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Microbial fuel cell (MFC) is one of the most important renewable sources for energy 
supply and reduction of environmental pollution, which has affected by various 

adversities due to operating conditions. In this paper, there are several serious issues 

related to the stable operation of a microbial fuel cell that have considered in the design 

of the controller, including: 1- Nonlinear terms that are of hard type; 2- Uncertainty of 

the model which is of parametric type and includes changes in temperature, environment 
and concentration; 3- Disturbances into the system which are of both matched and 

unmatched types; 4- And noise on the fuel cell output which has different origins. Also, 

the nonlinear model of MFC has considered for a more accurate description of system 

dynamics. By using of output feedback, adaptive, and sliding mode methods, and 

developing an approximation based on chebyshev neural network, a novel robust hybrid 
technique has proposed for controlling MFC output voltage and power. Using chebyshev 

neural network which has a simple structure with a suitable computational volume, the 

uncertainties, disturbances and hard nonlinear terms have approximated, and the optimal 

weights of the approximation have obtained by designing adaptive laws. Also, the robust 

part of the controller eliminates the effects of estimation error and noise. The Lyapunov's 
theory has used to ensure the stability of the closed-loop system. Furthermore, simulation 

in MATLAB environment and making comparison with the recent three robust methods 

in a strong scenario shows the efficiency of the proposed control method. 
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1. INTRODUCTION

Energy as the driving force of productive activities is the 

basic foundation of economic and social activities of any 

country. Restrictions on fossil fuels and the prediction of rising 

prices, environmental problems and air pollution, global 

warming, population growth, and energy insecurity following  

political and economic crises require a move toward 

renewable energy. The energy part is responsible for the 

emission of two-thirds of greenhouse gases, and the 

development and expansion of renewable energy helps to 

achieve the goals of economic, social and environmental 

development, which are key factors in achieving sustainable 

development, so it is a shortcut in this area. Unlike fossil fuels, 

renewable energy is essentially environmentally friendly that 

is not finite that means has a long life and natural cycles and 

due to the abundance and proper geographical distribution, it 

has led to decentralization in energy production and can 

guarantee the continuity of energy consumption for future 

generations by overcoming the limitation of energy resources 

[1-4]. In general, the most important current drivers for the 

development of renewable energy are: 1- Reducing the 

severity of the effects of climate change; 2- Reducing local air 

pollution; 3- Energy security; 4- Reducing costs, job creation 

and local value; 5- Ability to develop in remote areas. 

Among the types of energy available for renewable energy 

production, fuel cell is of great importance, because by 

clearing and recycling waste, it can achieve the goals of 

providing sustainable energy and preventing the release of 

pollutants simultaneously [5-6]. In this technology, high 

efficiency electrical energy is produced by direct combination  

of fuel and oxidizer. The most important advantages of this 

technology are simple installation, modular structure, high 

efficiency, high power density and longevity, and it can be 

used in transportation, power plants, portable electronics and 

military industries [7-8]. Based on the type of electrolyte, the 

fuel cell is divided into PEMFC, AFC, PAFC, MFC, etc. In 

this study, a control method has been implemented on the 

microbial fuel cell (MFC). The MFC has the ability to use 

microorganisms to oxidize the substrate and generate electrical 

energy, making it as an attractive option for long-term 

electrical generation. This type of fuel cell uses inexpensive 

and long-lasting electrodes for efficient, stable and low-cost 

wastewater treatment, and in addition to reduce water 

pollution, uses wastewater and other waste as fuel in the anode 

chamber. MFC also has the ability to produce biohydrogen and 

is used as a biosensor [9-10]. 

To date, various control methods have been implemented on 

MFC. In [11-12] to achieve the constant output voltage, 

adaptive fuzzy and PID fuzzy methods are used, respectively. 

In [13], the model predictive control method is used to achieve 

a fast response, while disturbances in temperature and 

substrate concentration are considered. To cover the 

uncertainty effects in MFC, the adaptive backstepping control 
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method is presented in [14]. In [15] by linearizing the MFC 

model around the working point, the linear matrix inequality 

(LMI) method has been used to control this type of fuel cell. 

To date, the most complete MFC control works have been 

presented in [16-18]. In [16], Imani et al. by taking account the 

uncertainty effect without linearization, have used the adaptive 

sliding mode method to achieve a constant output voltage. 

