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In early works, we presented a new economical and effective method for finding the 

global optimum of a function of many variables, which was conditionally called the 

auxiliary function method. The essence of the method is that a multi-extremal and 

multivariable objective function is transformed into a convex function 𝑔𝑚(𝐹, 𝛼) of one

variable, which is the Lebesgue integral over a compact where the objective function is 

considered: 𝑔𝑚(𝐹, 𝛼) = ∫ [|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑𝜇
𝐸

, 𝑚 ∈ 𝑁 . The function

𝑔𝑚(𝐹, 𝛼)  was called the auxiliary function. In early works, the properties of the

auxiliary function and the algorithm of the new method were studied, the convergence 

of the method was proven, and computational experiments were carried out with 

multiextremal functions in three-dimensional space. Based on these results and in order 

to demonstrate the advantages of using the auxiliary function method, this paper 

considers the problem of finding global minima of objective functions in a four-

dimensional space constructed on the basis of hyperbolic and exponential potentials and 

conducts a comparative analysis of the results obtained. In this work, as a result of 

completed computational experiments on test functions in three-dimensional and four-

dimensional space, where auxiliary functions with different values of the degree 𝑚 𝜖 𝑁 

were expanded, important conclusions were obtained and proven. As a result, the 

change in the auxiliary function depending on its degree m is clearly shown. This result 

provides even more opportunities to improve the efficiency of the constructed method. 

Next, you can set up first- and second-order methods to find the "oldest " zero auxiliary 

function. 
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1. INTRODUCTION

Many scientists are involved in the development and 

research of global optimization methods [1-5]. 

Our proposed method has an advantage over other known 

global optimization methods, both deterministic and stochastic, 

since in our case, regardless of the number of variables and 

local extrema of the objective function, the number of 

iterations required to achieve the desired value of the function 

does not increase. In addition, our approach guarantees finding 

the value of the global minimum with higher accuracy, which 

is not always provided by other methods. For example, when 

applying the well-known gradient descent method, as a result 

of a process over a set of selected initial points, the smallest of 

the local minima corresponding to these points is taken as the 

desired global minimum [6, 7]. However, there is no complete 

guarantee that the real global minimum is located between 

these local minima. And by “going down” through different 

points you can reach the same local extremum, which requires 

extra costs. 

As for the application of the well-known brute-force method, 

the global minimum is defined as the smallest of the extrema 

corresponding to the nodal points of the grid [8-11]. 

Meanwhile, the global minimum may not be taken at the nodal 

point, and “refining” the mesh to achieve higher accuracy also 

requires additional costs. In addition, as the number of 

variables in the objective function increases, the problem will 

become even more complex. 

Chinese scientists Chew and Zheng [12] and Zheng and 

Zhuang [13] explored the integral method of global 

optimization, which considers the mean value of a function 

and its variance. In this method, a special integral function is 

used. 

In the works of one of the authors. the auxiliary function 

method was introduced to find the global minimum of a 

multivariable function. The essence of the method is that a 

multi-extremal and multivariable objective function is 

transformed into a convex function 𝑔𝑚(𝐹, 𝛼) of one variable,

which is a Lebesgue integral over a compact, where the 

objective function itself is considered: 

𝑔𝑚(𝐹, 𝛼) = ∫ [|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑𝜇
𝐸

, 

𝑚 ∈ 𝑁, 
(1) 

At the same time, important properties (non-negativity, 

strict convexity, uniform continuity [14]) of the function 
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𝑔𝑚(𝐹, 𝛼)  were studied and proved. It is proved that the 

objective function takes the global minimum α only at the 

point 𝑥̂, where, 

 

𝛼̂ = 𝑔𝑙𝑜𝑏𝑚𝑖𝑛𝐹(𝑥̂), 

 𝛼̂ = sup {𝛼 ∈ 𝑅: 𝑔𝑚(𝐹, 𝛼) = 0}. 
(2) 

 

In addition, it was found that the value of the global 

minimum of the objective function is contained in the interval 

[𝑐0, 𝑑0], where, 

 

𝑔𝑚(𝐹, 𝑐0) = 0 and 𝑔𝑚(𝐹, 𝑑0) > 0 (3) 

 

 

2. COMPUTATIONAL EXPERIMENT 

 

We use test functions based on hyperbolic and exponential 

abilities [15, 16], which, in our opinion, are more 

representative for solving optimization problems compared to 

the well-known test functions (power, trigonometric and 

others) considered in our previous works [17, 18]. In addition, 

in this article, unlike previous ones, independent functions 

with three functions with at least several structures are used. 

