relational analysis has been demonstrated as an 

efficient method for evaluating multi-response optimization 

problems. Grey relational analysis identifies the crucial 

aspects of a system and their interrelationships. The critical 

factors are determined by the sequence of the input and output 

[32]. Initially, the experimental outcomes were normalized to 

come within the range of 0 to 1. Next, we calculated the gray 

relational coefficients from the normalized experimental 

values. Following this, the GRG was computed using the GRC. 

The GRG evaluated each of the multiple process responses 

individually. In this specific case, the process parameters that 

were considered optimal were the highest GRG values. Eqs. 

(3) and (4) were used to optimize the initial sequence after 

adjusting the response parameters by the "larger is better" 

principle [15]. 

 

xi(k) =
yi(k) − minyi(k)

maxyi(k) − minyi(k)
 (3) 

 

The initial sequence was optimized as follows when the 

response parameters were optimized using the "Smaller is 

better" criterion. 

 

xi(k) =
maxyi(k) − yi(k)

maxyi(k) − minyi(k)
 (4) 

 

The reference sequence, in this case, yi(k) is the response's 

normalized value is xi(k), and the values of i=1, 2... m are 

minyi(k) and maxyi(k) respectively, represent the lowest and 

greatest values of yi(k) 

Eq. (5) represents the reference sequence's deviation 

sequence. 

 

∆0i= ǁx0(k) − xi(k)ǁ (5) 

 

∆0i  is called the deviation sequence, x0(k)  is the ideal 

sequence. 

The grey relational coefficient represents the relationship 

between real experimental data and intended solutions ζi(k). 

The Eq. (6) is used to calculate it. 

 

ζi(k) =
Δ min  + ΨΔmax

∆0i(k) + ΨΔmax 
 (6) 

 

The maximum and minimum values of the deviation 

sequences ∆0𝑖  are expressed by Δmax and Δmin. The 

deviation sequence's actual reference is shown by ∆0𝑖(𝑘) and 

distinguishing coefficient by 𝛹. The value of 𝛹 always falls 

between 0 and 1. Generally, 𝛹 = 0.5 is used [33]. Once the 

GRC has been obtained, the GRG (y0) is computed. 

 

y0 = ∑ζi(k)βyi

n

k=1

 (7) 

 

where, 

 

∑β = 1 (8) 

 

A ranking is given to the experiment set based on the GRG 

that was found. The optimum combination of inputs in the 

design of Taguchi is established based on the highest GRG or 

highest ranking. A greater signal-to-noise ratio (GRG) value is 

preferable when determining the most optimal set of engine 

input values based on the average GRG value of all responses 

at the L16 orthogonal array level. The highest signal-to-noise 

(S/N) value indicates the optimal level of each input factor. 

 

2.5 ANOVA method  

 

We conducted an ANOVA using Minitab-16 software to 

determine the proportionate impact of factors that influence 

the engine's efficiency and exhaust emissions. Furthermore, 

the input parameter with a higher F-value demonstrates a 

greater impact on output response [34]. 
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2.6 ANN modelling  

 

Artificial neural network (ANN) is parallel distributed 

processing units mimic the behaviors of neurons in the human 

brain, thereby preserving and facilitating access to 

experimental knowledge at any given moment. The function 

of these neurons is to encode and retain essential information 

derived from experimental results via a process of learning and 

training. Neurons comprising an artificial neural network 

(ANN) are interconnected through synaptic weights. The 

synaptic weights determine the necessary outputs or responses 

for input signals based on the activation function employed, 

such as tansig or purelin [35]. In MATLAB, the ANN model 

is constructed utilizing the 'nntool' command. It undergoes 

training using experimental data to generate predictions for 

any input parameter combination. 

