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Automated breast cancer diagnosis using histopathology image analysis is crucial for 

improving treatment strategies. While most research emphasizes binary classification 

(benign vs. malignant), this paper addresses the need for multi-classification, distinguishing 

between normal, benign, in situ carcinoma, and invasive carcinoma. The study proposes a 

fine-tuning approach for several pre-trained Convolutional Neural Networks (CNNs) to 

enhance multi-classification performance. Three distinct pre-trained networks were 

employed, both with and without position and channel attention mechanisms. These 

mechanisms allow the model to focus selectively on the most relevant regions and channels, 

improving feature representation. The proposed approach was tested on the Breast Cancer 

Histology (BACH) dataset. The best results are obtained for the proposed model with 

attention mechanisms with an accuracy of 96.7% and sensitivities of 97.1%, and specificities 

of 96.4% respectively. These results confirm the effectiveness of employing attention 

mechanisms as improvements to CNNs for the multi-classification of breast cancer histology 

images. This biomimetics fine-tuning strategy could be valuable for the growth of an 

automated diagnostic system to assist in early detection and classification of breast cancer 

prognosis and management. 
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1. INTRODUCTION

Breast cancer is one of the most common and life-

threatening cancers worldwide, affecting millions of women 

each year. According to the World Health Organization 

(WHO), 2.1 million women were diagnosed with breast cancer 

in 2020, making up 11.7% of all cancer cases. It is also a 

leading cause of cancer-related deaths, accounting for 15% of 

female cancer deaths. These statistics highlight the need for 

better detection, diagnosis, and treatment [1]. 

Early detection is crucial for improving survival rates, with 

research showing that breast cancer diagnosed early has a 5-

year survival rate of over 90%. Suspicious lesions are detected 

using mammography, ultrasound, and MRI. The gold standard 

for classifying breast cancer subtypes (normal tissue, benign 

tumors, in situ carcinoma, and invasive carcinoma) remains 

histopathological analysis, which guides treatment decisions 

such as surgery, chemotherapy, radiation, or targeted therapy 

[2]. 

1.1 Limitations of manual diagnosis 

Manual analysis of histopathological images has some 

limitations. To identify cancerous cells, histopathologists 

under the microscope look at tissue samples for morphological 

features like cell size, shape, mitotic rate and nuclear 

pleomorphism. Given the increasing global incidence of breast 

cancer, this process is highly time consuming and labor 

intensive. Due to the growing demand for histopathological 

evaluation, which often exceeds the availability of skilled 

pathologists, there is often a delay in diagnosis and treatment 

[3]. 

In addition, manual diagnosis is inherently subjective, 

resulting in inter-observer variability (i.e., variability between 

pathologists) and intra-observer variability (i.e., variability of 

the same pathologist at different times). Inconsistencies in 

existing calibration and labeling, however, can lead to errors 

in accuracy and patient outcomes. Furthermore, the 

complexity of the histopathological patterns, together with the 

differences in staining techniques and imaging conditions, 

adds to the difficulty and imprecision of manual diagnoses [4]. 

These limitations emphasize the importance of computer 

aided diagnostic (CAD) systems to reduce the workload of the 

pathologists by automating some routine tasks and also 

assisting them to make confident diagnosis. CAD systems 
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have been shown to have some promise, but the traditional 

machine learning techniques used in them rely on hand 

designed features, which makes them less adaptable and 

scalable to diverse datasets [5]. 

 

1.2 Role of deep learning in histopathological image 

analysis 

 

With a focus that seems completely unprecedented, the 

progress we’ve seen in the field of medical imaging in the 

hands of deep learning has been tremendous. In this thesis, we 

focus on CNNs, a form of deep learning with excellent 

performance on tasks such as object detection, segmentation, 

and classification. Unlike traditional methods, features can be 

automatically extracted from raw image data to a hierarchical 

structure due to the fact that CNNs can bypass the potentially 

labor-intensive manual feature engineering process [6]. 

CNNs have shown great success in classifying breast cancer 

subtypes with high precision in histopathological image 

analysis. With access to large-scale datasets, these networks 

are able to learn subtle patterns and pathologies in 

histopathological images and thus facilitate learning robust, 

generalizable models. In addition to these, recent attention 

mechanism techniques including positional and channel 

attention modules have helped to push CNNs to pay attention 

to regions and features that are relevant, in order to improve 

interpretability and diagnostic accuracy [7]. 

This Research explores the application of fine-tuned pre-

trained CNNs, augmented with attention mechanisms, to 

classify breast cancer histopathological images into four 

categories: normal, benign, in situ carcinoma, or invasive 

carcinoma. We demonstrate how this approach addresses key 

challenges in the use of such datasets, such as dataset 

imbalance and heterogeneity, on the Breast Cancer Histology 

(BACH) 2018 dataset. In addition to achieving state-of-the-art 

performance, our method provides visualization tools for 

explaining classification decisions, making it a useful tool for 

pathologists in clinical practice. This work attempts to bridge 

the gap between artificial intelligence and histopathology and 

hopes to contribute to the development of automated systems 

that will assist pathologists, reduce diagnostic variability, and 

improve patient outcomes in the fight against breast cancer. 