Under the same conditions, Fu et al. have used the finite-time 

sliding mode method for achieving a constant voltage and 

uncertainty coverage [17]. Of course, the same authors in [18], 

in addition to seeing the uncertainty, have also considered the 

disturbance on the fuel cell and have used the robust fuzzy 

method to control the MFC. Despite the work done to date, 

there are still shortcomings in MFC control that need to be 

addressed. 

In this study, several issues have been considered 

simultaneously. The first is the nonlinear model of a microbial 

fuel cell. In many of the designed control methods, nonlinear 

terms elimination or linearization occurs around the work 

point, which results in the loss of much of the microbial fuel 

cell information. Therefore, preventing this case is the first 

goal of this study in controller design. The second issue is the 

existence of uncertainty and disturbance in the MFC model. 

Despite of the extensive efforts to accurately describe the fuel 

cell system due to operating conditions, flow rate changes, 

temperature variations, and of course changes in substrate 

concentration, there will certainly be uncertainty and 

disturbance in the MFC model which must be considered to 

achieve a constant output voltage and optimum power. The 

third problem is related to the noise. In a fuel cell environment 

and under different operating conditions, there are different  

types of noise and electrochemical interference that affect the 

output signal and the designed controller must be robust to its 

effects. Due to the fact that practical measurements are not 

perfect, the noise on the output signal can be caused by this 

fact or it can be caused by electrochemical processes, gas 

emission, mass transfer, etc. Each of these phenomena is a 

kind of reminder that there must be noise on the fuel cell output 

signal and its effects must be covered in some way. Therefore, 

achieving the optimal performance of MFC in delivering  

optimal power and constant output voltage despite the 

mentioned problems are the most important motivations of the 

study. 

For this purpose, a new robust method is designed for 

optimal MFC control in this paper. The proposed method is 

based on neural network, adaptive, output feedback and 

sliding model methods and offers the following functions: 1- 

The control-oriented model of MFC is presented in which, in 

addition to covering nonlinear effects, an uncertainty term is 

also considered; 2- The neural network part in the controller is 

responsible for approximating all uncertainty terms, 

disturbances and hard nonlinearities in the model;  3- The 

adaptive method is used to obtain the optimal weights of the 

neural network; 4- To design a robust controller, system 

outputs are used rather than states, on which noise is mounted. 

The effects of estimation error and noise are also covered by 

the sliding mode method. It should be noted that the control 

signal enters only one of the states, so there is a double 

limitation in this regard, because a control signal should be 

able to stabilize all states of the system. In the proposed sliding 

mode method, the hyperbolic tangent function is used instead 

of the sign function to obtain the control signal and to avoid 

the fluctuations. 

Therefore, the most important innovation of this paper is to 

present a new combined approach based on adaptive neural 

network and twisting sliding mode methods. The stability of 

the closed-loop system under the controller has already been 

shown, while in this study we have no knowledge on the upper 

bound of uncertainty and disturbance. The same is true about 

noise, nevertheless that we do not even know the nature of 

noise. 

Accordingly, this article is  organized as follows. In the 

second part, the nonlinear model of the microbial fuel cell is 

fully described. In the third section, with a review of the 

chebyshev neural network, the proposed control method is 

comprehensively explained. The fourth part is related to 

simulations and in this part, a scenario is considered to show 

the capability of the proposed method. Finally, the conclusion 

section is given at the end of the article. 

2. NONLINEAR MFC MODEL with SINGLE 

CHAMBER

 In this section, the nonlinear model of MFC is presented 

and described. The schematic of the corresponding model is 

shown in Figure 1. 

Figure 1. Single Chamber MFC with Membrane 

In the anode chamber, the following reaction occurs 

between microorganisms and substrate, leading to the 

production of hydrogens and electrons. 

CH3COO − + 4H2 O → 2HCO3
− + 9H+ + 8e−  (1)

The structure of a single-chamber MFC is such that 

electrons are transferred to the cathode through mediators, 

anodes, and external electrical circuits, and proteins are 

transferred to the cathode via a cation membrane. Through the 

following reaction between electrons and hydrogen with  

oxygen (air) injected on the cathode side, the MFC output is 

the same as ordinary water. 