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Taguchi optimization  

 

To address the issues, we employed the Taguchi technique 

in addition to grey relational analysis, which incorporates 

multiple responses. The S/N ratio proved to be the most 

effective approach for attaining optimal outcomes. The 

Taguchi technique is the most preferred method for finding the 

optimum solution with minimal trials. The Taguchi technique 

measures the standard characteristics using the signal-to-noise 

quantitative relation (S/N) [36]. The Taguchi approach 

enhances product quality by prioritizing a mean performance 

characteristic value that is close to the designated target value 

rather than one that falls within the specified limits. Figures 2 

and 3 present the outcomes of the Taguchi study for the 

analysis of performance and emission characteristics of 

engines that include BSFC, BMEP, BTE, BP, NOx, CO, HC, 

and CO2. We employ the Taguchi technique for optimization 

to determine the optimal input parameters. Figures 2(a), 2(b), 

2(c), and 2(d) illustrate the analysis of the signal-to-noise ratio 

for the optimization of BTE, BP, BMEP, and SFC, 

respectively. The main effects plot shows that B30WCO and 

B40WCO biodiesel blends have higher SN ratios than other 

blends across all performance metrics (BTE, BP, and BMEP). 

These findings suggest they could boost engine efficiency and 

power. Higher compression ratios also tend to have a positive 

effect on BTE, BP, and BMEP. On the other hand, for specific 

fuel consumption (SFC), a lower SN ratio is better. The plot 

shows that some blends and higher compression ratios may 

help lower SFC. The study found that the B20WCO blend 

improved BTE, BP, and BMEP. It achieved the highest BTE 

when the engine was running at 18 CR, 30 MPa of pressure, 

and 16°b TDC. The same fuel mixture produced the largest 

brake pressure when the engine operated at a CR of 16, an IP 

of 60 MPa, and an IT of 16°b top dead center. To achieve the 

greatest brake mean effective pressure, the engine should 

operate on a blend of B20WCO fuel at a CR of 16, with an IP 

of 60 MPa and an IT of 16 °b TDC. Figures 3(a), 3(b), 3(c), 

and 3(d) individually exhibit the analysis of the S/N ratio for 

the optimization of NOx, CO, HC, and CO2. We apply the 

"larger is better" criteria to BTE, BP, and BMEP, while we use 

the "smaller is better" criteria for SFC, NOx, CO, HC, and CO2. 

The main effects plot study shows that higher biodiesel blends, 

particularly B30WCO and B40WCO, tend to have lower SN 

ratios for NOx, CO, and HC emissions, which could mean less 

of these pollutants. Also, higher compression ratios tend to 

lower SN ratios for both NOx and CO, which means they help 

lower these emissions. However, it's not as clear how the 

compression ratio changes HC emissions. The opposite is also 

true: higher biodiesel blends cause higher SN ratios for CO2 

emissions. This is because biodiesel naturally has more carbon 

content than diesel fuel. Intending to reduce emissions, the 

blend B30WCO showed the lowest NOx at 18 CR, 50 MPa, 

and 25°b TDC, while the blend B10WCO revealed the lowest 

value of CO at 17 CR, 60 MPa, and 25°b TDC. The lowest 

value of HC is shown by Blend B30WCO at 15 CR, 60 MPa, 

and 25°b TDC. Blend B30WCO showed the lowest value of 

CO2 at 18 CR, 50 MPa, and 25°b TDC. The not-optimal in-

cylinder pressure and temperature conditions caused by this 

compression ratio are responsible for the discrepancy in the 

signal-to-noise ratios observed at the 17:1 compression ratio. 

These conditions were not favorable to complete combustion 

of the biodiesel blend, resulting in reduced performance and 

emissions signals. This discovery emphasizes the 

susceptibility of biodiesel combustion to accurate engine 

configurations. A high CR can enhance BTE by obtaining 

additional energy from the fuel during combustion. When 

injected earlier with a high CR, the fuel undergoes more 

complete combustion, leading to a reduction in HC and CO 

emissions. ANOVA results indicate that injection pressure is 

the primary contributing factor. At a high injection pressure of 

60 MPa, BTE is higher as a result of better atomization from 

the high injection pressure, which leads to more complete 

combustion. The increased oxygen content in WCO biodiesel 

can result in higher in-cylinder temperatures, which can 

facilitate the formation of NOx. Figure 3(a) also shows that the 

higher blends have higher NOx.  