 

1.3 Related work  

 

The literature survey gives a brief overview of current state-

of-the-art research in histopathological image analysis for 

cancer diagnosis by focusing on machine learning, deep 

learning, and novel computational methods. Key studies are 

summarized below:  

Halicek et al. [8] developed a way to classify head and neck 

cancer using hyperspectral imaging and deep CNNs. One of 

the approaches leveraged CNNs' capability to analyze high 

dimensional spectral and spatial features and dramatically 

improved classification accuracy. This work demonstrated the 

ability of CNNs to manage complex medical imaging data and 

provided a basis for future work on cancer diagnostics with 

hyperspectral technologies. A novel whole-slide mitosis 

detection approach in breast histology images was proposed 

by Tellez et al. [9], who trained distilled stain invariant CNNs 

with PHH3 as a reference. The method addressed stain 

variability challenges effectively and showed better robustness 

and accuracy in mitosis detection, which in turn improves 

diagnostic capabilities in histopathology. 

Khan et al. [10] developed a non-linear mapping technique 

for stain normalization of digital histopathology images using 

image-specific color deconvolution. This method addresses 

the challenges posed by variations in staining protocols, 

providing a consistent image representation and enhancing the 

performance of machine learning models for histopathological 

analysis. In the field of mitosis detection in breast cancer 

pathology images, Wang et al. [11] proposed a hybrid 

approach, which combines handcrafted features and CNN-

extracted features. They showed that their method exploited 

the strengths of both traditional feature engineering and deep 

learning by achieving better classification accuracy and that 

the two are complementary. 

Komura and Ishikawa [12] present a comprehensive review 

of machine learning methods for histopathological image 

analysis, focusing on the shift from traditional to deep learning 

approaches. Key challenges of dataset heterogeneity and 

limited dataset availability were identified, and preprocessing 

and augmentation of the dataset were emphasized as crucial 

components for building robust models. A CNN-based method 

for automatic classification of cervical cancer using 

cytological images was proposed by Wu et al. [13]. With 

transfer learning and data augmentation, the authors were able 

to achieve high classification accuracy, making it possible to 

use CNNs for cytological image analysis, and opening the 

door for their use in other areas of medical imaging. 

Doi [14] proposed a historical review and analysis of 

medical imaging computer-aided diagnosis (CAD) systems, 

including their evolution, current applications, and future 

potential. The study described the benefits of CAD in existing 

healthcare settings and demonstrated how the integration of 

these systems might improve diagnostic accuracy and 

efficiency, laying the framework for the adoption of AI in the 

healthcare area. Wang et al. [15] presented a deep correlation 

analysis method for breast tumor segmentation in multi-

sequence MRI data. They applied deep learning to capture 

complex relationships across sequences to achieve precise 

segmentation results and to bring deep learning to multimodal 

medical imaging. 

Sun et al. [16] proposed HIENet, a CNN-based model with 

attention mechanisms for endometrial cancer classification 

using histopathological images. By leveraging attention, the 

model enhances interpretability by highlighting critical image 

regions. Trained on 3,300 H&E image patches from 500 

specimens, it achieved 76.91% accuracy in four-class 

classification and an AUC of 0.9579 in binary classification. 

External validation on 200 patches from 50 patients further 

improved accuracy to 84.50%, with an AUC of 0.9829. 

HIENet outperformed human experts and other CNN-based 

classifiers, demonstrating the potential of deep learning in 

CAD systems. The study’s use of ten-fold cross-validation, 

benchmark comparisons, and explainability techniques 

provides insights for breast cancer classification. 

Incorporating attention mechanisms, robust validation, and 

interpretability tools like Grad-CAM or SHAP could enhance 

breast histology image analysis. Ling et al. [17] proposed a 

self-supervised disentanglement network (SDN) to address 

domain gaps in histopathology image staining caused by 

variations across medical centers. Unlike traditional GAN-

based stain transfer methods, which struggle with unseen 

domains, SDN decomposes images into content and stain 

features, allowing for flexible stain transfer [17]. A novel self-

supervised learning policy ensures domain-independent 

optimization by enforcing stain-content consistency across 
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augmentations. Experimental results show that SDN 

outperforms state-of-the-art stain transfer models in both intra- 

and cross-dataset scenarios while being significantly more 

lightweight. Moreover, SDN enhances the AUC of 

downstream classification models on unseen data without 

fine-tuning, demonstrating its effectiveness in eliminating 

stain variation and improving model generalizability. This 

approach could be highly beneficial for breast histopathology 

image analysis by ensuring consistent staining across datasets, 

thereby improving classification accuracy and robustness. 

Tharwat et al. [18] presented an approach for colon cancer 

diagnosis using machine learning and deep learning 

techniques. Various modalities were evaluated, with deep 

learning being favored for feature extraction and 

classification. The study suggests that deep learning could be 

integrated into the diagnostic workflow to enhance accuracy 

and efficiency. 