O2 + 4H+ + 4e− → 2H2O (2) 
It should be noted that in the model under study, acetate is 

the substrate and G. sulfurreducens is the bacterium, and the 

first mathematical model was developed in [19] for it. Given  

that microorganisms are present in the anode chamber due to 

biomass, if substrate feeding occurs at the rate of 𝑄𝑎, we have

𝐶𝑠  and 𝑋  as concentrates of substrate and biomass, 

respectively. 
𝑑𝐶𝑠

𝑑𝑡
= 𝑞𝑚𝑎𝑥

𝐶𝑠

𝑘𝑠 + 𝐶𝑠

𝑋 + 𝐷(𝑆𝑜 − 𝐶𝑠
),

(3) 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥

𝐶𝑠

𝑘𝑠 + 𝐶𝑠

𝑋 − 𝑘𝑑 𝑋 − 𝐷𝑋,
(4) 

Where μma x ,  qmax  state the maximum rate of substrate

utilization, and the maximum growth rate respectively, So , kd

and k s  specify the influent substrate concentration, biomass

decay co-efficient and half saturation constant respectively, D 
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states the dilution rate defined as a ratio of the flow rate and 

the chamber volume. The reciprocal of biomass yield co-

efficient, k1 equals to
qmax

μmax
. 

Also, the mass equilibria related to H+ and and HCO3
−are as

follows: 
dH+

dt
= 9

dCs

dt
, 

(5) 

dHCO3
−

dt
= 2

dCs

dt
, 

(6) 

Considering the concentrations of  [Cs, X, H+ ,HCO3
− ]  as

state variables [x1 , x2 , x3, x4 ], dilution rate D as control input 

𝑢 and μmax  as θ1
−1, the state space equations related to MFC 

are as follows: 

ẋ1 = θ1
−1k1 r(x1

)x2 + u(So − x1
), (7) 

ẋ2 = (θ1
−1r(x1

)x2 − k d − u)x2 (8) 

ẋ3 = 2ẋ1, ẋ4 = 9ẋ1, (9) 

In the above model r(x1
) =

x1

ks+x1
, and as it turns out, the 

states x3  and x4  are coefficients of x1.

3. CONTROLLER DESIGN

This section describes the proposed controller structure. 

There are several issues in the microbial fuel cell model under 

study. The existence of parametric uncertainty is the first 

problem in controller design. As mentioned in the 

introduction, due to changes in environmental conditions and 

other factors, there is uncertainty in the MFC model and its 

effects should be considered in the controller design. The 

second problem is the existence of hard nonlinear terms. To 

avoid the disadvantages of linearization, which includes 

limiting the functional range and, of course, eliminating  

information, the effects of all nonlinear factors are considered 

in the controller design. The next challenge in designing a 

controller is to deal with disturbances in the system. Two types 

of disturbances enter the two main states of the fuel cell system 

and due to their destructive effects, it is necessary to consider 

them. Finally, another challenge is the presence of noise in the 

output. In controller design studies so far, the effect of this 

component isn’t considered while it has a significant impact  

on the output of the fuel cell system. It should be noted that 

different noises are mounted on the outputs of the fuel cell 

system, which exacerbates the controller design problems. 

Both the uncertainty and the disturbance intervals in the fuel 

cell system are finite, but their upper limits  are not known to 

us. Also, due to the structure of the MFC, the control operation 

should be performed only by designing one control signal. In 

this paper, a combination of sliding mode, adaptive and 

chebyshev neural network methods have been used to cover 

all the mentioned factors in addition to reaching the desired 

working point for the fuel cell. The schematic of the proposed 

control method is shown in Figure 2. Neural network method 

has been used for uncertainty and nonlinear terms 

approximation. To cover the effects of disturbance and noise 

derivation and also to ensure the stability of the closed loop, 

the robust sliding mode method has been used. The adaptive 

method has also been used to obtain the optimal fuzzy  

approximating weights and gains of the sliding mode method 

as well as the upper boundaries of uncertainty and disturbance. 

After reviewing the chebyshev neural network, we will 

describe the different design steps of this controller. 

3.1 Approximation using chebyshev neural network 

Inspired by the function of the biological neural system, the 

artificial neural network provides new computational methods 

for learning, data storage, and output prediction of complex 

systems, and has been used as a powerful tool for identification  

and approximation in this study. Various structures have been 

used as artificial neural networks, including 1- multilayer 

perceptron (MLP); 2- chebyshev neural networks (CNNs); 3- 

radial basis function network (RBFN); 4- recurrent neural 

networks and so on. In the proposed control method, CNN 

method is used for identification and approximation, due to 

less complexity in structure modeling, it is very efficient for 

calculation and has a high convergence speed, and it is very 

easy to implement compared to multilayer neural networks. 

