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Hand gesture recognition is so versatile and easy to use, it is among the best methods for 

facilitating human-computer interaction. High recognition performance, user-independent 

interfaces should be the goal of real-time manual recognition systems. Convolutional neural 

networks (CNNs) have demonstrated impressive recognition rates in image classification 

tasks in recent times. Thus, we employ multi-scale deep convolutional neural networks and 

the Entropy Controlled Tiger Optimization (ENcTO) classification method, which is 

motivated by CNN performance, to recognize and classify human palms and palmprints. 

Finger segmentation, feature extraction, preprocessing of hand regions of interest using 

mask images, and finger recognition using a multi-scale deep CNN classifier are all included 

in the processing flow. A mask picture is used to preprocess the whole image's hand region. 

To boost the contrast of every pixel in the image, the adaptive histogram equalization 

approach is used. Next, features are extracted from the preprocessed images using SIFT 

(Scale Invariant Feature Transform). The gesture recognition pipeline first separates the 

fingers in the mask picture, then segments the hand's region of interest and normalizes the 

segmented finger images. Hand images with segmented finger regions are input into a multi-

scale deep CNN that classifies the images into several categories using the Entropy 

Controlled Tiger Optimization (ENcTO) classification method. This research presents a 

high-performance state-of-the-art approach for gesture detection and identification 

combining multi-scale deep CNN and Entropy Controlled Tiger Optimization (ENcTO) 

classification algorithm and augmentation techniques with a recognition rate of 96.72%, the 

results demonstrate the superiority of the proposed method over alternative approaches. 

These results demonstrate how well gray wolf optimization and deep learning work together 

to increase the precision of human identification from palmprint images. 
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1. INTRODUCTION

Undoubtedly, one of the biggest problems of the twenty-

first century is human-computer interaction. That's because 

most work is currently done entirely by robots, but robots often 

require human supervision, guidance, and collaboration with 

humans to receive and process their data. Start a trade or 

complete a challenge. 

In certain professions, working with people is necessary. 

For instance, it's crucial to understand what people desire 

regarding entertainment. Consider a robot serving customers 

as a barman. The robot must interact with humans, determine 

their wants, and carry them out. Another illustration is the 

detection of bombs, which necessitates skilled supervision to 

lower danger [1]. People are developing new techniques for 

facilitating communication to address these demands. Every 

customer or bar professional can learn how to program a robot 

and enter the proper instructions [2]. Therefore, we must 

develop methods for organically interacting with robots so that 

they may get information from the humans in their 

environment. Human-computer interaction, or HRI, satisfies 

these requirements [3]. 

The approach to the long text recognition problem was 

adapted according to the type of images available [4]. Utilize 

various gadgets to capture palm images. These devices can 

produce non-contact or contact images, high or low resolution, 

2D or 3D, or images captured using different methods [5]. The 

palm fingerprint databases utilized in the tests may be split into 

three groups for non-contact images. The hand has a set 

position and orientation across all images in the category with 

the tightest restrictions, and the backdrop is uniform. The 

semi-constrained dataset groups have no varied hand locations, 

directions, or non-uniform backgrounds. Cell phone cameras 

often generate such images [6]. The last category is 

unrestricted, knowledge, and gesture, not subject to restriction 

rules. 

In reality, gestures are used for various purposes, including 

pointing toward specific individuals and expressing explicit or 

implicit information. Studies have revealed that gestures are 

an essential component of language development and an 

ornament to spoken language [7]. A person's sentiments and 

ideas are sometimes challenging to convey without utilizing 

extra gestures. Gestures play a significant function as an 

accompaniment to the horse as a way of input, among other 
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vital aspects of HRI [8]. This essay focuses on the challenge 

of identifying and categorizing various hand forms used by 

human users, often known as static gesture identification. 

Static gestures imply that the state and direction of the 

movement are more important than the movement's style [9]. 

Figure 1 illustrates various hand movements. The entire 

procedure is done to create a cooperative human-robot. 

 

 
 

Figure 1. Different hand movements 

 

Although hand recognition was one of the first biometric 

formats used, more research is needed on using this 

authentication method. Among hand-based methods, vein 

pattern recognition is one of the most promising to 

characterize images obtained from fingers, palms, etc., or palm 

regions. The advantage of using a vein pattern is that the 

vascular network is located under the skin and, unlike many 

other biometrics, is not easily visible to the naked eye and is 

thus challenging to forge [10]. Another advantage of using 

vein patterns for biometric identification is that they are 

considered unique to each individual, including identical twins 

[11], and the ways often do not change significantly over time. 

From the acquisition point of view, a non-contact venous 

pattern acquisition system can be designed. Such methods are 

more acceptable to users as they cause minimal user 

discomfort and reduce the possibility of cross-contamination. 

It's also important to note that the palm is usually the most 

reliable area on the hand from which vein patterns for 

biometrics can be derived. This is because it usually does not 

show hair growth, affecting the captured image's quality [12]. 

Another SIFT method can register images to discover 

properties like points, lines, edges, and objects. Face 

identification methods are often employed, particularly in the 

security sector. The rotation, magnification, and brightness 

variations do not affect the SIFT algorithm. SIFT features can 

be used to calculate large-scale feature data when paired with 

other kinds of feature matching. Each of the four concentric 

circles that made up the circular region had a radius of two 

pixels. Then, each sub-region is divided into ten directions in 

order to create a 40-dimensional feature descriptor. 

 
1.1 Contribution 

 

Our primary contributions are as follows: 

• Developed a ROI method that separates the image into one 

channel and then applies average-based contrast enhancement 

to it. A straightforward merge is used to combine several 

enhanced channels into a single frame. 

• This gesture identification pipeline segments the hand 

region of interest using a mask image that separates the fingers 

and normalizes the segmented finger images.  

• It merges the features extracted from both streams using 

the proposed SIFT algorithm. 

• Combination of multiscale deep convolutional neural 

network with Entropy Controlled Tiger Optimization 

algorithm for the best classification. 

 

2. LITERATURE SURVEY 
 

For sign language recognition, many writers have suggested 

various video processing and machine learning (ML) 

techniques. Here are a few similar tasks. Gestures are 

identified, and color characteristics and contour extraction are 

utilized [13]. Its usage of contour extraction means that it can 

only be used to count stray fingers and no other motions, 

which is a drawback. The drawback in this situation is that 

some gesture symbols used in HMIs in place of hydration 

motions cannot be detected. However, it does not mention how 

to recognize hand movements [14]. The disadvantage of using 

LSTM and 3DCNN for dynamic gesture recognition is that 

letter motions are not recognized and are instead used for 

military gestures. 