The identified gaps are successfully bridged with the 

proposal of a comprehensive multi-classification framework 

that outreaches the traditional binary classification. The study 

advances feature extraction processes by incorporating 

advanced attention mechanisms (positional and channel 

attention modules) and improves interpretability of the 

model’s predictions. We train on a more diverse and robust 

training set, by using robust preprocessing and data 

augmentation techniques for handling dataset imbalances and 

heterogeneity. Building on the model, the study improves its 

applicability by using fine-tuned pre-trained networks like 

ResNet-50, DenseNet-121, and Inception-V3 to create a 

diagnostic tool that can solve a wider range of breast cancer 

subtypes. Furthermore, the integration of explainable AI tools 

(i.e., heatmaps, saliency maps) enables clinical adoption of the 

tools by guaranteeing transparency in what governs 

classification decisions, empowering pathologists to enhance 

their diagnostic accuracy and efficiency (refer to Table 1). 

 

Table 1. Research gaps 

 
Research Gap Identified in Literature 

Limited multi-classification 

approaches 

Most studies, like Halicek et al. [8] and Doi [14], focus on binary classification (benign vs. 

malignant). 

Stain variability challenges Khan et al. [10] and Tellez et al. [9] noted that stain variability limits model generalizability. 

Manual feature engineering 

limitations 

Komura and Ishikawa [12] emphasized the time-intensive and less scalable nature of manual feature 

extraction. 

Lack of attention mechanisms in 

models 

Wu et al. [13] and Wang et al. [15] used CNNs but did not integrate attention mechanisms for feature 

selection. 

Dataset imbalance and 

heterogeneity 

Tellez et al. [9] and Tharwat et al. [18] highlighted challenges in working with imbalanced and 

heterogeneous datasets. 

Lack of explainability Doi [14] noted a lack of visual explanations for model predictions. 

Limited testing on diverse datasets Existing models are often tested on small, homogeneous datasets, reducing generalizability. 

 

 

2. PROPOSED METHODOLOGY  

 

2.1 Dataset 

 

The BACH 2018 dataset included in this study is 

categorized into four unique classes: the initial batch of 100 

photos is evenly distributed among normal tissue, benign 

tumors, in situ carcinoma, and invasive carcinoma. To increase 

the dataset size, each image was cropped into 12 

nonoverlapping patches, resulting in 1,200 images per class 

and 4,800 images overall. Furthermore, to enhance dataset 

diversity and mitigate overfitting, data augmentation 

techniques including flipping, rotation, and scaling are 

employed, resulting in more than double the number of 

training instances. We subsequently divided the data into 80% 

for training and 20% for testing to ensure a precise evaluation 

of model performance on unfamiliar data. This proven 

approach is structured and balanced, resulting in enough 

training data to train reliable models with reliable test sets to 

assess the model’s generalization. 

Figure 1 displays sample images of four different classes 

from the dataset. It is essential to acknowledge that whole-

slide images encompass a variety of regions of interest, such 

as normal tissue and different types of lesions, making the 

annotation process a time-consuming and subjective task. 

Therefore, it is crucial to ensure that multiple medical experts 

reach a consensus on the annotations and exclude any images 

that display disagreement. The use of annotated coordinates 

that encompass the regions of interest can greatly facilitate the 

development and evaluation of automated detection 

algorithms for breast cancer. Figure 1 displays sample 

histology images from the dataset, showcasing different tissue 

classes such as normal, benign, in situ carcinoma, and invasive 

carcinoma. These images are H&E-stained and represent 

varying histological patterns used for classification. 

 

 
 

Figure 1. Sample images from the dataset 

 

This pixel-wise labeling enables precise and detailed 

annotation of the image, facilitating subsequent analysis and 

algorithmic development in the field of breast cancer 

detection. In this study, the data augmentation strategy 

involves applying geometric transformations such as flipping, 

rotation, and shifting to the original breast cancer histology 

images. These transformations aim to introduce variability that 

can occur during image acquisition and digitization, as well as 
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due to the physical properties of breast tissue. By 

incorporating these augmentations, the dataset is expanded, 

and the model is trained on a more diverse set of images, 

ultimately improving its performance and reducing 

overfitting. Importantly, it should be noted that these 

augmentations do not impact the malignancy categorization or 

the diagnostic outcome of the images [19]. 

⮚The first step is to preprocess the images from the BACH 

2018 dataset, which consists of breast cancer tissue images, 

each labeled with one of four classes. In the preprocessing, 

they include noise elimination, augmentation, scaling, and 

image normalization to improve the standard and variety of 

images, and reduce the noise and other unwanted features in 

the images. 

⮚The second step is to fine-tune three pre-trained networks, 

namely, ResNet-50, DenseNet-121, and Inception-V3, using 

the preprocessed images. Transfer Learning is a process 

known too as fine-tuning, and it is mainly used to adapt 

previously trained models on one specific set of data to another 

less ideal set of data2. Fine-tuning can assist in counteracting 

the problems of a relatively small number of examples and 

computational constraints, as well as making use of the 

knowledge and features, learned from a large and diverse data 

set like ImageNet. 