Figure 2. Block diagram of the MFC system with proposed 

controller 

The single-layer structure of CNNs provides a functional 

link network based on chebyshev polynomials. These 

polynomials are the solution to the differential equations of 

chebyshev and are obtained from the following recursive 

equation.  

Ti+1
(x) = 2xTi

(x) − Ti−1
(x), T0

(x) = 1 (10)

Where, T1
(x)  specify Chebyshev polynomials, i  indicates

the order of polynomials taken and x states a scalar number. 

The different selections of T1
(x) are x & 2x.

Figure 3. Chebyshev Neural Network [19] 

The output of the single layer neural network is obtained by 

the following equation: 

ĝ(x) = ŵ Tϕ (11) 

Where  w and ϕ state the weights and the basis function of 

neural network, respectively. According to the approximation  

property of CNN, there are ideal weights w, such that the 

function g(x) for the approximation can be signified as  

g(x) = wTϕ + ε (12) 

Where, ε  states the CNN functional reconstruction error 

vector and  ‖ε‖ ≤ εN  is bounded. Approximation of complex

nonlinear systems becomes easier when CNN is a single-layer 

neural network. 
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3.2 Proposed control method 

The equations of the microbial fuel cell system are 

considered as follows: 

ẋ1 = −θ−1y −1
x1

k s + x1

x2 + u(cs0
− x1 ) + d1

(t)

ẋ2 = (θ−1
x1

k s + x1

− kd − u) x2 + d2
(t)

y = [1 0
0 1

] [
x1

x2
] + [

n1(t)

n2 (t)
] → {

y1 = x1 + n1(t)

y2 = x2 + n2(t)

(13) 

Where n1 (t) and n2(t) are the system output noises. In the

above equations, θ  can change under different conditions 

which is considered as an uncertainty interval in this study. 

The coefficient 
x1

ks +x1
 appears as a nonlinear term in both 

states. The only control signal available to control both x1 and

x2 is u, ie there is only one signal to control the two outputs

and reach the two desired values. The d1
(t)  and d2

(t)  are two

different disturbances that negatively affect the x1  and x2

states. If we consider the system outputs y1 and y2, we see that

two different noises n1(t) and n2(t)  enter the two outputs of

the fuel cell system, and of course these noises are also 

different from each other. The simultaneous coverage of the 

effects of 1- uncertainty 2- nonlinear terms 3- various 

disturbances 4- different noises are the aims of this study and 

this should be done only by one control signal. 

Now we define the error as follows: 

e1 = y1 − y1d 

e2 = y2 − y2d

(14) 

The error equation indicates that the first output, y1 must

follow the desired value of y1d, and the second output, y2 must 

follow the desired value of y2d .

Derived from the error, the dynamic equations of the error 

are obtained as follows: 

ė1 = ẋ1 + ṅ1(t) − ẏ1d

= −θ−1y −1
x1

k s + x1

x2

+ u(cs0
− x1 ) + d1

(t) + ṅ1(t)

− ẏ1d

ė2 = ẋ2 + ṅ2
(t) − ẏ2d

= (θ−1
x1

ks + x1

− kd − u) x2

+ d2
(t) + ṅ2

(t) − ẏ2d

(15) 

In the resulting error dynamics, all elements of uncertainty, 

disturbance, hard nonlinear terms, noise and its derivatives are 

presented simultaneously. 

Because the control signal u exists only in one of the states, 

and to overcome this limitation, we have defined it as follows : 

u = u1 + u2 (16) 

Where u1 will be used to control the first state and u2 will

be used to control the second state. 

By placing the control signal, the error dynamics is obtained 

as follows: 

ė1 = f1
(t,y, u) + cs0

u1 + δ1(t)

ė2 = f2
(t, y,u) − u2 + δ2(t)

(17) 

And the definitions for f1, f2, δ1  and δ2 are as follows:

f1
(t, y, u) = −θ−1y −1

y1 − n1
(t)

k s + y1 − n1
(t)

(y2 − n2
(t))

− u(y1 − n1
(t) + cs0

u2 − ẏ1d

(18)  

f2
(t, y,u) = θ−1

y1 − n1
(t)

ks + y1 − n1
(t)

(y2 − n2
(t) )

− kd(y2 − n2
(t) )

− (y1 − n1
(t) − 1)u − u1 − ẏ2d

δ1
(t) = d1

(t) + ṅ1(t)
δ2

(t) = d2
(t) + ṅ2(t)

(19)

As it turns out, f1  and f2 , in addition to uncertainty, the

nonlinear terms and the noise include the interactions resulting 

from the new definition of the control signal in equation (16). 