Example 1. Based on the hyperbolic potentials of 2 

variables, we construct a test function: 

 

𝐹1(𝑥, 𝑦)

= −
1

5(|𝑥 − 3|2 + |𝑦 − 4|2) + 1

−
1

2(|𝑥 + 5|5 + |𝑦 + 8|5) + 1.8

−
1

10(|𝑥 + 5|2.2 + |𝑦 − 6|2.2) + 1.5

−
1

2(|𝑥 − 7|2.5 + |𝑦 + 8|2.5) + 2.5

−
1

3(|𝑥|3 + |𝑦|3) + 2
 

(4) 

 

 

Table 1. Values of auxiliary function (5) at m=6, 4, 3 

 
𝜶 𝒈𝟔(𝒛𝟏, 𝜶) 𝒈𝟒(𝒛𝟏, 𝜶) 𝒈𝟑(𝒛𝟏, 𝜶) 

0 13.6008 9.14783  1.9 

-10 0 0 0 

-5 0 0 0 

-2.5 0 0 0 

-1.25 0 0 0 

-0.625 0.008649 0.0189936 0.0312887 

-0.9375 2,5*10-7 1,4*10-5 0.000100888 

-1.09375 0 0 0 

-1.015625 0 0 0 

-0.9765925 1,5*10-9 4,5*10-7 7,8*10-6 

-0.99609375 1,8*10-12 5,1*10-9 2,7*10-7 

-1.005859375 0 0 0 

-1.0009765625 2,4*10-14 2,8*10-10 3,1*10-8 

-1.0034179688 2,4*10-16 1,3*10-11 3,1*10-7 

-1.0046386719 1,6*10-18 4,6*10-13 2,5*10-10 

-1.0052490235 2,3*10-21 6*10-15 9,7*10-12 

-1.0055541993 1,8*10-31 1,1*10-21 8,5*10-17 

-1.0057067872 0 0 0 

-1.0056304933 0 0 0 

-1.0055923463 0 0 0 

-1.0055732728 0 0 0 

-1.0055637361 0 0 0 

-1.0055589677 5,6*10-35 5*10-24 1,5*10-18 

-1.0055613519 0 0 0 

-1.0055601598 3,2*10-38 3,4*10-26 3,6*10-20 

-1.0055607559 0 0 0 

-1.0055604579 10*10-41 7,2*10-28 10*10-21 

-1.0055606069 4,1*10-45 8,7*10-31 1,3*10-23 

-1.0055606814 0 0 0 

-1.0055606441 0 0 0 

-1.0055606255 3,6*10-47 3,8*10-32 1,2*10-24 

-1.0055606348 1,5*10-49 9,9*10-34 7,9*10-26 

-1.0055606394 5,5*10-53 5*10-36 1,5*10-27 

-1.0055606417 0 0 0 

-1.0055606405 8,3*10-56 6,5*10-38 5,8*10-29 

-1.0055606411 0 0 0 

-1.0055606408 9*10-58 3,2*10-39 6*10-30 

-1.0055606409 5,2*10-59 4,7*10-40 1,4*10-30 

-1.0055606410 2*10-61 1,2*10-41 8,9*10-32 

-1.0055606410625 10*10-70 3,4*10-47 6,3*10-36 

The graph of continuous function (4) is illustrated in Figure 

1.  