 

3.2 Grey analysis  

 

Table 6 presents the data for 16 experiments (Exp. No. 1 to 

16). Each experiment lists the S/N ratio values for each 

parameter. These values seem to have been normalized, as 

they all fall within the range of 0 to 1. Table 7 depicts the 

normalized values, and Table 8 represents the deviation 

sequence. The deviation sequence calculated after 

normalization helps determine the degree of similarity 

between data sequences. Table 9 presents the grey relational 

grade and ranking. Table 10 probably summarizes the impact 

of different factors on the average Grey Relational Grade 

(GRG). 

 

3.3 Anova-based analysis  

 

Furthermore, ANOVA was performed to identify which 

parameter has a considerable effect on the output of the engine 

as well as the significance of individual input parameters. By 

illustrating the interrelationships among these variables, 

analysis of variance (ANOVA) facilitates the finding of the 

optimal set of input parameters that optimize engine efficiency 

and reduce emissions. ANOVA is carried out considering the 

grey relational grade and the values are presented in Table 11. 

ANOVA results revealed that the Injection Pressure (IP) is the 

significant parameter affecting multiresponse with a minimum 

P value and a contribution of 52.20%. It was found that for the 

B30WCO blend, BTE increases while SFC decreases with 

increasing Injection Pressure. This is because atomization 

works better at higher IP, exposing more of the fuel droplet's 

surface to the hot air and causing it to completely burn. Figure 
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2 also reveals that as IP increases, CO decreases, which is the 

result of complete combustion due to a good-quality fuel 

mixture. Increasing the injection pressure from 50 to 60 MPa 

results in an increase in NOx and CO2. This is because higher 

injection pressures can improve atomization and mixing, 

which can improve combustion efficiency. However, higher 

injection pressures can also result in higher peak temperatures, 

which can contribute to NOx formation. The amount of 

oxygen present during combustion influences NOx formation. 

Increasing injection pressure may alter oxygen availability and 

affect NOx emissions. The reason for the increase of CO2 is 

complete combustion due to high IP which also implies a 

higher consumption of oxygen, leading to an increase in CO2 

production.  

 

 
 

Figure 2. S/N ratio plots for a) BTE, b) BP, c) BMEP, d) SFC 

 

 
 

Figure 3. S/N ratio plots for a) NOx, b) CO, c) HC, d) CO2 
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Table 6. Signal to noise ratio (S/N ratio) 

 
 Larger is Better Smaller is Better  

Exp. 

No. 