To ensure the stability of the system and at the same time 

achieve the control objectives, the following Lyapunov 

function is nominated. 

V =
1

2
e1

2 +
1

2
e2

2 +
1

2λ1

W̃1
TW̃1 +

1

2λ2

W̃2
TW̃2

+
1

2λ3

B̃1
2 +

1

2λ4

B̃2
2

(20) 

where 

W̃1 = W1 − Ŵ1

W̃2 = W2 − Ŵ2

B̃1 = B1 − B̂1

B̃2 = B2 − B̂2

If W1 and W2 represent the actual weights f1 and f2, Ŵ1 and

Ŵ2  represent the estimated weights obtained from the 

chebyshev neural network to estimate f1  and f2  , and it is

necessary to consider the difference between the actual and the 

estimated values in Lyapunov's function to ensure stability. 

Also, if B1 and B2 are the upper boundaries for δ1 and δ2, B̂1

and B̂2  are the estimates of these boundaries and the

magnitude of the error between the real and estimated 

boundaries are considered in the Lyapunov function with the 

terms B̃1  and B̃2 . The λ3  and λ4  also represent adaptive

adjustment parameters. 

The derivative of the Lyapunov function is obtained 

V̇ = e1ė1 + e2 ė2 −
1

λ1
W̃1

T Ẇ̂1 −
1

λ2
W̃2

TẆ̂2 −

1

λ3
B̃1Ḃ̂1 −

1

λ4
B̃2Ḃ̂2 = e1(f1

(t, y, u) + cs0
u1 +

δ1
(t)) + e2(f2

(t, y, u) − u2 + δ2
(t)) −

1

λ1
W̃1

TẆ̂1 −
1

λ2
W̃2

TẆ̂2 −
1

λ3
B̃1Ḃ̂1 −

1

λ4
B̃2Ḃ̂2

(21) 

By selecting u1 and u2 as follows:

u1 =
1

cs0

(−Ŵ1
Tφ1

(y) − B̂1tanh (
e1

η1

)

− k 1tanh(e1 )

u2 = Ŵ2
Tφ2

(y) + B̂2tanh (
e2

η2

) + k 2tanh(e2 )

(22) 

In u1 , the expression Ŵ1
Tφ1

(y) which is obtained by the

neural network method, is used to cover the effects of f1. The 

δ1  is covered by the expressions −B̂1tanh (
e1

η1
)  and the 

expression −k 1tanh(e1) is to ensure stability in the presence

of disturbance. How to select expressions in u2 is similar to

u1 . It should be noted that due to the use of tangent functions

instead of sign, the obtained control signals are smooth. By 

placing in (21), it is obtained: 
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V̇ = e1 (f1
(t, y, u) − Ŵ1

Tφ1
(y) + δ1

(t)

− B̂1tanh (
e1

η1

) − k1tanh(e1
))

+ e2 (f2
(t, y, u) − Ŵ2

Tφ2
(y)

+ δ2
(t) − B̂2tanh (

e2

η2

)

− k 2tanh (e2
)) −

1

λ1

W̃1
TẆ̂1

−
1

λ2

W̃2
TẆ̂2 −

1

λ3

B̃1Ḃ̂1

−
1

λ4

B̃2Ḃ̂2

(23) 

By mathematical simplification, it is obtained 

V̇ = e1 (W1
Tφ1

(y) + ε1 − Ŵ1
Tφ1

(y) + δ1
(t)

− B̂1tanh (
e1

η1

) − k1tanh(e1
))

+ e2 (W2
Tφ2

(y) + ε2

− Ŵ2
Tφ2

(y) + δ2
(t)

− B̂2tanh (
e2

η2

) − k2tanh(e2
))

−
1

λ1

W̃1
TẆ̂1 −

1

λ2

W̃2
TẆ̂2

−
1

λ3

B̃1Ḃ̂1 −
1

λ4

B̃2 Ḃ̂2

(24) 

By placing f1 and f2 based on the chebyshev neural network 

V̇ = e1W̃1
Tφ1

(y) + e1ε1 + e1δ1
(t)