It has five local minima at points: (3;4), (-5;-8), (-5;6), (7;-

8) and (0;0). One of them is the global minimum point. Thus, 

the coordinates and value of the global minimum 𝑧1(3; 4) ≈
−1.0055606411 are determined. 
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Now, to find the same minimum, we apply the above-

mentioned method of the auxiliary function. Consider it in the 

square [-10;10]×[-10;10]. In this case, for Eq. (4) the auxiliary 

function will have the form: 

 

𝑔𝑚(𝐹1, 𝛼) = 

∫ ∫ [|𝐹1(𝑥, 𝑦) − 𝛼| − (𝐹1(𝑥, 𝑦) − 𝛼)]𝑚𝑑𝑥𝑑𝑦
10

−10

10

−10
  

(5) 

 

 
 

Figure 1. Graph of a function (4) 

 

From our earlier article [5], it is known that if the conditions 

𝑔𝑚(𝐹, 𝑐0) = 0  and 𝑔𝑚(𝐹, 𝑑0) > 0  are satisfied, then 𝛼 ̂ ∈
[𝑐0; 𝑑0). 

Next, we apply the half division method to the auxiliary 

function to find the highest zero 𝛼̂. We find the middle of the 

interval 𝛼0 =
𝑐0+𝑑0

2
 and at this point we calculate the value of 

the auxiliary function 𝑔𝑚(𝐹, 𝛼0). Depending on the value of 

the auxiliary function, we select one of two intervals: 

 

if 𝑔𝑚(𝐹, 𝛼0) = 0, then 𝛼 ̂ ∈ [𝛼0; 𝑑0); 
 

if 𝑔𝑚(𝐹, 𝛼0) > 0, then 𝛼 ̂ ∈ [𝑐0; 𝛼0). 

 

Until the required accuracy is achieved, we will repeat the 

process of dividing the gap in half. The results of each iteration 

are shown in Tables 1-3. A detailed description is given in our 

earlier works [1-6]. 

We will solve the problem of finding the value 𝛼̂ =
sup{𝛼 ∈ 𝑅: 𝑔𝑚(𝐹1, 𝛼̂) = 0} in cases m=3,4,6. 

 

 
 

Figure 2. Graph of a function (5) 

 

Thus, the global minimum is determined with accuracy: 𝜀 =
10−10 , 𝛼̂ ≈ −1.00556064108125 . The number m is 

responsible for the smoothness of the auxiliary function. 

Figure 2 shows graphs of the auxiliary function for different 

m: the smaller, the faster the function grows and vice versa. Its 

graph for any natural 𝑚 is a strictly increasing function. 

Note that to obtain the values of 𝑔𝑚(𝑧1, 𝛼) , Sobolev’s 

cubature formulas [19, 20] were used in the C++ computing 

environment. 

Example 2. Based on the hyperbolic potentials of 3 

variables, we construct a test function: 

 

𝐹2(𝑥, 𝑦, 𝑧) = −
1

5 ∙ (|𝑥 − 3|2 + |𝑦 − 4|2 + |𝑧 + 1|2) + 1
 

−
1

2 ∙ (|𝑥 + 5|5 + |𝑦 + 8|5 + |𝑧 − 2|5) + 1.8
 

−
1

10 ∙ (|𝑥 + 5|2.2 + |𝑦 − 6|2.2 + |𝑧 − 9|2.2) + 3
 

−
1

2 ∙ (|𝑥 − 7|2.5 + |𝑦 + 8|2.5 + |𝑧 + 1|2.5) + 2.5
 

(6) 

 

It is not difficult to see that this function has four local 

minimum: (3;4;-1), (-5;-8;2), (-5;6;9), (7;-8;-1), and the global 

minimum is reached at the point (3;4;-1). Preliminary 

calculations of the global minimum gave the value 𝛼̂ =
−1,0013255206. 

Now, to find the global minimum 𝐹2(𝑥, 𝑦, 𝑧), we apply the 

auxiliary function method.  

Considering the function 𝐹2(𝑥, 𝑦, 𝑧) in a cube [-10;10]×[-

10;10]×[-10;10], let 's build an auxiliary function for it: 

 

𝑔𝑚(𝐹2, 𝛼) = ∫ ∫ ∫ [|𝐹2(𝑥, 𝑦, 𝑧) − 𝛼| −
10

−10

10

−10

10

−10

(𝐹2(𝑥, 𝑦, 𝑧) − 𝛼)]𝑚𝑑𝑥𝑑𝑦 𝑑𝑧, 
(7) 

 

where, 𝑚 ∈ 𝑁. 