⮚The third step is to add position and channel attention 

mechanisms to each of the fine-tuned networks, to capture 

both global and local dependencies within the images, as well 

as spatial and channel relationships. Position attention 

calculates a weighted sum of all encoder hidden states, 

utilizing the preceding decoder output as the query. Channel 

attention calculates a weighted sum of the input feature map's 

channels through a squeeze-and-excitation block. 

⮚The fourth step is to train and test the fine-tuned networks 

with attention mechanisms on the BACH 2018 dataset, and 

compare their performance with the original networks without 

attention mechanisms, as well as with other CNN-based 

classifiers. The performance metrics include accuracy, 

sensitivity, specificity, and F1-score, which measure the 

ability of the models to correctly classify the images into the 

four categories. 

⮚The fifth step is to analyze and interpret the features 

learned by the fine-tuned networks with attention mechanisms, 

as well as the classification and diagnosis decisions made by 

the models, using visualization and explanation techniques, 

such as heatmaps and saliency maps. These techniques can 

help understand the importance and relevance of the regions 

and channels of the images for the classification task, as well 

as the rationale and logic behind the models’ outputs. 

 

 

3. TRANSFER LEARNING  

 

The approach involves the use of a previously trained image 

model like that of Google’s Inception-V3 or ResNet50 which 

are trained using a substantial quantity of photos sourced from 

the ImageNet database, a repository of labelled images. This 

kind of model exists before being adapted to serve as a base 

for a new activity, which in this research involves classifying 

histological breast images. The entire weights of the pre-

trained model are again trained using smaller and more 

relevant medical image set, so as to improve the features 

learned in the model fit for the new task in hand [20]. 

Retraining refers to the process of adjusting the weights of the 

pre-trained model based on the type of medical image data 

which are being worked on. When applied to the classification 

of images of breast histology, the fine tuning of the model 

helps in ensuring that it features the right categorization of the 

images depending on the histological characteristics of the 

images. This work leverages both data augmentation and 

transfer learning since the former is used in this work. Transfer 

learning builds upon the knowledge and representations 

formed by the pre-trained model and is beneficial to increase 

efficiency and the training capabilities for the new task [21].  

 This work also applies several methods of data 

augmentation as a means of increasing the amount of data used 

for training improvement and chosen images of breast 

histology through the transfer of weights of pre-trained models 

for a fine tuning of the chosen images. These techniques help 

in optimization for the successful and suitable working of the 

proposed model for the classification of histology image of 

breast cancer. ResNet50 is an architecture belongs to the 

Convolutional Neural Network that utilizes the feature of a 

residual learning block. In traditional deep neural networks, 

while the layers increase, the gradients used for back 

propagation turn out to be very small thus making it 

challenging to train the previously existing layers of the neural 

networks [22]. The residual learning framework is free from 

this problem by the incorporation of the shortcut connection 

that enables gradients to pass through the network easily [23]. 

As mentioned earlier, both pre-trained CNN architectures have 

also demonstrated decent results when fine-tuned for several 

classification problems in the medical spectrum. Indeed, in 

this work, we employed CNN-based classifiers were used to 

compare their prediction performance and identify the most 

effective approach for the given dataset. Three popular 

architectures, VGG, ResNet, and Inception CNN 

architectures, were employed [24]. To optimize the 

performance of these CNNs, pre-trained weights and fine-

tuning techniques were applied. Transfer weights also called 

pre-trained weights are weights which has been learnt on a 

large-scale data usually the ImageNet dataset and preserve 

generic features that are helpful in different visual recognition 

tasks. In this method, weights are tuned according to a specific 

dataset so that it captures the features of the particular task it 

is being used for. 

 
 

4. SELF-ATTENTION MECHANISM  
 

Recognizing breast tumors based on histopathological 

images is certainly a difficult problem. The assessment of 

these images involves pathologists but can be intra-observer 

and inter-observer variability. Various domains of signal 

processing have suggested that engaging in artificial 

intelligence (AI) techniques like the visual attention 

mechanism enables a higher classification ratio. The self-

attention mechanism consists of two modules: the positional 

and channel attention modules [25]. The positional attention 

module focuses on capturing global relationships within the 

histopathological patch. It achieves this by using nonlocal 

blocks, which allow for comparing features at different 

locations within the patch. The module provides weights to 

these characteristics by assessing the similarity between the 

features at a given location and the features at other locations 

in the image. These weights reflect the similarity between the 

features and are used to weight and aggregate the 

corresponding features [26].  
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Figure 2. Architecture of ResNet with attention modules 

 

The final output on the right is a feature map which encodes 

both spatial connections and global structure within the patch, 

which makes it possible to get the representation of the entire 

histopathological image. Figure 2. shows the ResNet50 

architecture with the position and channel attention modules 

applied to it. Figure 2 showcases the ResNet model integrated 

with attention modules, including position and channel 

attention mechanisms. 

 
4.1 Position attention module 

 

This module accepts the feature map FM1 as its input 

mainly connect locally to maintain relations. For capturing 

non-local relationships and for storing rich global information, 

the non-local block is adopted as the self-attention mechanism 

within the module. If it happens at the non-local block, weights 

are computed based on the resemblance of features at the 

certain location with features at other locations in the image. 