− B̂1e1tanh (
e1

η1

)

− k 1e1tanh(e1
) + e2W̃2

Tφ2
(y)

+ e2ε2 + e2δ2
(t)

− B̂2e2tanh (
e2

η2

)

− k 2e2tanh(e2
) −

1

λ1

W̃1
TẆ̂1

−
1

λ2

W̃2
TẆ̂2 −

1

λ3

B̃1Ḃ̂1

−
1

λ4

B̃2Ḃ̂2

(25) 

Given the above equation and to eliminate the effects of the 

chebyshev estimation error, the adaptive rules for Ŵ1 and Ŵ2 

are obtained as follows: 

Ẇ̂1 = λ1e1φ1
(y)

Ẇ̂2 = λ2 e2φ2
(y)

(26) 

By placing adaptive laws (26) in (25), it is obtained 

V̇ = −k1e1tanh (e1
) − k 2e2tanh(e2

) + e1ε1

+ e2ε2 + e1δ1
(t)

− B̂1e1tanh (
e1

η1

) + e2δ2
(t)

− B̂2e2 tanh (
e2

η2

) −
1

λ3

B̃1Ḃ̂1

−
1

λ4

B̃2Ḃ̂2

(27) 

By simplifying (16) mathematically and placing the above 

boundaries for δ1
(t) and δ2

(t)

V̇ ≤ −k1e1tanh(e1
) − k2e2tanh (e2

) + e1ε1

+ e2 ε2 + |e1
|B1

− B1e1tanh (
e1

η1

)

+ B̃1e1tanh (
e1

η1

) + |e2
|B2

− B2e2 tanh (
e2

η2

)

+ B̃2e2 tanh (
e2

η2

) −
1

λ3

B̃1Ḃ̂1

−
1

λ4

B̃2 Ḃ̂2

(28)

V̇ ≤ −k1e1tanh(e1
) − k2e2tanh(e2

) + e1 ε1 +

e2ε2 + (|e1
| − e1 tanh (

e1

η1
)) B1 + (|e2

| −

e2tanh (
e2

η2
)) B2 + B̃1 (e1tanh (

e1

η1
) −

1

λ3
Ḃ̂1) +

B̃2 (e2tanh (
e2

η2

) −
1

λ4
Ḃ̂2)

(29) 

To eliminate the effects of B̃1  and B̃2 , it is necessary to

specify the adaptive rules for estimating B̂1  to B̂2 as follows:

Ḃ̂1 = λ3e1 tanh (
e1

η1

) 

Ḃ̂2 = λ4 e2tanh (
e2

η2

) 

(30) 

These equations eliminate the effects of noise and 

disturbance. 

By placing the adaptive rules (30) in (29) and also 

considering the mathematical relation 0 ≤ |x| − xtanh(
x

μ
) ≤

0.2785μ from the reference [23], it is obtained: 

V̇ ≤ −k1e1tanh(e1
) − k2e2tanh(e2

) + e1ε1

+ e2ε2 + 0.2785 η1B1

+ 0.2785η2 B2

(31) 

By defining σ as follows: 

σ = e1 ε1 + e2ε2 + 0.2785η1B1 + 0.2785η2B2 (32) 

Equation (31) is rewritten as follows: 

V̇ ≤ −k1e1tanh(e1
) − k2e2tanh(e2

) + σ (33)

Let k = min(k1,k2), given that the approximation error of

chebyshev neural network and σ > 0  are bounded, then 

equation (33) can be modified as  

V̇ ≤ −k(e1tanh(e1
) + e2 tanh(e2

)) + σ (34) 

By integrating the equation on the region ξ ∈ [0, T]

V(T) − V(0) ≤ −k ∫ (e1 tanh(e1
)

T

0

+ e2tanh (e2
)) dξ + ∫ σ dξ

T

0

(35) 

Considering V(T) ≥ 0 and by applying the control signal 

(16) as well as adaptive rules (26) and (30),  closed- loop 

system is stable and ultimately bounded which is in-line with  

tracking error. 

∫ (e1tanh(e1
) + e2 tanh(e2

)) dξ
T

0

≤
1

k
V(0) +

1

k
∫ σ dξ

T

0

 

(36) 

Therefore, without knowledge about the uncertainty range, 

without knowledge of the noise type entering the system and 

the disturbance bound, and even without knowledge about the 
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noise and nonlinear effects, and with only one control signal, 

we covered all our control demands, and we showed that under 

the proposed method, the closed-loop system is stable and the 

error remains in the boundary range. 