Thus, the transition from the objective function 𝐹2(𝑥, 𝑦, 𝑧) 

to the auxiliary function 𝑔𝑚(𝐹2, 𝛼) is carried out. It is known 

that the auxiliary function depends on one variable α and has 

"advantageous" properties: non-negativity, strict convexity 

and uniform continuity [6]. Now we are not dealing with a 

multi-extremal function, but a convex function of one variable. 

The value of the global minimum 𝛼̂ of the objective function 

𝐹2(𝑥, 𝑦, 𝑧) corresponds to the "oldest " zero of the auxiliary 

function 𝑔𝑚(𝐹2, 𝛼) . The search for its "oldest" zero is 

performed by the method of half division. 

The three-dimensional integral is calculated by Sobolev's 

cubature formulas with a boundary layer [9, 10]. Let's carry 

out a computational experiment with the 𝑔𝑚(𝐹2, 𝛼) function 

for several values of 𝑚. The auxiliary function for any natural 

𝑚 is a strictly increasing function. Its graph is illustrated as 

follows in Figure 3. 

 

 
 

Figure 3. Graph of the auxiliary function (7) 
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Table 2. Values of auxiliary function (7) at m=6, 4, 3 

 
𝜶 𝒈𝟔(𝑭𝟏, 𝜶) 𝒈𝟒(𝑭𝟏, 𝜶) 𝒈𝟑(𝑭𝟏, 𝜶) 

1 467228 120272 61522 

0 7,6 7,17809 8,73493 

-10 0 0 0 

-5 0 0 0 

-2,5 0 0 0 

-1,25 0 0 0 

-0,625 0,0013 0,0039362 0,00755927 

-0,9375 4,3∙10-9  2,7∙10-7 2,3∙10-6  

-1,09375 0 0 0 

-1,015625 0 0 0 

-0,9765925 1,5∙10-11 6∙10-9 1,2∙10-7  

-0,99609375 1,3∙10-15 1,2∙10-11 1,2∙10-9  

-1,005859375 0 0 0 

-1,0009765625 1,1∙10-22  2,4∙10-16 3,4∙10-13 

-1,0034179688 0 0 0 

-1,0021972657 0 0 0 

-1,0015869141 0 0 0 

-1,0012817383 4,5∙10-28  5,9∙10-20  6,7∙10-16  

-1,0014343262 0 0 0 

-1,0013580323 0 0 0 

-1,0013198853 2,1∙10-33 1,6∙10-23 1,4∙10-18 

-1,0013389588 0 0 0 

-1,0013294221 0 0 0 

-1,0013246537 2,7∙10-38 9∙10-27  5,2∙10-21  

-1,0013270379 0 0 0 

-1,0013258458 0 0 0 

-1,0013252498 2,5∙10-41 8,6∙10-29  1,6∙10-22 

-1,0013255478 0 0 0 

-1,0013253988 2,1∙10-43  3,5∙10-30  1,4∙10-23 

-1,0013254733 7,2∙10-46 8∙10-32 8,5∙10-25  

-1,0013255106 6,3∙10-50 1,6∙10-34 8∙10-27 

-1,0013255292 0 0 0 

-1,0013255199 7,2∙10-57 3,7∙10-39  2,7∙10-30  

-1,0013255246 0 0 0 

-1,0013255223 0 0 0 

-1,0013255211 0 0 0 

-1,0013255205 4,6∙10-62 1,3∙10-42 6,8∙10-33 

-1,0013255208 0 0 0 

-1,0013255207 0 0 0 

-1,0013255206 0 0 0 

-1,00132552055 5∙10-64 6,3∙10-44  7,1∙10-34 

-1,00132552058 6,1∙10-67 7,2∙10-46 2,5∙10-35 

Results of finding the value 𝛼̂ = sup{𝛼 ∈ 𝑅: 𝑔𝑚(𝑧1, 𝛼̂) =
0} in cases m=3, 4, 6 are reflected in Table 2. 

Table 1 shows the results of calculating the global minimum 

of the function 𝐹2(𝑥, 𝑦, 𝑧) using half division to the function 

𝑔𝑚(𝐹2, 𝛼) with an accuracy of 𝜀 = 10−10. 