BTE 

% 

BP 

kW 

BMEP 

MPa 

SFC 

Kh/kW 

NOx 

ppm 

CO  

% 

HC  

ppm 

CO2 

% 

1 28.1035 10.7059 -7.7021 9.6297 -48.1308 23.0980 -22.2789 -7.6042 

2 27.7975 10.7564 -7.6390 9.3704 -52.9477 26.0206 -15.5630 -8.2995 

3 27.4435 10.7564 -7.6390 8.8739 -61.7343 21.9382 -19.0849 -13.6248 

4 27.1891 10.8565 -7.5557 8.6360 -63.9014 19.1721 -25.1055 -14.1514 

5 27.5861 10.9309 -7.4938 9.1186 -56.3248 23.0980 -21.5836 -10.8814 

6 27.4324 10.7564 -7.6181 8.8739 -55.1327 26.0206 -15.5630 -9.5424 

7 27.8539 10.8316 -7.5765 9.3704 -58.0618 23.0980 -20.8279 -12.4650 

8 27.9379 10.9061 -7.4938 9.3704 -59.8157 23.0980 -20.0000 -12.2557 

9 26.5308 10.7815 -7.6181 7.7443 -60.3072 24.4370 -24.6090 -12.6694 

10 27.6439 10.9061 -7.4938 8.8739 -58.5679 24.4370 -20.8279 -11.3640 

11 27.4582 10.3703 -8.0461 8.8739 -56.6884 26.0206 -19.0849 -10.6296 

12 28.3028 10.8565 -7.5557 9.6297 -60.8672 24.4370 -22.9226 -14.9638 

13 27.0127 10.9061 -7.4938 8.1787 -54.0486 23.0980 -21.5836 -9.5424 

14 27.7691 11.0046 -7.4118 8.8739 -54.5995 23.0980 -15.5630 -9.5424 

15 26.8721 10.7564 -7.6390 8.1787 -59.8599 21.9382 -20.8279 -12.0412 

16 27.8187 10.6805 -7.7232 9.1186 -54.9015 27.9588 -15.5630 -7.6042 

 

Table 7. Normalize data  

 

Exp. No. BTE BP BMEP SFC NOx CO HC CO2 

1 0.8875 0.5291 0.5424 0.0000 0.0000 0.5532 0.7038 0.0000 

2 0.7148 0.6087 0.6418 0.1375 0.3054 0.2206 0.0000 0.0945 

3 0.5151 0.6087 0.6418 0.4009 0.8626 0.6852 0.3691 0.8181 

4 0.3715 0.7666 0.7731 0.5271 1.0000 1.0000 1.0000 0.8896 

5 0.5955 0.8838 0.8708 0.2711 0.5196 0.5532 0.6309 0.4453 

6 0.5088 0.6087 0.6747 0.4009 0.4440 0.2206 0.0000 0.2634 

7 0.7467 0.7273 0.7404 0.1375 0.6297 0.5532 0.5517 0.6605 

8 0.7941 0.8448 0.8708 0.1375 0.7409 0.5532 0.4650 0.6320 

9 0.0000 0.6484 0.6747 1.0000 0.7721 0.4008 0.9480 0.6882 

10 0.6282 0.8448 0.8708 0.4009 0.6618 0.4008 0.5517 0.5109 

11 0.5234 0.0000 0.0000 0.4009 0.5426 0.2206 0.3691 0.4111 

12 1.0000 0.7666 0.7731 0.0000 0.8076 0.4008 0.7712 1.0000 

13 0.2720 0.8448 0.8708 0.7696 0.3752 0.5532 0.6309 0.2634 

14 0.6988 1.0000 1.0000 0.4009 0.4102 0.5532 0.0000 0.2634 

15 0.1926 0.6087 0.6418 0.7696 0.7437 0.6852 0.5517 0.6029 

16 0.7268 0.4891 0.5091 0.2711 0.4293 0.0000 0.0000 0.0000 

 

Table 8. Deviation sequence 

 

Exp. No. BTE BP BMEP SFC NOx CO  HC CO2 

1 0.1125 0.4709 0.4576 1.0000 1.0000 0.4468 0.2962 1.0000 

2 0.2852 0.3913 0.3582 0.8625 0.6946 0.7794 1.0000 0.9055 

3 0.4849 0.3913 0.3582 0.5991 0.1374 0.3148 0.6309 0.1819 

4 0.6285 0.2334 0.2269 0.4729 0.0000 0.0000 0.0000 0.1104 

5 0.4045 0.1162 0.1292 0.7289 0.4804 0.4468 0.3691 0.5547 

6 0.4912 0.3913 0.3253 0.5991 0.5560 0.7794 1.0000 0.7366 

7 0.2533 0.2727 0.2596 0.8625 0.3703 0.4468 0.4483 0.3395 

8 0.2059 0.1552 0.1292 0.8625 0.2591 0.4468 0.5350 0.3680 

9 1.0000 0.3516 0.3253 0.0000 0.2279 0.5992 0.0520 0.3118 

10 0.3718 0.1552 0.1292 0.5991 0.3382 0.5992 0.4483 0.4891 

11 0.4766 1.0000 1.0000 0.5991 0.4574 0.7794 0.6309 0.5889 

12 0.0000 0.2334 0.2269 1.0000 0.1924 0.5992 0.2288 0.0000 

13 0.7280 0.1552 0.1292 0.2304 0.6248 0.4468 0.3691 0.7366 

14 0.3012 0.0000 0.0000 0.5991 0.5898 0.4468 1.0000 0.7366 

15 0.8074 0.3913 0.3582 0.2304 0.2563 0.3148 0.4483 0.3971 

16 0.2732 0.5109 0.4909 0.7289 0.5707 1.0000 1.0000 1.0000 

 