4. SIMULATION RESULTS

In this section, the results obtained through simulation in 

MATLAB environment reviewed and are evaluated. The 

hardware used for simulation in MATLAB 2018a 

environment is as follows: Intel Core i7-10750H, 16GB DDR4 

RAM, 512GB SSD, NVIDIA GeForce RTX 2060 6GB 

GDDR6. 

The nominal values of the fuel cell parameters are given in 

Table 1. 

Table 1. Values of Parameters and Constants  

Symbol Typical Value Unit 

k1 0.09 − 

X0 1.5 mg L−1

μmax(θ1
−1) 0.4 day−1

qmax 3.6 day−1

kd 0.084 d−1 

ks 32.4 mg L−1

So 60 mg L−1

Eoa 0.187 V 

Eoc 1.229 V 

EL,a 0.15 V 

EL,c 1.1019 V 

R 08.311446 J. K −1. mol−1

T 298.15 K 

F 96485 s. A. mol−1

n1 8 − 

n2 4 − 

The proposed controller parameters used in this study are as 

follows: 

k 1 = 20,k2 = 1, λ1 = 1 × 10−2,λ2 = 1 × 10−2, (37)

And for the part of chebyshev neural network: 

k = 2, λ = 1 × 10−5 (38) 
To more accurately evaluate the capability of the proposed 

method, the scenario considered for the simulation is as 

follows: 

1- Noise enters the system with the following equation:

n(t) = 0.01ε(t) (39) 
In the above relation, ε is Gaussian white noise. 

2- Parameteric uncertainty is considered as follows in the 

simulation 

{ θ−1 = 0.4 if t < 40
θ−1 = 0.38 if t ≥ 40

(40) 

3- Disturbance is also embedded in this scenario with the 

following criteria 
d1

(t) = 0.02 sin(0.3t)

d2
(t) = 0.03 cos(0.5t)

(41) 

The disturbance covers all changes related to load, 

temperature and ambient concentration. Therefore, all three 

adverse factors affecting the dynamics of the fuel cell system 

are considered in this scenario, and this state indicates the most 

severe and worst working conditions for fuel cell operation 

and the best way for testing the capability of the proposed 

controller. 

Also, for better evaluation, the results obtained from the 

implementation of the proposed control method are compared 

with adaptive fuzzy, adaptive sliding mode and adaptive 

backstepping control methods [16, 18, and 24]. Now the 

results are fully described. 

Figure 4(a) shows the obtained substrate concentration. As 

it turns out, using the proposed CNN-based output feedback 

controller, the concentration is regulated accurately, while the 

adaptive fuzzy method is not able to stabilize the state and the 

substrate concentration at all. The adaptive sliding mode 

method shows almost the same behavior as the fuzzy method 

and only the adaptive backstepping method is able to regulate 

and stabilize the substrate concentration to some extent. Of 

course, it should be noted that in the backstepping method, the 

concentration level is experienced undershoot before reaching 

the final value, also there is an error between the final value 

and the desired value. So in the simulation scenario, in the first 

state, the desired operating point is followed only by the 

proposed control method, and other methods are not able to 

perform this regulation and stabilization of the system. 

Figure 4(b) shows the results obtained for biomass 

concentrations. In this state, the adaptive sliding mode method 

is well able to regulate, but its drawback is the instability of 

the first state. The result obtained from the adaptive fuzzy  

method is unstable like the first state, but the adaptive 

backstepping and the proposed methods have been able to 

stabilize and regulate despite of the uncertainity, disturbance 

and noise. However, there is a small error of a few hundredths 

on the results obtained, which can be neglected due to the 

intensity and severity of the undesirable elements entering the 

system. 

(a) 

(b) 
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Figure 4.  (a) Performance of substrate concentration (b) 

Performance of biomass concentration 

The control signals obtained from the four methods are 

shown in Figure 5. As stated in the previous figure, the 

adaptive sliding mode and adaptive fuzzy methods are not able 

to stabilize the substrate and biomass concentrations, and this 

defect is evident from the control signal. Because the control 

signals obtained from these two methods give negative values, 

these values lead to instability of states under these two 

methods. Both signals from the proposed CNN-based  

feedback and the backstepping methods guarantee system 

stability, although the first state exhibits better transient and 

steady state behavior under the proposed method. 