Suboptimal architecture methods used to improve large-

scale blurring [15]. A unified blur kernel with a Gaussian 

process used to produce many blurred images. Then, we 

convolve it with explicit images from the ImageNet dataset 

[16] to provide pairs of crisp and blurred images for network 

training. Deconvolutional CNN that can blur images instead of 

blinds in the blur setting is proposed which break down 

(inverse) blur kernels into a few critical filters and build 

networks based on separable kernel features [17]. To lessen 

visual artifacts like noise and color saturation, we additionally 

integrate a denoising network [18] that links proposal modules 

at the network's end. A blind deblurring technique for CNNs 

is suggested, and their proposed network iterative kernel 

estimation, latent image estimation, and feature extraction 

methods resemble conventional optimization-based deblurring 

methods [19].  

A sequential deblurring approach was suggested by making 

two blur and sharpening patches using 73 potential blur 

kernels. We next trained a classification CNN to calculate the 

likelihood of a specific blur kernel for local patches [20]. The 

energy model, which consists of the CNN likelihood and 

smoothness dictionary, is then optimized to provide a blur 

kernel that varies smoothly. The energy model, which consists 

of the CNN likelihood and smoothness dictionary, is then 

optimized to provide a blur kernel that varies smoothly. As 

stated by Peng et al. [21], the edit distance enhanced CNN 

model was able to obtain 90.79% accuracy in the static and 

dynamic gesture detection of Pakistani individuals. To 

improve performance, we use fusion techniques by globalizing 

the regional features identified in the 3D CNN model. On three 

color video gesture datasets, this method achieves recognition 

rates of 98.12%, 100%, and 76.67%. 

Using LSTM blocks, Conv1D, and Conv2D pyramids, Ali 

et al. [22] presented a multi-level functional LSTM. This 

approach utilizes the deep form features of the hand 

segmentation model and the skeletal point cloud features of 

the skeletal data. The 14-class- and 28-class Dynamic Gesture 

Recognition (DHG) datasets show 96.07% and 94.40% 

accuracy for the approach. In this study, we use an LSTM 

model with two pyramid convolution blocks to extract 

dynamic gesture variety from 28 skeletal and 14 depth data. 

Of the eighteen categories, 94.40% of them are accurate. 

Convolutional extended short-term memory networks, or 

ConvLSTMs, are utilized by Gholami and Khashe [23] to 

recognize the temporal relationship between color images' 

spatiotemporal properties and to generate high-level gesture 

expressiveness. 

Gholami and Noori [24], Combining the feature fusion 

network with the ConvLSTM network allowed for the 
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extraction of spatiotemporal feature information from local, 

global, and deep perspectives. Regarding the Jester and SHIG 

(Sheffield Kinect Gesture) datasets, the suggested technique 

obtains accuracy levels of 95.59% and 99.65%, respectively. 

For hand movement recognition, Mambou et al. [25] 

introduced EDenseNet, an enhanced densely connected 

convolutional neural network. With three datasets of gestures, 

the approach obtains an average accuracy of 99.64%. 

Venmathi et al. [26] put forth a 3D convolutional neural 

network (3DCNN) that can detect hand movements in real 

time and retrieve fingerprint positions. For a video dataset with 

seven manual procedures, the 3DCNN model's accuracy was 

92.6%. 

Studied the translation of symbolic words from gesture to 

text [27]. With an accuracy of 97.28%, we could categorize 

symbolic gestures using Support Vector Machines (SVM) on 

a data set of 11 one-handed and nine two-handed gestures. 

Examined sexual assault-related gestures made in both indoor 

and outdoor settings at night [28]. How the gesture recognition 

system is being implemented consists of a bounding box 

picture classification stage that generates attack alerts after a 

YOLO CNN architecture has been used to extract motions. 

Overall, the network model's accuracy needs to be improved; 

light must be enough. 

Adel for interpreting finger spells and gestures in films 

called Compact Spatial Pyramid Pooling (SPP) was proposed 

by Ewe et al. [29]. The model runs three times faster than 

conventional classifiers and requires 65% fewer parameters. 

TEM (Temporal Segment Network) and TSM (Temporal Shift 

Module) were improved upon by Alsharif et al. [30] using the 

lightweight semantic segmentation FASSD-Net network. The 

suggested 13-gesture dataset, which focuses on in-the-moment 

non-touchscreen interactions, was adequate. 

In conclusion, academics' most difficult task is creating a 

solid framework for gesture recognition that addresses the 

most prevalent issues with the fewest restrictions and yields 

precise and trustworthy outcomes. There are several real-time 

gesture processing restrictions, including distance, lighting, 

background, and numerous motions. While specific 

approaches for hand action identification that use non-machine 

learning techniques are available, their accuracy could be more 

consistent, and specific actions can overlap with each other in 

different conditions (e.g., illumination), making this approach 

unsustainable. It is more independently adaptable than 

machine learning techniques. Consequently, system 

development uses a machine learning methodology. The 

exciting aspect of this work is how deep learning methods are 

implemented in gesture recognition systems using novel 

segmentation approaches. 

 

2.1 Problem formulation 

 

This paper uses two common types of biometric data as 

examples to keep things simple. Face data is one type, and 

fingerprint data is the other. It makes sense, from a distinction 

standpoint, to believe that an individual's whole set of 

biometric data falls into a single category. Furthermore, in the 

same feature space, his face and palm print data can be viewed 

as two subclasses of this class. Figure 2 displays samples of 

palm prints and faces from two individuals. 

In this case, data for two persons is displayed. Each has 

twelve pieces of information, six faces, and a palm print. The 

original data had an order of magnitude of 1e4, which I used 

for illustration when I performed PCA on it. 

 
 

Figure 2. An example of the corresponding palmprint data 

and the mix-Gaussian distribution of the face data (blue-face 

and palm data of first person, red-face and palm data of 

second person) 

 

Figure 2 illustrates a typical Gaussian mixture distribution 

on a sample of IDs belonging to a single individual [31]. Stated 

differently, a Gaussian is formed by grouping the face data and 

a second Gaussian is formed by grouping the fingerprint data. 

In the combined space, there is a high likelihood of data from 

two individuals overlapping if you apply traditional LDA, 

which requires the grouping of one person's face and 

fingerprint data. The SDA in Figure 2 undoubtedly provides a 

better description of this distribution of data. 