Subsequently, these features are weighted and aggregated. The 

assignment of weight to each location depends on the 

similarity of their features and remains unaffected by physical 

distance, with higher similarity resulting in greater weight 

assigned to the respective features. The non-local formula used 

in the convolutional neural network (CNN) can be expressed 

in Eq. (1). 

 

( ) ( )
1

,
( )

i i j j

j

y f x x g x
c x 

=   (1) 

 

The input feature map is denoted by x in this expression, 

while a feature map that undergoes non-local operations on "x" 

is represented by y. In this case, "i" denotes a place on the 

feature map, and "j" encompasses all of the feature map's 

positions. While g in the model refers to the computation of 

the value of the feature at location j, and the function c(x) 

captures the overall result of this computation, f in the model 

defines the computation of feature similarity between 

positions i and j. In order to achieve dimensional reduction and 

simultaneously learn various global features that are taken into 

consideration, FM1 is first run through three distinct 

convolutional layers with a 1×1 kernel size. Three 7×7×1024 

feature maps are produced by these three convolutional layers. 

The Position Attention Module is shown in Figure 3, which 

improves spatial feature representation and refines feature 

maps by using convolution, reshaping, max-pooling, SoftMax, 

and batch normalizing. 

Subsequently, dimensionality reduction and parameter 

reduction are achieved through reshaping and max-pooling 

operations. The reshaping operation transforms the feature 

map into a matrix of size 49×1024, while the max-pooling 

operation employs a 2×2 kernel size and a stride of 2 to down-

sample the feature map. These processes result in a 49×1024 

position attention matrix K, along with two 24×1024 position 

attention matrices Q and V. These three matrices are 

multiplied, and the feature dimensions are recovered using 

convolutional and batch normalization processes. Lastly, it 

performs element-wise addition of the converted features sums 

them up with the FM1, and then provides a new feature map 

that incorporates both the local and global connections. The 

position attention module utilizes self-attention to be aware of 

the information everywhere, which means focusing on non-

local points. As depicted in the schematic block diagram in 

Figure 3. The feature map FM1 of the input is transformed by 

parallel convolutional layers, reshape, max-pooling, matrix 

multiplication, convolution as well as batch normalization 

operations, thereby, providing a final feature map that contains 

both local and global dependencies. 
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Figure 3. Position attention module 

 

The squeezing and excitation networks provide the basis for 

the channel attention module. Its primary function is to enable 

a neural network to leverage global information to enhance 

pertinent data channels while simultaneously diminishing the 

significance of less relevant channels. This adaptive channel 

selection improves the overall performance of the network. 

The weighting of each learning channel is determined with the 

help of the channel attention module. The squeeze operation, 

which is the first stage, uses Eq. (2) to compress a three-

dimensional feature map of size H×W×C into a one-

dimensional feature map of size 1x1xC. The first step involved 

is the squeeze operation where the three-dimensional feature 

map of size H×W×C is converted to a one-dimensional feature 

map of size 1×1×C as shown in Eq. (2). 

 

( )
1 1

1
( , )

*

H W

c sq c c

i j

z F u u i j
H W = =

= =   (2) 

 

4.2 Channel attention module 

 

The two-dimensional matrix of feature map U compresses 

the elements of the matrix through the summation for each 

channel matrix which is seen in uc. The one-dimensional 

feature map obtained, referred to as zc, represents the 

numerical dispersion of C feature maps and embodies the 

channels’ global information. The squeeze operation then 

averages each element and divides it by the number of 

elements to get an average value, in the situation of global 

average pooling, it divides the result by (H*W) where H and 

W are the height and width of the tensor respectively. To 

model the dependencies between channels the so-called 

excitation operation is applied. It is a model consisting of two 

fully interconnected layers utilizing ReLU activation. The 

initial operation involves the element-wise multiplication of 

the compressed feature map, z, with the scale parameter, W1. 

The particular output needs to go through ReLU activation 

followed by another scaling phase with another parameter, 

W2, in the next layer of fully connected layers. Last but not 

least, to arrive at the required excitation weights s concerning 

each channel, the sigmoid tanh activation function is used. 

However, in the excitation operation, the network is allowed 

to learn the relationship between the channels to make some 

decisions on relevance. The following outlines the squeeze 

operation and the excitation operation with regards to CNN as 

illustrated below in Figure 4. The GAP layer is employed to 

diminish the dimensionality of the feature map by calculating 

the variance of the C channels. After this stage, the two-

channel information advances to the fully linked layers, 

followed by the ReLU activation, and subsequently the 

sigmoid activation. 

It then takes the just calculated weights and applies them to 

the first generated feature map known as FM1 to produce an 

FM3 feature map revealing the channel relationship. Figure 4 

demonstrates the Channel Attention Module, utilizing global 

average pooling, fully connected layers, ReLU activation, 

sigmoid, and batch normalization to focus on important 

channels, refining the feature map representation. 