3.4 Result validates using ANN 

 

Artificial neural networks (ANNs) enhance the 

experimental optimization process by predictively optimizing 

engine performance and emissions. We train artificial neural 

networks (ANNs), known for their ability to represent 

complex nonlinear relationships, using experimental data to 

predict engine behavior under various working conditions. 

This study employs a feed-forward back propagation network 

with three neural layers. Input, hidden, and output layers 

contain four (LOGSIG), ten (LOGSIG), and eight (PURLINE), 

respectively, neurons. Using eighteen experimental results, the 

hidden layer number of neurons is determined through trial 

and continued Continue iterating until the mean squared error 
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between the real experimental data and the expected output 

data is reduced to its minimum value. The ANN model is 

trained using the 'Trainlm' function, which adjusts the weight 

and bias values by Levenberg-Marquardt optimization. We 

used the ANN model to predict engine performance and 

emissions due to its ability to efficiently capture complex, 

nonlinear relationships between input parameters (CR, IP, IT, 

and load) and output variables. The model's flexibility and 

predictive accuracy make it ideal for engine setting 

optimization and emissions improvement in real-world 

applications. 

Figure 4 illustrates a main effects plot for SN ratios. Blend, 

CR, IP, and IT are the various factors that influence the mean 

signal-to-noise (SN) ratio. This plot serves as a visual 

representation of these relationships. SN Ratio: A measure of 

signal quality relative to noise. A larger SN ratio generally 

indicates better performance or quality. The factor "Blend" 

appears to have a significant impact on the SN ratio. B30WCO 

appears to yield the highest mean SN ratio. Compared to Blend, 

the effects of CR, IP, and IT on the SN ratio appear less 

pronounced. 

 

Table 9. Grey relational grade and rank 

 

Exp. No. BTE BP BMEP SFC NOx CO HC CO2 GRG Rank 

1 0.816 0.515 0.522 0.333 0.333 0.528 0.628 0.333 0.501 12 

2 0.637 0.561 0.583 0.367 0.419 0.391 0.333 0.356 0.456 14 

3 0.508 0.561 0.583 0.455 0.784 0.614 0.442 0.733 0.585 6 

4 0.443 0.682 0.688 0.514 1.000 1.000 1.000 0.819 0.768 1 

5 0.553 0.811 0.795 0.407 0.510 0.528 0.575 0.474 0.582 8 

6 0.504 0.561 0.606 0.455 0.473 0.391 0.333 0.404 0.466 13 

7 0.664 0.647 0.658 0.367 0.575 0.528 0.527 0.596 0.570 11 

8 0.708 0.763 0.795 0.367 0.659 0.528 0.483 0.576 0.610 4 

9 0.333 0.587 0.606 1.000 0.687 0.455 0.906 0.616 0.649 3 

10 0.574 0.763 0.795 0.455 0.597 0.455 0.527 0.505 0.584 7 

11 0.512 0.333 0.333 0.455 0.522 0.391 0.442 0.459 0.431 16 

12 1.000 0.682 0.688 0.333 0.722 0.455 0.686 1.000 0.696 2 

13 0.407 0.763 0.795 0.685 0.445 0.528 0.575 0.404 0.575 9 

14 0.624 1.000 1.000 0.455 0.459 0.528 0.333 0.404 0.600 5 

15 0.382 0.561 0.583 0.685 0.661 0.614 0.527 0.557 0.571 10 

16 0.647 0.495 0.505 0.407 0.467 0.333 0.333 0.333 0.440 15 

 

Table 10. Main effect on mean GRG  

 