Let k be the face sample and i be the palm print sample of 

person, respectively. The sample number for every subclass is 

denoted by nc. Next, we create the dispersion matrix within 

subclass SW and the dispersion matrix between subclass SB as 

follows: 

 

𝑆𝐵 =∑∑ ∑ ∑𝑃𝑖𝑗𝑃𝑘𝑙(𝜇𝑖𝑗

2

𝑙=1
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𝑇 (1) 
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 (2) 

 

where, 

 

𝑁 = 𝑐 × 𝑛𝑐 , 𝑃𝑖𝑗 = 𝑃𝑘𝑙 =
𝑛𝑐
𝑁
, 𝜇𝑖𝑗 = ∑

𝑥𝑘𝑖𝑗

𝑛𝑐

𝑛𝑐

𝑘=1

 (3) 

 

Let be the ideal transform vector that needs to be determined. 

It can be found by: 

 

max
𝑤

𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑤𝑤
 (4) 

 

 

3. MATERIAL AND METHODS 

 

3.1 PolyU hand gesture dataset 

 

Seven thousand seven hundred fifty-two images of left and 
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right hands from 193 people are included in the PolyU 

collection. Three hundred eighty-six palm images with 11 to 

27 samples each are available. The images have a 384x284 

pixels resolution, are in the.bmp format, and were captured 

throughout two sessions separated by around 60 days. Each 

dataset's sample is shown in Figure 3(a). 

 

 
(a)                                         (b) 

 

Figure 3. (a) PolyU palmprint databas (b) PolyU Multi-

Spectral palmprint database 

 

In an experiment combining the AR database and the PolyU 

handprint database, 119 subjects were chosen from the face 

and palmprint databases, with each category having 20 

samples, as evidence for the suggested fusion technique. 

Similarly, 189 participants were chosen from the face and 

palmprint databases, with each category containing 20 

samples, for an experiment that combined the FRGC database 

and the PolyU handprint database. We take it for granted that 

a subject's sample from the face database and the handprint 

database match. We randomly choose samples from each 

individual for training from any of the two databases and 

remaining samples used for testing in the two databases chosen. 

Every method under comparison was executed 20 times. The 

comparison kernel method used in the experiment is the 

Gaussian kernel as: 

 

𝑘(𝑥, 𝑦) = 𝑒
−
|𝑥−𝑦|2

2δi2  
 

where, the parameter δi=i×δ, i∈1 to 20, where δ is the training 

data. This is the set's standard deviation. In order to achieve 

the best classification performance for every kernel 

comparison technique, parameter I was selected. 

 

3.1.1 PolyU Multi-Spectral Palmprint Database 

250 left-handed and 250 right-handed samples were 

gathered for the PolyU multispectral palmprint image database, 

yielding 500 categories, as shown in Figure 3(b) [31]. Two 

images taken for each palm, with each session consisting of 

six palm images and a 10-day turnaround on average. Each 

acquisition was carried out in fewer than four distinct spectral 

lighting conditions to obtain long-term images in four bands, 

including red, green, blue, and near-infrared. 

 

3.2 American Sign Language (ASL) database 

 

In the alphabetic symbol recognition system, each letter of 

the American alphabet is signed individually by the signer 

with one hand. The deaf community uses the alphabet to spell 

names of people, places, and other words. As with the 

representation of the letters ‘C’, ‘D’, ‘L’, ‘M’, ‘N’ and ‘W’ the 

semantic meaning of hand gestures to alphabetic letters is 

derived from their shapes. Additionally, some descriptions of 

how different letters appear need further investigation. When 

representing the letters J and Z, the signer must use movements 

that imitate the shape of each letter. All image recognition 

systems rely on image processing. It is influenced by visual 

depictions, which play an important role. Symbols in the ASL 

alphabet, such as A, E, M, N, and S, have some similarities, 

leading to a simple deep learning model that can distinguish 

between gestures for classification purposes very difficult to 

find. The aim of this study was to find a visual descriptor 

capable of distinguishing different gestures of the ASL 

alphabet, see Figure 4. 

 

 
 

Figure 4. ASL hand gestures for each alphabet 

 

3.3 Image preprocessing 

 

This step's objective is to resize the hand region to the 

pretrained CNN input image size by segmenting it within the 

hand gesture image frame. The Kinect depth camera provides 

color and depth map images, as seen in Figure 5. For static 

hand gesture recognition, only images from the depth map are 

taken into account between two inputs. The hand region in the 

depth map is divided using the depth threshold. As seen in 

Figure 5, the depth threshold to separate the hand from the 

background is set at the experimentally determined value of 

10cm [14]. The hand region is located and the noisy portion of 

the hand is eliminated using a maximum area based filtering 

technique. The segmented image as displayed in Figure 5's 

bounding box model. The bounding box region is then cropped 

from the image that has been segmented. Three-channel input 

images are used by every pretrained CNN to function. 

 

 
 

Figure 5. Preprocessing of images 

 

As a result, (1) is used to normalize the cropped hand 

motion image and create a single-channel image in the range 

[0, 255]. 

 

𝐷(𝑥, 𝑦)

= {

max(𝐷) − 𝐷(𝑥, 𝑦)

max(𝐷) − min⁡(𝐷)
× 255⁡𝑖𝑓𝐷(𝑥, 𝑦) ≠ 0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓𝐷(𝑥, 𝑦) = 0

 
(5) 

 

In this case, D stands for the depth value of the depth map 

image, and (𝑥,) for the depth map's pixel index. The depth 
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map's maximum and minimum depth values are max(𝐷) and 

min(𝐷). One way to convert a single channel to three channels 

is to manually crop a single-channel image and then apply a 

jet color map. The segmented images are manually resized to 

match the pretrained CNN AlexNet and VGG-16 input image 

sizes. Consequently, all images in the dataset are resized to a 

resolution of 227×227×3227×227×3 for pretrained AlexNet, 

and to a resolution of 224×3224×224×3 for pretrained VGG-

16. 

 

 
 

Figure 6. ROI area obtained using image processing 

 

The ROI area's relative location on the palm is fixed and 

situated in its middle. We suggest a commonly utilized edge-

based palm fingerprint localization technique to extract ROI 

images. In the following portion of this work, we apply this 

method to handle ROI areas with many features. Figure 6 

displays the PolyU Multi-Spectral-Palmprint ROI region. 