 

 
 

Figure 4. Channel attention module 
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The channel attention part uses the squeeze and excitation 

processes to make related channels stronger and suppress the 

opposing channels to a certain extent. This is achieved through 

global average pooling to obtain the global information of the 

channels followed by fully connected layers that categorize the 

channels as relevant or not through ReLU activation followed 

by sigmoid activation. These derived weights are then utilized 

to scale the original feature map in order to take into account 

the dependent feature map channel relations. On the other 

hand, the channel attention module aims at deriving the 

interaction of different channels in every histopathological 

image. They have applied the element called Squeeze-

Excitation block derived from the Squeeze-and-Excitation 

Networks to increase the importance of useful channels while 

minimizing the importance of useless ones. This operation 

brings a lot of ‘squeezes’ by reducing the dimensionality of the 

three-dimensional H×W×C feature map into a one-

dimensional 1×1×C feature map that is much simpler. 

Following that, the fully connected layers having activation 

functions are employed to model interdependences between 

channels. Through a series of multiplication with learnable 

parameters and activation operations on the squeezed feature 

map, the relevance weights of each channel are acquired. 

These weights are then used to scale the original feature map 

to produce a new feature map which highlights important 

channel dependencies. By combining both the positional 

attention and channel attention modules, our self-attention 

mechanism effectively captures the overall spatial 

relationships and channel dependencies present in 

histopathological images. This helps to increase the 

representation of the histopathological features and, therefore, 

optimize the network to focus only on the more important 

regions and channels. In order to further enrich the feature 

representation and increase classification accuracy, the two 

feature maps are combined. This approach leverages both the 

image's location information and the inter-channel 

information. By combining these two sources of information, 

the model can better capture relevant features for accurate 

classification of breast tumors. In the intricate landscape of 

breast cancer diagnosis, the proposed approach stands as a 

beacon of innovation and precision. At its core lies a fine-

tuning methodology that harnesses the power of CNNs to 

navigate the complexities of multi-class classification in 

histopathology images. By meticulously annotating images 

and ensuring data quality through immunohistochemical 

analysis, the foundation of the proposed approach is built on a 

solid framework of reliability and accuracy. This meticulous 

process not only enhances the quality of the dataset but also 

sets the stage for robust model training and evaluation. The 

incorporation of attention mechanisms, specifically the 

positional and channel attention modules, adds a layer of 

sophistication to the classification process. These modules 

enable the model to capture global dependencies, refine 

feature maps, and establish pixel-level relationships. By 

selectively focusing on relevant regions and channels, the 

model enhances the representation of histopathological 

features, ultimately improving classification performance. 

Furthermore, the utilization of pre-trained networks, such as 

ResNet50, with fine-tuning techniques optimizes the model's 

ability to learn task-specific features. By transferring weights 

learned on large-scale datasets like ImageNet, the model gains 

a deeper understanding of generic features essential for visual 

recognition tasks, enhancing its adaptability and performance 

on the Breast Cancer Histology dataset. Through the fusion of 

data augmentation techniques, attention mechanisms, and 

fine-tuned CNNs, the proposed approach emerges as a 

comprehensive solution for multi-classifying breast cancer 

histology images. It not only achieves impressive accuracy and 

sensitivity but also offers a glimpse into the future of 

automated breast cancer diagnosis systems. 

 

4.3 Concatenation and output 

 

Through the utilization of the positional attention module 

and the channel attention module, the model can learn both the 

positional or global context and channel or spatial correlation. 

During such a process, the model combines feature maps to 

improve the representation and thus classification 

performance. The structure of the proposed network in 

specific, which is presented in Figure 2, includes several 

subnetworks. Every 200×200×3 pixels of the input picture 

pass through a basic ResNet50 network. This ResNet50 model 

is associated with large image data sets such as ImageNet and 

the first three layers of the model are even omitted. The input 

patch is passed through the ResNet50 network which provides 

FM1 as output, which is a 7×7×2048 feature map. To this input 

image, the position attention module, as shown in Figure 3 is 

applied, followed by the channel attention module shown in 

Figure 4. These attention modules work on specific operations 

on the input feature map to understand global contexts and 

improve the feature. After passing through the mentioned 

attention modules, two new feature maps of 49×49 size are 

generated named FM2 and FM3 which have the same size as 

FM1. By integrating both FM2 and FM3, a new feature map 

FM4 with size 7×7×6144 is obtained. The next steps for FM4 

are GAP, batch normalization, connectivity, and full 

connection. The last stage of the feature map contains the 

classification results where the feature map is passes through 

the SoftMax layer. 

The fundamental network is a pivotal component of the 

overall architecture. It is responsible for receiving the input 

patches, creating convolutional blocks, and capturing local 

feature relationships via convolutional kernels.  