At the same time, special attention was paid to the change 

in the behavior of the auxiliary function 𝑔𝑚(𝐹, 𝛼) depending 

on the indicator m. The table shows the results for 𝑚 = 3,4,6.  

As can be seen, when finding 𝛼̂ using the method of halves, 

regardless of the values of 𝑚 , the required calculation 

accuracy is achieved in the same number of iterations. In 

addition, it should be noted that when finding the value of 𝛼̂ 

using methods related to the derivative of the auxiliary 

function, improve the efficiency of the process by varying the 

values of the exponent 𝑚. 

Using the auxiliary function method, the global minimum is 

determined with accuracy: 𝜀 = 10−10, 𝛼̂ ≈ −1,0013255206 

for all three values of 𝑚. 

It’s found value coincides with a previously known value.  

At the same time, the specified accuracy is achieved in 42 

iterations. 

Example 3. We will construct a multi-extremal objective 

function (8) of 3 variables based on exponential potentials.  

 

( )

( ) ( )

( ) ( )

1.5 1.5 1.5

2 2 2 4 4 4

0.5 0.5 0.5 1.3 1.4 1.4

3 | 1| | 2| | 2|

3

7 | 3| | 1| | 5| 12 | 2| | | | 1|

2 | 4| | 4| | 3| 5 | | | | | 6|

( , , ) 2

3 7

4 2 .

x y z

x y z x y z

x y z x y z

F x y z e

e e

e e

−  − + − + +

−  + + + + + −  − + + −

−  + + − + + −  + + +

= − 

−  − 

−  − 

 (8) 

 

It is not difficult to make sure that function (8) has five local 

minima: (1;2;-2), (-3;-1;-5), (2;0;1), (-4;4;-3), (0;0;-6), of these 

(2;0;1) is the point of the global minimum. According to 

preliminary calculations, the values of the global minimum are: 

𝛼̂ = −7,0000100024. 

To calculate the global minimum 𝐹3(𝑥, 𝑦, 𝑧)  we use the 

auxiliary function method. 

Consider the function 𝐹3(𝑥, 𝑦, 𝑧) in a cube [-10;10]×[-10;10] 

× [-10;10]. The auxiliary function for (3) has the form: 
 

𝑔𝑚(𝐹3, 𝛼) = ∫ ∫ ∫ [|𝐹3(𝑥, 𝑦, 𝑧) − 𝛼| −
10

−10

10

−10

10

−10

(𝐹3(𝑥, 𝑦, 𝑧) − 𝛼)]𝑚𝑑𝑥𝑑𝑦 𝑑𝑧, 
(9) 

 

where, 𝑚 ∈ 𝑁. 
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The transition from the objective function 𝐹3(𝑥, 𝑦, 𝑧) to the 

auxiliary function 𝑔𝑚(𝐹3, 𝛼) is performed. Since the value of 

the global minimum 𝛼̂  of the objective function 𝐹3(𝑥, 𝑦, 𝑧) 

corresponds to the "oldest" zero of the auxiliary function 

𝑔𝑚(𝐹3, 𝛼), we work with a simplified auxiliary function (9). 

We will perform a computational experiment for several 

values of 𝑚 . The behavior of the auxiliary function for 

different values of m is illustrated in Figure 4. 

Similarly to the first example, the method of half division is 

used to search for the "oldest" zero of the auxiliary function 

𝑔𝑚(𝐹3, 𝛼). Approximations to the "oldest" zero are shown in 

Table 3.  
 

Figure 4. Graph of auxiliary function (9) 

 

Table 3. Values of auxiliary functions (9) at 𝑚 =6, 4, 3 

 
𝜶 𝒈𝟔(𝑭𝟐, 𝜶) 𝒈𝟒(𝑭𝟐, 𝜶) 𝒈𝟑(𝑭𝟐, 𝜶) 