 

 

4. FEATURE EXTRACTION 

 

4.1 Scale-Invariant feature transform (SIFT) feature 

extraction 

 

The SIFT image technique is calculated using a 

configurable number of essential points throughout four steps. 

The number of critical issues calculated is based on the image's 

content. Each of these points is subsequently assigned a 

feature vector of 128 elements. Based on the proportion of 

critical points that match between test and training images and 

categories test images using the SIFT feature. 

The procedure of matching feature points between two 

images goes like this. SIFT descriptors (key points) are first 

computed for each image in the collection. Think about two 

ideas, U and V, described by m and n descriptors, respectively, 

as shown by u1, u2,..., um and v1, v2,..vn. 

The keypoint matching of two images is calculated as 

follows: 

(1). Compute the distance between each eigenvector 

associated with image U and each eigenvector associated with 

image V; compute the m x n distance. 

(2). A critical point with feature vector ui in image U 

matches key point vk in image V [32]. 

The argument T is a positive actual number less than 1. The 

threshold parameter can be used to control the critical point-

matching process. One key point in image U can only match 

one key point in image V. Details of the key point extraction 

and matching process can be found. In our first experiments, 

we used default values for the parameters of the SIFT 

algorithm. We then examined the effect of the number of 

octaves, contrast-related thresholds, and edge-related 

thresholds in each layer on classification results. We reasoned 

that the contrast-dependent entry would provide the most 

pronounced effect. A predetermined and fixed set of SIFT 

parameters may be used to calculate images with no connected 

key points, few key points, and many key points. 

This condition has the following discomforts: 

- Images can only be classified with crucial points. 

- Images with few associated vital points are often 

misclassified. 

- Matching an image with a few key points with an image 

with numerous vital points appears to be complicated. 

The calculation duration of the matching algorithm is 

influenced by the number of critical points produced for the 

two images being compared. Therefore, the matching process 

is computationally expensive, and the classification time for 

images with many vital points is long. For example, Figure 7 

shows matching key points according to distance measures. 

Crucial points of comparison between the reference and 

subject palm patterns in the picture are used to compare 

textures for palm pattern matching. 

 

 
 

Figure 7. Detection of Keyspots 

 

4.2 SIFT algorithm 

 

The rotation, magnification, and brightness variations do 

not affect the SIFT algorithm. SIFT features can be used to 

calculate large-scale feature data when paired with other kinds 

of feature matching. The blood component of the skin leaves 

fingerprints on the hand. Utilizing infrared light, which guards 

against harm from the outside, spoofing, and fraudulent 

assaults, may be obtained. The touchless palm design has 

various benefits, including cleanliness and touchless 

collecting. The SIFT technique is used in this suggested 

method to segment palm patterns. The SIFT method, invariant 

to the image's translation, rotation, and scaling, is employed in 

image recognition and matching. SIFT is used to estimate 

scale-space extrema with DOG (difference of Gaussian), 

identify core points, and remove low-contrast problems. The 

assignment of key point orientation is then carried out based 

on local image gradients. The amplitude and direction of the 

image gradient are then used to determine the image 

description for each key point. 

• Obtain the desired picture 

Utilizing the DOG function, determine the image's scale-

space constraints and the location of the core point 

• Calculating descriptors for images. 

Local extrema estimates for each key point (x,y) are 

provided as 

 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) (6) 

 

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑠𝜎) − 𝐿(𝑥, 𝑦, 𝜎) (7) 
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where, 

 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) (8) 

 

The scaling parameter is L(x, y), which indicates a 

Gaussian-smoothed image with a keypoint. By adding a 

Taylor series to the DOG scale-space function D(x, y), the 

interpolation for every key point is found. 

 

𝐷(𝑥) = 𝐷 +
𝜆𝐷𝑇

𝜆𝑥
+
1

2
𝑥𝑇

𝜆2𝐷

𝜆𝑥2
𝑥 (9) 

 

The image tilt One can calculate the direction θ(x,y) and 

magnitude m(x,y) as 

 

𝑚(𝑥, 𝑦) = √
(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))^2

+(𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))
 (10) 

 

𝜃(𝑥, 𝑦) = tan−1(
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
) (11) 

 

Algorithm of SIFT: 

 
Stage Description 

Step 1 Compute Gaussian scale and space 

Step 2 Calculating (DoG) 

Step 3 Identifying the feature keypoints 

Step 4 keypoints localization 

Step 5 Identify and eliminate unstable extrema key points 

Step 6 Filter inaccurately localized edge key points 

Step 7 Define a position reference to every key point location 

Step 8 Create a set of features using the SIFT 

 

4.3 Segmentation of hand gestures 

 

Backgrounds are divided into two categories in this 

subsection: backgrounds that resemble skin and backgrounds 

that do not. To segment hand gestures on backgrounds that are 

not skin, we use SGM; for backgrounds that resemble skin, we 

use the SGM-Kmeans method. 

 

 
 

Figure 8. Segmentation of gestures in non-skin backgrounds 

skin-like background using SGM and SGM K-Means 

 

Skin color is one of the most noticeable physical 

characteristics of the human body, and its detection can be 

used to segment gestures. SGM is able to segment gestures 

from non-skin backgrounds as demonstrated in Figure 8, but it 

is unable to eliminate interference from backgrounds that 

resemble skin. Three different types of pixels can be seen in 

Figure 8(b)'s image after SMG segmentation: skin color, skin 

color background, and black background. Three types of 

pixels must be grouped together and skin-like overlap must be 

eliminated in order to segment skin-tone hand gestures on a 

skin-like background. Based on the results of experiments, the 

K-means algorithm is chosen to be 3, as Figure 8(c) illustrates, 

in order to effectively separate three different types of pixels 

and remove interference such as skin. To lessen the load on the 

data processing system during feature extraction and gesture 

classification, convert the segmented gesture image to a black 

and white image and scale it to 64×6464×64 pixels. 