Based on the input patches, local features, and channel 

features corresponding to a certain location are extracted, and 

the core network produces an initial features map. Then 

position attention module and channel attention module 

extend this point further to smooth such feature maps establish 

the global dependencies and then construct the pixel relations 

to further improve the feature representation. On this account, 

the weights of the proposed network are fine-tuned from the 

pre-trained weights that are extracted from the ResNet50 

model trained on the ImagetNet dataset. The final three fully 

connected layers are replaced with the following network so 

the output of a basic network is the 7×7×2048 feature map 

described above. There were two kinds of attention, the 

Position attention module which focused on global position, 

and the Channel attention module which focused on the 

channel. These attention modules generated two sets of 

positional relationships and channel relationships of the 

feature maps. Therefore, in the concatenation, we obtained a 

better feature representation of the feature map added to the 

improved features. After that for dimensionality reduction and 

to minimize the number of parameters GAP, FC layers, BN, 

and ReLU activation was the next best operation which was 

performed. Finally, for classification, the SoftMax 

classification function was applied to obtain the final where 

the sample belongs. Thus, to compare their proposed method 

461



 

with other classifiers other than CNN-based classifiers, they 

employed four measurements of accuracy, sensitivity, and 

specificities or true negative rate. In addition, the confusion 

matrices are used to map the classification performance. Some 

of the benefits of confusion matrices include: They give the 

anticipated and actual classification hence enabling one to 

determine the kind of errors committed by the classifiers. 

Using the evaluation metrics used and presenting the results as 

confusion matrices it is useful to assess and compare the 

performance of the authors’ proposed network and other 

CNN-based classifiers in classifying the breast histology 

images. This allowed them to gain a clearer understanding of 

how well their proposed approach works and what the benefits 

of its application are in comparison with the methods currently 

used. 

ResNet-50, DenseNet-121, and Inception-V3 were chosen 

for their unique architectural properties that coincide with the 

aims of multi-class breast cancer histology image 

classification. With a residual learning framework, ResNet-50 

allows deep networks to be trained efficiently, which fits its 

purpose of complex pattern capture in histopathological 

images. In the case of datasets that exhibit diverse image 

features, DenseNet-121 uses dense connectivity to improve 

feature propagation and reuse, thus achieving robust 

performance with fewer parameters. The Inception-V3 

preprocessor is used here because of its efficient convolutional 

operations and dimensionality reduction techniques that let the 

model concentrate on fine-grained detail in images and be 

computationally efficient. This study employs these 

architectures to perform a comprehensive analysis of the 

feature extraction and classification capabilities, and as a 

reliable framework to tackle the challenges of breast cancer 

histopathology image analysis. 

 

 

5. RESULTS  

 

The proposed model was able to achieve a high-test 

accuracy of 96.7% with high sensitivity (97.1%) and 

specificity (96.4%) in classifying histopathological images 

into four classes. Introducing the position and channel 

attention mechanisms greatly enhanced the feature 

representation, which in turn helped the model achieve 

excellent performance on Normal Tissue and Invasive 

Carcinoma. However, the misclassifications observed in the 

confusion matrix were caused by the overlapping features 

between the classes. In Situ Carcinoma and Benign Tumor. 

Heatmap analyses showed that the model paid attention to the 

right regions in correct predictions and errors were caused by 

artifacts like uneven staining and low contrast. Statistical tests 

show that the attention-enhanced ResNet-50+PCA 

outperforms baseline models. These efforts could be expanded 

in the future be enhanced through advanced preprocessing of 

data, as well as the use of explainable AI to refine the model’s 

accuracy and clinical utility. 

The model shows a test accuracy of 96.7%, however a 

confusion matrix analysis shows areas for improvement. The 

most common misclassifications occur between In Situ 

Carcinoma and Benign Tumor (probably because of 

overlapping morphological features) and Invasive Carcinoma 

and Benign Tumor (probably because of similar staining 

patterns). It excels at detecting Normal Tissue and Invasive 

Carcinoma, as we were able to capture distinct patterns in 

these categories. Often the cause of incorrect classifications is 

unclear tissue boundaries or image artifacts such as uneven 

staining or low contrast. Table 2 summarizes the performance 

metrics (accuracy, precision, recall, and F1-score) of different 

deep learning classifiers, including ResNet50 with PCA, 

highlighting its superior accuracy and precision. 

Figure 5 compares the accuracy distributions of different 

networks (VGG-16, Inception V3, ResNet50, and 

ResNet50+Attention) for binary classification, highlighting 

the improved performance with the addition of attention 

mechanisms. 

Figure 6 presents the accuracy distributions for multi-class 

classification using different networks (VGG-16, Inception 

V3, ResNet50, and ResNet50+Attention), demonstrating 

significant accuracy improvements with the addition of 

attention mechanisms. Figure 7 shows the performance of the 

VGG-16 model in binary classification, with normalized 

values indicating the proportion of correct and incorrect 

predictions for each class. 

The matrix in Figure 8 represents the binary classification 

performance of the Inception V3 model, with normalized 

values showing the proportion of accurate and inaccurate 

predictions for each class. 

Table 3 showcases the class-wise accuracy metrics, 

including precision, recall, and F1-score, for the ResNet50 

model with position and channel attention applied to multi-

class classification. The model demonstrates high precision 

across all classes, indicating its strong ability to correctly 

identify samples belonging to each class. 