Figure 5.   Control Signal 

The results for the anode, cathode and MFC output voltages 

are shown in Figure 6. Carefully in these figures it can be seen 

that the obtained voltages are unacceptable and non-uniform 

for adaptive fuzzy and adaptive sliding mode controllers due 

to system instability, while the adaptive backstepping and the 

proposed methods provide acceptable values and uniformity  

for anode, cathode and MFC voltages. By carefully comparing 

of the results obtained for these two last methods, the 

superiority of the results obtained under the innovative method 

is clear in terms of permanent and transient response, because 

of the smoother behavior, without overshoot and undershoot, 

with better uniformity and of course higher output voltage than 

the adaptive backstepping method. 

(a) 

(b) 

(c) 

Figure 6. (a) Anode voltages of single chamber MFC (b) 

Cathode voltages of single chamber MFC (c) Voltages of 

single chamber MFC 

The current obtained for MFC under different control 

methods is shown in Figure 7 (a). The interpretations given for 

the MFC voltage in the previous figure are the same for the 

MFC current, meaning that the adaptive fuzzy and adaptive 

sliding mode methods are not able to provide an acceptable 

current from the MFC, and the currents obtained from the two 

adaptive backstepping and the proposed methods follow the 

same voltage behavior, i.e. smoother behavior, without 

overshoot and undershoot, and better uniformity is obtained 

under the proposed method. 

The MFC output power under the studied control methods 

is shown in Figure 7 (b). Considering the output current and 

voltage obtained in the adaptive fuzzy and adaptive sliding 

mode methods, the instability of the MFC output power under 

these two methods is obvious, as shown in Figure 7 (b). As 

Figures 6 and 7 (a), the two adaptive backstepping and the 

innovative methods provide acceptable output power and of 

course, like the results for voltage and current, the output 

power under the proposed method is smoother with better 

uniformity, without overshoot and undershoot, and in general 

has a better transient and steady state behavior than the 

backstepping method. As can be seen from Figure 7 (b), under 

the backstepping method, the MFC output power experiences  

a large overshoot and then reaches its steady state. 
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(a) 

(b) 

Figure 7.  (a) Current of single chamber MFC (b) Output 

power of single chamber MFC 

For a more accurate comparison, the error values of ISE, 

IAE, and ITAE for the two states of biomass and substrate 

concentrations are given in Table 2. As it is known, for the first 

state, better results are obtained under the innovative method 

for these three error definitions, and for the biomass 

concentration, the results obtained are better under the 

adaptive backstepping method. However, due to the small 

difference between the results obtained from the backstepping 

method and the proposed method, this advantage is negligible. 

Table 2. The error comparison in the simulation scenario 

Controller State ISE IAE ITAE 

Robust 

Adaptive CNN 

Substrate 

concentration 
(mg/L) 

0.001 0.001 0.1 

Biomass 

concentration 

(mg/L) 

3.35e-5 1.82e-4 0.01 

Adaptive 

Fuzzy 

Substrate 

concentration 

(mg/L) 
unstable 

Biomass 

concentration 

(mg/L) 

Adaptive 

Sliding Mode 

Substrate 

concentration 

(mg/L) 

unstable 

Biomass 

concentration 

(mg/L) 

Adaptive 

Backstepping 

Substrate 

concentration 

(mg/L) 

0.006 0.002 0.24 

Substrate 

concentration 

(mg/L) 

1.37e-5 1.16e-4 0.01 

5. CONCLUSIONS

In this paper, a new hybrid method is presented for control 

and regulation of MFC and by taking advantages of the 

adaptive method, chebyshev neural network approximator has 

been overcome to uncertainty, disturbance and nonlinear hard 

terms effects. The novel designed robust control method is a 

combination of sliding mode and output feedback techniques, 

which used to overcome the effects of noise and estimation 

error. Also, due to the use of hyperbolic functions in the 

proposed robust method, the control signals and the resulting 

states showed a smooth behavior. The simulation results 

showed that the proposed robust method is able to improve the 

transient and steady state response of system states in 

achieving control objectives and the desired power of the MFC 

output. Also, using the proposed controller, the stability of the 

system confirmed under the most severe operating condit ions 

in terms of the presence of disturbance, parametric uncertainty 

and noise. Considering the limitations on the control signal as 

well as the controller optimization are the suitable ways to 

continue studies in this field. 
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