 

4.3.1 Deep convolutional neural networks classifier 

Convolutional neural networks have been highly successful 

in recent visual identification tasks, including image 

categorization [5], object recognition [8], and scene analysis 

[10]. The deep learning based on CNN would be a strong 

contender for all image identification tasks. In contrast to 

current object detection, Saliency detection is commonly 

classified as a low-level problem in computer vision. Squeeze 

prediction must not understand what is within an image region 

but how it compares to neighbouring areas. The contrastive 

information concealed in multi-scale deep CNN features is 

thoroughly examined in this study, and a straightforward and 

effective neural network structure is suggested to determine 

the saliency score of each area. Hierarchical feature vectors 

appropriate for scene labeling are extracted using a multi-scale 

convolutional network. Before being fed to the three-level 

convolutional network, the Laplacian pyramid transforms the 

original input image into three scales. Each pixel's feature 

stack corresponds to the response of the same pixel in all 

convolutional layers. In contrast to the region-oriented 

functions utilized in our technique, the pixel-oriented parts do 

not emphasize region contrast, which is crucial for saliency 

detection. 

A deep neural network (DNN) is employed to learn local 

patch characteristics, and we use these features to calculate the 

extrusion score for the centre pixel. Because we only consider 

local patches, the quality of the resulting extrusion maps is 

vulnerable to high-frequency background noise, which may 

cause homogenous regions inside extruded objects to be 

misclassified. A global search phase is implemented to take 

advantage of the intricate connections among globally 

squeezed cues conveyed using manual features. It is suggested 

to use an end-to-end deep contrastive network that takes 

fractional and pixel-wise saliency inference into account. It 

uses both the global and local context and incorporates them 

into a framework for collective deep learning to identify 

saliency. Their model gives each super pixel a crimp score. A 

super pixel’s local context is fixed to be one-third the size of 

the global context, the super pixel is centred on the context, 

and the global context's scope is comprised of the whole image: 

The actual size of the surrounding environment affects how 

the local context is sized spatially. Given our local context, the 

contrast between each location and the background may be 

more accurately estimated. 

Instead of straight regression, we provide an architecture for 

a neural network that can extract hidden contrastive 

information from connected multi-scale deep features. To 

address mistakes brought on by super pixels, we employ 
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segmentation at multiple levels and CRF-based pixel-level 

refinement. According to experimental findings, the suggested 

approach performs better than any other CNN-based extrusion 

model. 

 

4.4 Multiscale deep convolutional neural networks 

 

We provide two ideas to improve the network design built 

on the aforementioned basic CNN architecture with three 

convolutional layers for sector sharpening: a multi-scale 

feature extraction block and skip connections. There are two 

sub-networks in the suggested MSDCNN. Examples of CNNs 

include a deep CNN with two multi-scale convolutional 

layered blocks and a straightforward 3-layer CNN with the 

same architecture. Figure 9 displays the whole MSDCNN 

architecture. 

A deep neural network architecture called VGG-16 was pre-

trained using a large ImageNet dataset. Convolutional and 

max-pooling layers, which steadily decrease the spatial 

dimension while increasing the number of channels, make up 

the VGG-16 backbone. To begin the feature extraction process, 

the model can make use of pre-trained weights that utilize 

information acquired from millions of images. This facilitates 

the capturing of common visual characteristics that are helpful 

for different image classification processes, such as HGR 

classification. Several convolutional layers that have been 

layered on top of the backbone model make up the CNN head. 

Such convolutional layers allow the architecture of the model 

to be tailored to extract characteristics at different sizes. 

The higher layers at the top of the CNN capture more 

complex and abstract features, while the VGG16 layers closer 

to the input focus on learning low-level properties such as 

edges and textures. This distinction is vital for Hand Gesture 

Recognition (HGR) classification, as anomalies in images can 

appear with unusually large or complex shapes. Multi-scale 

feature maps enhance the model's ability to detect 

abnormalities of varying sizes, improving the overall accuracy 

of HGR classification. The VGG16 architecture consists of 

five blocks, with the core of the model processing an input 

image of 300x300 pixels. Blocks 1 through 5 of the VGG16 

backbone help extract hierarchical features from the input 

image. 

Each block contains a MaxPooling2D layer that reduces the 

size of the feature map and a Conv2D layer with increasing 

filter sizes. The first two blocks (Blocks 1 and 2) include two 

Conv2D layers (convX_1 and convX_2) and one 

MaxPooling2D layer (maxpoolX). For Block 1, the Conv2D 

layer outputs a size of 300×300×64, while Block 2’s Conv2D 

layer produces a size of 150×150×128. The MaxPooling2D 

layers output sizes of 150×150×64 and 75×75×128, 

respectively, effectively downsampling the feature map to 

reduce spatial dimensionality. The subsequent blocks (Blocks 

3, 4, and 5) consist of three Conv2D layers (convX_1, 

convX_2, and convX_3) along with one MaxPooling2D layer 

(maxpoolX). The feature maps progressively shrink in spatial 

dimensions, with sizes of 75×75×256 (Block 3), 37×37×512 

(Block 4), and 18×18×512 (Block 5). MaxPooling2D layers 

continue to downsample the feature maps, with output sizes of 

37×37×256, 18×18×512, and 18×18×512. 

The first active layer, conv4_3, used for HGR classification, 

has a spatial dimension of 38×38, which is significantly 

smaller than the input image. High-resolution feature maps 

greatly enhance the model's ability to identify fine edges and 

patterns in images. The CNN head, consisting of blocks 6 

through 11, adds further convolutional layers, allowing the 

model to capture more intricate and abstract features from the 

HGR input images. As the Conv2D structure's spatial 

dimensions continue to decrease, the resolution of the feature 

maps progressively drops. 

The feature map from Block 4 (conv4_3) is linked to the 

Concatenate layer, while the feature map from Block 5 

(maxpool5) connects to Conv6, which has an output size of 

18×18×1024. Conv6 is then connected to Conv7, followed by 

additional convolutional blocks (Conv8 through Conv11). 

Each of these blocks, consisting of two Conv2D layers, builds 

on the features extracted by the previous block. In the Conv8 

block, the first layer (conv8_1) has an output size of 

18×18×256, while the second layer (conv8_2) produces an 

output of 9×9×512. The output from conv8_2 is linked to the 

first layer of Conv9 (conv9_1), which has a size of 9×9×128, 

and the second layer (conv9_2) produces an output of 

5×5×256. Conv9_2 connects to Conv10_1 (5x5x128), 

Conv10_2 (3×3×256), and Conv11_1 (3×3×128), completing 

the sequence. 
 