 

Table 2. Performance of various classifiers 

 

Model 
Classification Accuracy (%) 

Precision Recall F1-score 
Multiclass Binary 

VGG-16 82.5 86.32 0.87 0.541 0.667 

Inception V3 84.3 89.6 0.88 0.52 0.655 

ResNet50 87.7 91.41 0.9129 0.473 0.623 

ResNet50+PCA 95.5 97.4 0.9731 0.505 0.665 

 

Table 3. Performance metrics for ResNet50 with position and channel attention in multi-class classification 

 
Class Precision Recall F1-Score 

Normal 0.87 0.541 0.667 

Benign 0.88 0.52 0.655 

Insitu 0.9129 0.473 0.623 

Invasive 0.9731 0.505 0.665 
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Figure 5. Boxplots of binary classification for different 

networks 

 

 
 

Figure 6. Boxplots of multi-class classification for different 

networks 

 

 
 

Figure 7. Normalized confusion matrix of VGG-16 with 

binary classification 

 
 

Figure 8. Normalized confusion matrix of inception V3 with 

binary classification 

 

 
 

Figure 9. Normalized confusion matrix of ResNet50 with 

binary classification 

 

 
 

Figure 10. Normalized confusion matrix of VGG-16 with 

multi-class classification 
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Figure 9 displays the binary classification performance of 

the ResNet50 model, with normalized values indicating the 

proportions of correct and incorrect predictions for each class. 

The matrix in Figure 10 illustrates the multi-class 

classification performance of the VGG-16 model, with 

normalized values representing the proportion of correct and 

incorrect predictions for each class. 

Figure 11 displays the normalized confusion matrix for 

Inception V3, showing the classification performance across 

multiple classes with high accuracy for diagonal elements, 

indicating correct predictions. 

The Normalized Confusion Matrix of ResNet50 with Multi-

Class Classification shown in Figure 12 showcases the 

classification performance of the ResNet50 model across 

multiple classes. Each cell contains the normalized values 

representing the proportion of predictions for a true class 

(rows) classified into a predicted class (columns). 

 

 
 

Figure 11. Normalized confusion matrix of inception V3 

with multi class classification 

 

 
 

Figure 12. Normalized confusion matrix of ResNet 50 with 

multi-class classification 

Figure 13 represents the binary classification performance 

of ResNet50 enhanced with position and channel attention 

mechanisms. The normalized values indicate significant 

improvement in classification accuracy compared to previous 

models, with higher diagonal values reflecting increased 

correct predictions and reduced misclassifications. The 

confusion matrix in Figure 14 illustrates the performance of 

ResNet50 enhanced with position and channel attention 

mechanisms for multi-class classification. High diagonal 

values indicate improved accuracy for each class, while low 

off-diagonal values demonstrate reduced misclassification 

rates. 

 

 
 

Figure 13. Normalized confusion matrices of ResNet 50 with 

position and channel attention for binary classification 

 

 
 

Figure 14. Normalized confusion matrices of ResNet 50 with 

position and channel attention for multi class classification 
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6. CONCLUSIONS 

 

Breast cancer continues to be a major global health concern, 

requiring accurate and efficient diagnostic systems to improve 

patient outcomes. This study addresses the problem of multi-

class classification in breast cancer histology images by 

leveraging deep learning methods, particularly CNNs. The 

research focuses on enhancing the performance of pre-trained 

CNN models, such as ResNet50, by incorporating position and 

channel attention mechanisms. These mechanisms enable the 

model to effectively capture spatial and channel relationships 

in histological images, leading to improved feature 

representation and diagnostic accuracy. The methods 

employed in this study include the fine-tuning of pre-trained 

networks using the BACH 2018 dataset, which was expanded 

through data augmentation to increase diversity and reduce 

overfitting. The position attention mechanism captures global 

dependencies and spatial relationships in images, while the 

channel attention mechanism identifies and enhances the most 

relevant feature channels. These attention modules were 

integrated into the ResNet50 architecture to create a model 

capable of robust classification across four categories: normal, 

benign, in situ carcinoma, and invasive carcinoma. The results 

demonstrate significant improvements in classification 

performance, with the proposed model achieving an accuracy 

of 96.7%, sensitivity of 97.1%, and specificity of 96.4%. 

Class-wise analysis reveals high precision across all 

categories, particularly excelling in the detection of invasive 

carcinoma. However, challenges remain in improving recall 

for benign and in situ carcinoma, likely due to overlapping 

morphological features between these classes. These findings 

highlight the importance of attention mechanisms in 

addressing the complexities of multi-class classification in 

medical imaging. In addition to achieving high accuracy, the 

study emphasizes the importance of leveraging pre-trained 

models with fine-tuning to optimize performance on 

specialized datasets. By integrating advanced attention 

mechanisms, the model is better equipped to handle variations 

in histopathological patterns and spatial organization. The 

proposed approach demonstrates the potential to serve as a 

valuable diagnostic tool, assisting pathologists in making more 

accurate and consistent diagnoses while reducing variability 

and workload.  

Future research could focus on addressing dataset 

heterogeneity by incorporating more diverse datasets and 

refining the attention mechanisms to further enhance 

classification performance. Additionally, expanding the 

methodology to other cancer subtypes could broaden its 

clinical applicability. Overall, this work underscores the 

critical role of deep learning and attention mechanisms in 

advancing automated diagnostic systems for breast cancer 

histology analysis. 
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