Factor Level 1 Level 2 Level 3 Level 4 Max-Min Rank 

Blend 0.5775 0.5569 0.5898 0.5467 0.0431 4 

CR 0.5767 0.5265 0.5393 0.6285 0.102 2 

IP 0.4595 0.5761 0.611 0.6244 0.1648 1 

IT 0.5919 0.518 0.5476 0.6136 0.0956 3 

 

 
 

Figure 4. Main effects plot for GRG using S/N ratio 
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Table 11. Results on ANOVA on grey relational grade 

 

Source DF Seq SS Contribution Adj SS Adj MS F- Value P-Value 

Blend 3 0.004566 3.54% 0.004566 0.001522 0.47 0.727 

CR 3 0.025097 19.43% 0.025097 0.008366 2.56 0.23 

IP 3 0.067414 52.20% 0.067414 0.022471 6.87 0.074 

IT 3 0.022266 17.24% 0.022266 0.007422 2.27 0.259 

Error 3 0.009811 7.60% 0.009811 0.00327 
  

Total 15 0.129155 100.00% 
    

 

 
 

Figure 5. Neural network structure 

 

 
 

Figure 6. Regression analysis of ANN 

 

Optimizing engine performance and emissions through the 

interplay of engine operating parameters and the inherent 

characteristics of biodiesel blends. Injection pressure was 

found to be the most important parameter, affecting the 

atomization and mixing of fuel with air. Increased injection 

pressures facilitate smaller fuel droplets, enhancing a uniform 

air-fuel mixture and optimizing combustion efficiency. This 

mechanism is especially evident in the improved Brake 

Thermal Efficiency (BTE) and lower unburned emissions (CO 

and HC) observed at elevated injection pressures. The Grey-

Taguchi optimization framework effectively addressed the 

trade-offs between performance metrics and emissions. The 

fuel properties of biodiesel blends, including viscosity, density, 

and calorific value, justify the observed trends. The slightly 
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elevated viscosity of biodiesel blends (e.g., 2.43 cSt for 

B30WCO versus 2.09 cSt for diesel) influences spray 

formation and penetration, demanding optimal injection 

pressures to achieve effective atomization. The lower calorific 

value of biodiesel blends (e.g., 9995 cal/g for B30WCO versus 

10235 cal/g for diesel) leads to a higher BSFC, needing 

additional fuel to achieve comparable power output. Although 

this, the B30WCO blend exhibited considerable emission 

reductions of 33.3% in NOx, 22.5% in HC, and 14.06% in CO2 

attributable to the oxygenated characteristics of biodiesel, 

which optimize the combustion process and reduce incomplete 

combustion. The analysis underlines the significance of 

density, which increases with elevated biodiesel content (e.g., 

841 kg/m³ for B40WCO versus 816 kg/m³ for diesel). Higher 

density fuels enhance spray depth but demand precise 

adjustment of injection timing to prevent excess combustion 

delays. The flash and fire points of biodiesel blends, which are 

considerably elevated compared to diesel, enhance safety and 

stability during operation, rendering biodiesel an acceptable 

substitute in practical applications. 

These findings confirm the optimization process that 

utilizes the Grey-Taguchi method to determine the optimal 

parameter combinations. The application of the B30WCO 

blend in a VCR engine exhibits this balance, showcasing how 

optimized injection pressures and timing can reduce the 

limitation of biodiesel's properties while obtaining 

environmental and performance advantages. Furthermore, the 

ANN model validated the effectiveness of these optimizations 

by precisely forecasting the intricate interconnections between 

engine parameters and results. 

Figure 5 depicts this study's architecture of the Artificial 

Neural Network (ANN) model. The network consists of an 

input layer with four neurons representing the input 

parameters: CR, IP, IT, and load. The hidden layer contains 10 

neurons, which process the inputs using weighted sums and 

biases, followed by a non-linear activation function. The 

output layer has eight neurons corresponding to the predicted 

engine performance and emission characteristics, including 

BTE, BP, BMEP, SFC, NOx, CO, HC, and CO2. The ANN 

was trained to model the non-linear relationships between 

input parameters and output metrics, enabling accurate 

prediction of engine behavior under different operating 

conditions. 