 
 

Figure 9. Proposed multiscale deep convolutional neural networks (MSDCNN) model 

 

4.5 Multi-scale feature extraction block 

 

We use the open-source framework to train deep layers on 

the unprocessed ImageNet dataset and then fine-tune them for 

object recognition. Multi-scale characteristics are extracted 

from each visual area using artificial neural networks. This 

CNN has eight-layer architecture, with three fully linked 

layers and five convolutional layers. For features, take 4096 

neurons make up the output of the second and final fully 

connected layer. However, autonomously generated CNN 

features are widely employed in several visual computing 

applications and are highly prevalent. For CNN feature 
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extraction, CNN features are specified in areas such as the 

rectangle regions established and which are exclusively related 

to pixels. Image regions can have irregular forms, but we must 

extract CNN features from the square areas. The pixels outside 

the region are filled in, serving as the image's bounding box. 

The average pixel value of the same position across all 

ImageNet training images is used to fill the bounding box. 

After average subtraction, these pixel values become 0, which 

does not affect the outcomes. It is unknown if the region stands 

out about its neighbors and the rest of the image because 

Feature A does not offer information about the area around the 

considered image region. In order to add the region-

surrounding property, which takes into account the 

understanding of neighborhood contrast, we extract a second 

feature vector from the rectangular neighborhood that acts as 

the bounding box for the inspected area and its neighbors. 

Within this enclosing box, all pixel values stay constant. Once 

more, after warping, this rectangle neighbor is sent into a deep 

CNN-a result of invoking CNN function B in a vector form. 

 

 
 

Figure 10. MSDCNN model's first layer 

 

 
(a) Fundamental convolution layer 

 
(b) A multi-scale feature convolutional layer 

 

Figure 11. Multi-scale feature extraction layers 

 

As we all know, how distinct (in terms a region's 

comparison to the remainder of the image (in terms of color 

and content) is a critical indicator in extrusion calculations. 

Another crucial indicator is where a particular visual section is 

located within the larger picture. We extract feature C from 

full-rectangular images to achieve these requirements using a 

deep CNN. The characteristics used to train and evaluate the 

extrusion model are collectively defined by these three feature 

vectors acquired at various sizes. The three CNN feature 

vectors are combined to create the final feature vector, giving 

S-3CNN its name, as shown in Figure 10 and Figure 11. 

The classifications efficiently use the rich spatial 

information in high-resolution images, enhancing the feature 

extraction's resistance under various challenging ground 

conditions. 

The nth layer multi-scale layer block's convolution kernels are 

configured with three sizes: 33, 55, and 77, as seen in Figure 

11. N groups N are grouped for each dimension. The output is 

created by concatenating N functional maps along the kernel's 

spectral measurements. 

 

4.6 Entropy Controlled Tiger Optimization 

 

In this paper, we employ entropy values to alter the tiger 

optimization algorithm [17], which we refer to as entropy-

controlled tiger optimization (ENcTO). A tiger approaches a 

target it wants to chase using the tiger optimization (TO) 

algorithm, and the tiger chases the target once it begins to run. 

The tiger always takes the shortest path in order to escape from 

its target. This new route leads to a place where the goal can 

be reached via an alternate route rather than the shortest route 

to it. To do this, common mistakes like taking a direct route to 

the destination must be eliminated, and the path can be 

modified based on the most recent experience. But if the target 

changes his mind, the tiger does too, and it takes the shortest 

path. Lastly, tigers can track their targets even if they run faster 

because they cover less ground than their targets. More 

importantly, the tiger will seek out and pursue a target whose 

behavior is dynamic (i.e., has parameter values that vary over 

time). 

According to the Tiger Optimization (TO) algorithm, the 

target runs as the tiger approaches it, and the tiger chases after 

it in an attempt to catch up. The tiger will always choose the 

quickest path when it comes to escaping its prey. This new 

road is the point when there are alternative routes to reach the 

goal, not the shortest one. This may be achieved by removing 

typical mistakes (such taking the direct route to a goal) and 

adjusting the path based on the most recent experience. But if 

the target decides to alter course, the tiger will follow suit and 

go for the shortest path. Ultimately, despite running a lesser 

distance than the objective, the tiger was still able to follow it. 

Furthermore, the tiger will identify and pursue a prey whose 

behavior is dynamic that is, characterized by parameter values 

that vary over time. 

They locate their prey and give birth to young tigers that are 

able to travel and possess all of their parents' memories. Tigers' 

speed won't slow down the system; instead, it will cause them 

to die of old age, become too weak to identify the best prey, or 

commit suicide as a result of overpopulation. Removing weak 

tigers from regions where they are abundant is another strategy 

to lower the population of tigers. In search of a better life, some 

children decide to change their ambitions and relocate at 

random. The technique seeks to identify the function's global 

and regional optimum values. Finding additional ideal values 

will be aided by adding more tigers to the population. This 

method lessens the influence on local values while increasing 

the possibility of discovering global values. 

There are two categories of tigers in this metaphysical 

approach: male and female. Assume that there are ‘m’ men and 

‘f’ women, despite the fact that m and f are initially equal. 

After locating their prey, they give birth to new tigers. These 

young tigers are capable of migrating to different regions and 
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retain all of their parents' memories. Because of their rapidity, 

tigers will eventually grow old, become too numerous to 

successfully hunt, or commit suicide. The system will also be 

unable to slow down. Eliminating weak tigers from populated 

areas is another strategy to decrease the number of tigers. 

Certain cubs relocate at random to seek out better settlements 

and new targets. The goal of this approach is to locate a 

function's local and global optima. Finding a more ideal value 

will be aided by adding more new tigers. This technique 

lessens the influence on local values while increasing the 

likelihood of discovering global values. But once a tiger 

locates a good spot, it attacks to secure the best possible 

outcome. The Tiger algorithm stops searching and shows the 

best result when, at a given moment, it reaches the optimal 

outcome. TA [17] is distinct from other recent techniques 

since it doesn't call for population identification. In order to 

address improvements through births, migrations, deaths, and 

suicides, change populations by either removing existing 

tigers or breeding new ones. New tigers will be automatically 

created based on births and migrations if the current 

population of tigers is insufficient and nothing improves 

within the allotted time. The tiger will kill itself and commit 

suicide, though, if there is an excessive number of people 

present and the procedure is not carried out in a timely manner. 

The distance between the target and the tiger determines TO. 

It will be challenging for a tiger to get to its target if it is far 

away. Distance is the inverse of two, as demonstrated by the 

equation below. 

 

𝐷(𝑎) =
𝐷1

𝑎2
 (12) 

 

In the given equation, a is the distance, D(a) is a function 

that represents the dispersion between tigers, and Dl is the 

distance parameter between the target and the estimated time. 