0 1,8∙10-6 12620,1 1132,9 

-10 0 0 0 

-5 356,491 29,211 8,75615 

-7.5 0 0 0 

-6.25 0,469733 0,27444 0,21661 

-6.875 3∙10-6 6,1∙10-5 0,00027718 

-7.1875 0 0 0 

-7.03125 0 0 0 

-6.953125 2,3∙10-9 4,7 ∙ 10−7  6,8∙10-6 

-6.9921875 1,5∙10-14 6∙10-11 3,8∙10-9 

-7.01171875 0 0 0 

-7.001953125 0 0 0 

-6.9970703125 4,1∙10-17 1,2∙10-12 2∙10-10 

-6.99951171875 9,8∙10-22 9,93∙10-16 9,9∙10-13 

-7.000732421875 0 0 0 

-7.0001220703125 0 0 0 

-6.99981689453125 3,3∙10-24 2,2∙10-17 5,8∙10-14 

-6.999969482421875 2,8∙10-28 4,3∙10-20 5,3∙10-16 

-7.000045776367187 0 0 0 

-7.000007629394531 1,1∙10-35 5,1∙10-25 1,1∙10-19 

-7.000026702880859 0 0 0 

-7.000017166137690000 0 0 0 

-7.000012397766110000 0 0 0 

-7.000010013580320000 0 0 0 

-7.000008821487420000 1,7∙10-37 3,1∙10-26 1,3∙10-20 

-7.000009417533870000 2,6∙10-39 1,9∙10-27 1,6∙10-21 

-7.000009715557090000 3,6∙10-41 1,1∙10-28 1,9∙10-22 

-7.000009864568710000 4,4∙10-43 5,8∙10-30 2,1∙10-23 

-7.000009939074510000 4,1∙10-45 2,6∙10-31 2∙10-24 

-7.000009976327410000 2∙10-47 7,4∙10-33 1,4∙10-25 

-7.000009994953870000 1,1∙10-50 4,9∙10-35 3,3∙10-27 

-7.000010004267090000 0 0 0 

-7.000009999610480000 3∙10-53 9,8∙10-37 1,7∙10-28 

-7.000010001938790000 6,8∙10-58 7,7∙10-40 8,2∙10-31 

-7.000010003102940000 0 0 0 

-7.000010002520870000 0 0 0 

-7.000010002229830000 2∙10-60 1,6∙10-41 4,5∙10-32 

-7.000010002375350000 6,6∙10-65 1,6∙10-44 2,6∙10-34 

-7.000010002448110000 0 0 0 

-7.000010002411730000 0 0 0 

-7.000010002393540000 4,1∙10-67 5,5∙10-46 2∙10-35 

-7.000010002402630000 5,7∙10-70 6,9∙10-48 7,6∙10-37 

 

As can be seen, by the method of an auxiliary function, the 

global minimum in this case was determined in a small number 

of iterations with accuracy: 𝜀 = 10−10. At the same time 𝛼̂ ≈
−7,00001000239808 for all three values of 𝑚. The resulting 

value of the global minimum fully corresponds to the declared 

value. 

In order to study the behavior of the auxiliary function 

depending on the degree 𝑚 𝜖 𝑁 , we prove the following 

statement. 

 

 

3. RESULT 

 

Theorem. The path 𝑟 > 𝑠, 𝑟, 𝑠 𝜖 𝑁, 𝑟 > 1, 𝑠 > 1 then cope: 

1327



 

1) if 𝛼 − 𝛼̂ ≤ 0, then 𝑔𝑟(𝐹, 𝛼) = 0 and 𝑔𝑠(𝐹, 𝛼) = 0; 

2) if 0 < 𝛼 − 𝛼̂ ≤
1

2
, then there is a need for 𝑔𝑟(𝐹, 𝛼) ≤

𝑔𝑠(𝐹, 𝛼). 

1) Since 𝛼̂ = 𝐹(𝑥̂) ≤ 𝐹(𝑥), then 𝛼 ≤ 𝛼̂ ≤ 𝐹(𝑥).For ∀𝛼 ∈
(−∞, 𝛼̂], that is 𝛼 < 𝐹(𝑥̂), the module is expanded with a 

negative sign: 

 

𝑔𝑟(𝐹, 𝛼) = ∫[|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑟𝑑𝜇

𝐸

 

= ∫ [𝐹(𝑥) − 𝛼 − 𝐹(𝑥) + 𝛼]𝑟𝑑𝜇 =
𝐸

0. 