Figure 6 contains a visual representation of the performance 

of an artificial neural network (ANN) model in predicting a 

target variable. It contains plots for the training, validation, 

and testing datasets, as well as critical metrics such as R-

squared values and output comparisons. The model's high R² 

values for the training, validation, and testing datasets 

(0.97949, 0.99971, and 0.98291, respectively) indicate that it 

has a strong ability for generalization and fits the data well. In 

all cases, the 'Fit' lines closely follow the 'Data' points, 

indicating a strong correlation between the predicted and 

actual values. Figure 7 shows ANN model regression 

performance in predicting engine performance and emissions. 

The model inputs are CR, IP, IT, and Load. The outputs are 

BTE, BP, BMEP, SFC, NOx, CO, HC, and CO2 emissions. 

Regression plots show predicted vs. actual results for training 

(top left), validation (top right), testing (bottom left), and all 

data combined (bottom right). 

 

3.5 Comparison of results under optimal conditions 

 

The most optimum combination of inputs was determined 

by the Taguchi-grey method (B30WCO, 18 CR, and IP 60 bar 

IP and IT 25 °b TDC) was used to compare the diesel and 

biodiesel response parameters, as illustrated in Figure 8. These 

results indicate that certain responses to biodiesel were 

positive, while others were not as favorable when compared to 

standard diesel. As a result, we observe significant 

improvements in response outcomes, including emission 

characteristics. In the meantime, we observe only minor 

degradation in the responses to engine performance 

parameters. 

 

 
 

Figure 7. Experimental and ANN predicted results 
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Figure 8. Comparison of engine output parameters  

 

3.6 Experimental and ANN predicted results 

 

We compared the experimental results to the Artificial 

Neural Network's (ANN) predicted results. The results 

demonstrate that the ANN methodology can effectively be 

used to estimate the performance and characteristics of I.C 

engines. This can be achieved with a reduced number of trials, 

eliminating the need for a detailed experimental study. As a 

result, both engineering effort and costs are minimized. 

 

3.7 Uncertainty analysis 

 

In experimental research, statistical analysis of uncertainty 

is essential because instruments used to measure various 

parameters are prone to random errors caused by factors such 

as equipment conditions, laboratory calibration, 

environmental variables, and reading measurements. 

Therefore, we use a mathematical expression known as the 

propagation of errors to minimize the probability of errors 

occurring. During experiments, equipment errors can help 

determine the uncertainties in parameter values estimated by 

instruments. Eq. (9) is utilized to determine the overall 

percentage uncertainty. Each parameter in the equation 

contributes to the engine's overall performance and emissions 

profile. Each parameter's uncertainty reflects the potential 

variability or measurement error, thereby influencing the 

reliability of the experimental results. 

 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠

= √

[
 
 
 
(𝐶𝑂)2 + (𝑁𝑜𝑋)2 + (𝐻𝐶)2 + (𝐶𝑂2)

2

+(𝐵𝑃)2 + (𝑆𝐹𝐶)2

+(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)2 + (𝑇𝑜𝑟𝑞𝑢𝑒)2

+(𝑇𝑒𝑚𝑝)2 + (𝐹𝑙𝑢𝑖𝑑 𝑓𝑙𝑜𝑤)2 ]
 
 
 

 

= √[
(0.1)2 + (0.01)2 + (0.47)2 + (0.07)2 + (0.1)2

+(3.1)2 + (0.1)2 + (0.2)2 + (0.1)2 + (0.12)2 ] 

= ±3.15 

(9) 

 

It is essential to consider the physical significance of these 

results to interpret the reliability and accuracy of the 

experimental results. For example, uncertainties in emissions 

measurements, influenced by factors such as sensor precision 

and environmental conditions, indicate the variability in 

detecting the precise levels of pollutants (CO, NOx, HC, and 

CO2). Similarly, uncertainties reflect the sensitivity of engine 

performance metrics (BP and SFC) to operational conditions, 

such as fuel quality and engine temperature. The total 

uncertainty is 3.15%. When making broader generalizations, 

it is necessary to consider a quantifiable margin of error. The 

observed trends are statistically significant and robust, as this 

level of uncertainty confirms. However, it also demonstrates 

the importance of careful consideration in experimental design 

and measurement technique precision. 