The formula for β, if it signifies the absorption coefficient 

between the tiger and the target, is as follows: 

 

𝐷 = 𝐷𝑝𝐾
−𝛽𝛼 (13) 

 

The distance between the tiger and the target, or Dp, is the 

primary parameter in this case. In order to prevent zero 

division in Eq. (14) two distinct formulas utilizing Gaussian 

discretization are applied: 

 

𝐷(𝑎) = 𝐷𝑝𝐾
−𝛽𝑎2  (14) 

 

The σ coefficient is used to represent the grip volume for a 

target. Thus: 

 

𝑉 = 𝜛𝑝𝐾
−𝛽𝑎2  (15) 

 

In the case where a=0, ϖp is gripping, using an alternative 

approximation: 

 

�̅� =
�̅�𝑝

1 + 𝛽𝑎2
 (16) 

 

The following is the formula for the separation between two 

tigers, l and m, located in al and am: 

 

𝑑𝑙𝑚 = |𝑎𝑙 − 𝑎𝑚| = √∑ (𝑎𝑙,𝑟
𝑑
𝑟=1 − 𝑎𝑚,𝑟)

2 (17) 

where, so dlm=√ (al−am)2+(bl−bm)2, and al,r is the rth element of 

the spatial coordinate of the lth tiger in 2-Devent. The degree 

to which a tiger l is preoccupied with another, superior tiger m 

is shown as: 

 

𝑎𝑙 = 𝑎𝑙 + 𝜛𝑝𝐾
−𝛽𝑎2𝑖𝑚(𝑎𝑙 − 𝑎𝑚) + 𝜚𝜏𝑙 (18) 

 

The values of ϱ and τl for facilitation in Eq. (18) range from 

0 to 1, and TA employs these values. At first, there are exactly 

equal numbers of male and female tigers. The algorithm is 

typically stopped by a few criteria, like the generation number, 

time, and other techniques. Every step in the process is 

intended to increase the number of tigers by a specific 

percentage in order to control the Ta population. In order to 

prevent them from staying in one place, tigers in the research 

site may first be constantly dispersed. A tiger cub is born when 

a female approaches a male tiger and is placed in an 

unpredictable spot. A tiger that folds simultaneously, whether 

male or female, always dies because it was weaker. 

At each stage of this process, the search is initiated from the 

current region of the various search techniques. It is possible 

to detect points with larger object values more accurately by 

evaluating the range of steps towards each location using an 

inverse square law that is weighted by object value. 

Performance was assessed using error rate, with weighted 

KNN serving as the fitting function. Originality in 

optimization: A new function that removes uncertainty 

between specific TO features was designed by us, based on the 

information entropy equation. The formula below is first used 

to determine the information entropy value of a given vector: 

 

𝐸(𝛼𝑙) = −∑𝑃(𝛼𝑙𝑖) log 𝑝(𝛼𝑙𝑖)

𝑖=1

 (19) 

 

where,𝛼𝑙𝑖represents the feature value as of right now, E(αl) is 

the entropy value of the chosen TO-based feature vector, and 
(𝛼𝑙𝑖)  is the likelihood index of 𝛼𝑙𝑖 . The following is how 

features are chosen using the generated entropy value: 

 

𝑇 = {
𝐹𝑠𝑒𝑙⁡𝑓𝑜𝑟𝛼𝑙𝑖 ≥ 𝐸(𝛼𝑙)
𝐼𝑔𝑛𝑜𝑟𝑒, 𝐸𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (20) 

 

The features that have been chosen and satisfy the entropy-

based selection criteria are denoted by𝐹𝑠𝑒𝑙  in the formula 

above. In order to calculate fitness, these features are sent to 

the fitness function. After selecting the features, an Extreme 

Learning Machine (ELM) classifier is tasked with performing 

the final classification. The output is a feature vector with a 

dimension of N×726. 
 

 

5. RESULTS AND DISCUSSION 
 

A simulation program written in Python (version 2.7) is 

used to test the suggested gesture detection and identification 

technique. Python Scientific Distribution supports this open-

source program. Each module simulates the suggested tasks 

using the Python programming language and is integrated into 

the Python core. Using a Core i3 processor and 4GB of RAM, 

Windows 8 is used to install the Python program. It was 

Kawulok et al. who devised the suggested gesture detection 

and identification technique. Many diverse gesture patterns 

recorded at various orientation angles make up this collection.  

Hand gesture Images of the American Sign Language 
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alphabet that were collected from Kaggle [5] and there are 

87,000 images in the collection, each measuring 200 by 200 

pixels. Since they are not static, the letters J and Z are not 

included in the data set. 8,700 images are used for testing and 

validation, while 69,600 images are used for training in this 

dataset. In PolyU dataset, with a novel contactless collecting 

technique, 12,000 images from 600 distinct palms make up the 

Tongji Contactless Palm Fingerprint Dataset [9]. At the 

beginning, 300 participants as 192 men and 108 women as 

provided images for Notified University to utilize. 

Different background backgrounds and lighting conditions 

were used to gather or record the gesture included in this 

dataset. In this work, we employ 200 images of each hand 

gesture posture together with eight hand motions. This paper's 

training set comprised 1600 gesture images from this publicly 

available dataset. Eight hundred images that depict eight 

distinct movements make up the test set. There is no 

relationship between the gesture images found in the test 

dataset and the training dataset's gesture images. Moreover, 

700 non-gesture images are included in the collection. The 

performance of the proposal task outlined in this article is 

measured using the following parameters. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (22) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (23) 

 
𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒

=
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑚𝑎𝑔𝑒𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑚𝑎𝑔𝑒𝑠
 

(24) 

 

This time, TP stands for true positive, suggesting that 154 

images were successfully detected as gestures, and TN stands 

for true negative, indicating that 50 images were accurately 

recognized as gestures. There are two types of gesture image 

errors: false negative (FN) and false positive (FP), which 

represent the total number of misidentified gesture images (6 

movements) and $5 images, respectively-determined as a 

percentage, the sensitivity, specificity, and accuracy values 

span from 0 to 100. The suggested gesture detection and 

identification method is more efficient when these parameters 

have more significant discounts. 

The findings indicate that when compared to the standard 

CV test, the LOO CV test performs better. The explanations 

for the reasons follow. One CV technology that is user-

independent is LOO CV [9]. This method uses user-provided 

gesture samples from non-model-development users to assess 

how well a trained model performs. On the other hand, in a 

typical CV, training and testing procedures involve gesture 

samples from each user in the dataset. As such, there is user 

bias in this CV test. 