 

By analogy𝑔𝑠(𝐹, 𝛼) = 0. That is, for 𝛼 ≤ 𝛼̂, the auxiliary 

function is zero. 

For 𝛼 − 𝐹(𝑥) > 0, the module is expanded with a negative 

sign: 

 

𝑔𝑟(𝐹, 𝛼) = ∫[|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑟𝑑𝜇

𝐸

 

= ∫[−𝐹(𝑥) + 𝛼 − 𝐹(𝑥) + 𝛼]𝑟𝑑𝜇

𝐸

 

= ∫ [2(𝛼 − 𝐹(𝑥))]
𝑟
𝑑𝜇 =

𝐸
2𝑟 ∫ [𝛼 − 𝐹(𝑥)]𝑟𝑑𝜇 > 0

𝐸
. 

 

By analogy 𝑔𝑠(𝐹, 𝛼) > 0 . Therefore, the value of the 

function is positive for 𝛼 > 𝛼̂. 

2) Consider the difference of auxiliary functions with 

different exponents: 𝑟 and 𝑠, 𝑟 > 𝑠 and 𝛼 > 𝛼̂. 

 

𝑔𝑟(𝐹, 𝛼) − 𝑔𝑠(𝐹, 𝛼) 

= ∫[|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑟𝑑𝜇

𝐸

 

− ∫[|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑠𝑑𝜇

𝐸

 

= ∫ [|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑟𝑑𝜇

𝐸/𝐸(𝐹,𝛼)

 

+ ∫ [|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑟𝑑𝜇

𝐸(𝐹,𝛼)

 

− ∫ [|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑠𝑑𝜇

𝐸/𝐸(𝐹,𝛼)

 

− ∫ [|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑠𝑑𝜇

𝐸(𝐹,𝛼)

 

= ∫ [|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑟𝑑𝜇

𝐸(𝐹,𝛼)

 

− ∫ [|𝐹(𝑥) − 𝛼| − (𝐹(𝑥) − 𝛼)]𝑠𝑑𝜇

𝐸(𝐹,𝛼)

 

= ∫ 2𝑟 ∙ [𝛼 − 𝐹(𝑥)]𝑟𝑑𝜇

𝐸(𝐹,𝛼)

− ∫ 2𝑠 ∙ [𝛼 − 𝐹(𝑥)]𝑠𝑑𝜇

𝐸(𝐹,𝛼)

 

= ∫ (2𝑟 ∙ [𝛼 − 𝐹(𝑥)]𝑟 − 2𝑠 ∙ [𝛼 − 𝐹(𝑥)]𝑠)𝑑𝜇

𝐸(𝐹,𝛼)

. 

 
𝑔𝑟(𝐹, 𝛼) − 𝑔𝑠(𝐹, 𝛼) = 

∫ (2𝑟 ∙ [𝛼 − 𝐹(𝑥)]𝑟 − 2𝑠 ∙ [𝛼 − 𝐹(𝑥)]𝑠)𝑑𝜇
𝐸(𝐹,𝛼)

. 

 

If 0 < 𝛼 − 𝛼̂ ≤
1

2
, i.e. 𝛼̂ < 𝛼 ≤ 𝛼̂ +

1

2
, then 𝛼 − 𝐹(𝑥) ≤

1

2
.  

Then 2𝑟 ∙ [𝛼 − 𝐹(𝑥)]𝑟 − 2𝑠 ∙ [𝛼 − 𝐹(𝑥)]𝑠 ≤ 0 since 𝑟 > 𝑠.  

Therefore, 𝑔𝑟(𝐹, 𝛼) ≤ 𝑔𝑠(𝐹, 𝛼). 

The theorem is proved. 

 

 

4. CONCLUSION 

 

From the reasoning in the theorem, it follows that for 0 <

𝛼 − 𝛼̂ ≤
1

2
 the auxiliary function (1) converges to the "oldest" 

zero faster, for a smaller value of m.  

The result obtained in this paper provides even more 

opportunities to improve the efficiency of the auxiliary 

function method. In the future, we can consider finding the 

value of 𝛼̂  using methods related to the derivative of the 

auxiliary function and improve the efficiency of the process by 

varying the values of the exponent m.  
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