 

3.8 Comparison of engine output parameters for B30WCO 

and diesel  

 

B30WCO demonstrated enhanced fuel efficiency in 

comparison to B00 diesel, as evidenced by its reduced BSFC. 

In addition, the biodiesel blend exhibited a substantial 

decrease in hydrocarbon (HC) and carbon monoxide (CO) 

emissions, suggesting a beneficial environmental effect. 

Nevertheless, B30WCO exhibited a slight decrease in BMEP 

and BP, which implies a potential decrease in engine power 

output. Although the biodiesel blend demonstrated a higher 

brake thermal efficiency (BTE), indicating improved energy 

conversion, it also resulted in slightly increased carbon dioxide 

(CO2) emissions as a result of its higher carbon content. The 

substantial increase in nitrogen oxide (NOx) emissions from 

B30WCO was a critical concern, requiring additional research 

to develop mitigation strategies. 

 

 

4. CONCLUSION  

 

The results showed that injection pressure is the most 

important engine performance factor. A delta value of 0.1648 

indicates that it has a greater influence on engine outcomes 

than other variables. ANOVA shows that injection pressure 

alone accounts for 52.2% of performance variability, 

highlighting its importance in engine dynamics. These 

findings suggest optimizing injection pressure in engine 

design and operation to improve efficiency and performance. 

The blend ratio has a delta value of 0.0431, is less than 

injection pressure, and has little effect on engine performance. 

ANOVA shows its negligible contribution compared to key 

factors like injection pressure. The blend ratio's limited impact 

suggests that optimizing this parameter alone won't improve 

engine performance, so focus on more important variables. 

By comparing experimental results to those predicted by the 

ANN, the efficiency of the ANN approach in predicting the 

performance and emission of IC engines was confirmed. 

A comparison of implementing an optimal input 

combination of biodiesel and diesel demonstrates significant 

results in lowering exhaust emissions with minimal 

compromise to performance parameters. 

As a method for selecting significant parameters for multi-

response variables, the Grey Taguchi strategy was 

demonstrated to be highly effective. Because it requires less 

effort, the Taguchi-Grey optimization strategy is 

recommended for use in industrial applications because it 

saves time as well as resources. 

The investigation's results indicated that the VCR engine 

may use 30WCO instead of diesel fuel. 

Using waste cooking oil biodiesel blends, especially B30, 

has major environmental advantages. It helps reduce 
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greenhouse gas emissions and waste thereby contributing to a 

more sustainable energy future. However, when considering 

the long-term use of these biodiesel blends, it's important to 

consider potential challenges with engine components and the 

limited supply of waste cooking oil. 

B30WCO blend demonstrated notable environmental 

advantages with significant reductions in emissions, including 

a 33.3% decrease in NOx, a 22.5% decrease in HC, and a 

14.06% decrease in CO2 compared to diesel. Despite a 21.21% 

increase in BSFC and a 16.85% reduction in BTE, these 

findings affirm biodiesel's potential as a sustainable alternative 

for applications emphasizing emission control. 
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NOMENCLATURE 

HC hydrocarbon 

NOx nitrogen oxide 

CO2 carbon dioxide 

CO carbon monoxide 

BP brake power 

BMEP brake mean effective pressure 

BTE brake thermal efficiency 

IP injection pressure 

IT injection timing 

CR compression ratio 

S/N ratio signal-to-noise ratio 

GRC Grey relational coefficient 

GRG Grey relational grade 

CR compression ratio 

BOO diesel 

WCO waste cooking oil 

10WCO 10% waste cooking biodiesel with diesel 

20WCO 20% waste cooking biodiesel with diesel 

30WCO 30% waste cooking biodiesel with diesel 

40WCO 40% waste cooking biodiesel with diesel 
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