The model performs better on the regular CV test than it 

does on the LOO CV test, for this reason. Referencing the 

LOO CV test, Figures 12 and 13 display the confusion 

matrices of test gesture samples from the PolyU dataset and 

the ASL dataset. In PolyU dataset, ‘w’ and ‘6’ are the most 

perplexing gestures. According to Figure 12, 52.9% of the six 

gesture poses in total were incorrectly identified as ‘w’ gesture 

poses, and 48.6% of the 'w' gesture poses were incorrectly 

identified as ‘6’ gesture poses. 

 

PolyU Hand Gesture Dataset 

The experiments in this study are performed on the Hong 

Kong Polytechnic University (PolyU) extended text database. 

Table 1 shows the characteristics of the two databases [33]. 

Existing methods produced promising results on PolyU 

images (GAR=99.7, FAR=0.01), which are contact-based 

images. Therefore, better authentication schemes are needed, 

especially for contactless images. 

 

 
 

Figure12. Confusion matrix for the PolyU dataset using test gesture examples for the LOO CV assessment 
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Figure 13. ASL dataset confusion matrix using test gesture samples for the LOO CV exam 

 

Table 1. Dataset [33] 

 
Characteristics ASL Database PolyU Database 

No of Users 235 345 

No of Samples 7(1645 in total) 7(2415 in total) 

Hands Acquired Left Left 

ROI size 150×150           128 

 
5.1 ASL dataset 

 
As a result of their use of algorithms for data analysis and 

intelligent prediction, machine learning and deep learning are 

generally very data-centric. Sign language recognition and 

translation systems face numerous challenges, chief among 

them being the limited availability of sign language databases. 

Databases with both manual and non-manual gestures at the 

same time are hard to come by Vaitkevičius et al. [2]. In order 

to operate and study sign language recognition systems, 

researchers in this field must build a respectably sized database 

from scratch. Employing a common camera to take images of 

symbols from the American alphabet makes it simple for even 

a non-expert signer to create a fingerspelling dataset. There are 

only 26 characters in the vocabulary, and the majority of the 

characters are static in position. The proposed system 

represents the American alphabet in sign language exclusively 

with hand gestures. Images in the fingerspelling database only 

display the signer's motionless hands. The "IEEE Dataport" 

dataset is therefore appropriate for our system. There are 

87,000 images in the IEEE Dataport dataset, categorized into 

29 different groups. There are 3,000 images in each class; 26 

classes match the 26 alphabets used in ASL, while the 

remaining classes include nothing, spaces, and deletions. The 

RBG formatted images in the dataset have different shapes and 

a pixel size of 200×3200 [3]. 

We resized the dataset for Vision Transformer to 

224×224×3 pixels after training the AlexNet, ConvNeXt, 

EfficientNet, and ResNet-50 models with 200×200×3 pixels 

as the pixel size. Figure 14 displays the procedure used to 

partition the dataset [34]. A 5-fold cross-validation strategy 

was then used to train the model after 70% of the dataset was 

divided into training and validation sets. The test set is 

comprised of the last 30% of the data collection. 

 

 
 

Figure 14. Data pipeline for splitting the ASL Alphabet dataset 
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Figure 15. Ten-fold cross-validation of sequence recognition 

models: CTC-based model (Top) and Bottom-Encoder 

Decoder Model (Bottom) 
 

The results of the isolated hand gesture recognition indicate 

that the best features for sequence recognition in this section 

are four groups of R_Z differences between non-adjacent 

joints. Ten-fold cross-validation is used to assess both the 

encoder-decoder recognition model and the CTC-based 

sequence recognition model. Ten subsets are randomly 

selected from the data set. Use the remaining nine subsets to 

train the model, with each subset serving as the test set. Figure 

15 displays the precise word accuracy of both models during 

cross-validation [34]. The average accuracy of the encoder-

decoder model is 96.4%, and the average accuracy of the CTC-

based model is 86.4% when multiple users are not taken into 

account. 

 

5.2 Preprocessing 

 

Eight distinct classes, each of which represents a distinctive 

gesture, are produced by the CNN classification method. 

Images of training gestures in various stances and settings are 

shown in Figure 16. 

 

 
 

Figure 16. Images of practice hand gestures in various poses 

and settings 

5.3 Feature extraction 

 

 
 

Figure 17. Simulation result of gesture detection 
 

 
 

Figure 18. The performance of the proposed model gesture 

recognition 

 

Table2. Precision, recall, F1-score and support report 

 
Alphabet Precision Recall Column A Support 

A 0.95 0.97 0.99 12 

B 0.96 0.98 1 13 

C 1 1 0.95 12 

D 0.98 0.97 1 12 

E 1 0.95 1 9 

F 1 0.93 0.98 13 

G 0.94 1 0.97 15 

H 0.96 0.97 1 10 

I 1 1 1 11 

J 0.97 0.98 0.96 12 

K 1 0.97 1 9 

L 0.98 1 0.95 16 

M 0.97 0.95 0.97 18 

N 1 1 1 13 

O 0.99 0.96 0.98 11 

P 1 0.96 1 11 

Q 0.94 1 0.97 14 

R 1 0.92 0.96 10 

S 0.98 1 1 12 

T 1 0.94 0.98 10 

1 0.97 1 0.99 19 

2 1 0.91 0.94 13 

3 0.97 0.94 0.95 12 

4 0.99 0.92 1 12 

5 0.98 0.97 0.93 12 

6 0.96 1 1 11 

Accuracy   0.98 312 

Average(Micro) 0.98 0.97 0.98 312 

Average(Weighted) 0.98 0.97 0.98 312 

 

Figure 17 displays sample gesture recognition image 

findings for the numbers 1 to 4. Hand gestures are represented 

by the points connected by lines to the hand region. Certain 
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characters use similar motions. As a result, it is challenging to 

identify movements accurately. As a result, after altering and 

enhancing gestures, you may prevent these erroneous 

detections. In Table 2, Precision, recall, F1 score, and support 

are employed assessment criteria. As can be observed, most 

alphabets have vital recognition precision, memory, and F1 

scores. L, M, Q, R, U, V, and W are the letters that are trickier 

to recognize; the other letters are correctly identified. Figure 

18 depicts as the performance of the proposed model gesture 

recognition. The overall performance metrices are tabulated as 

Table 2. 

 

5.4 Classification result 

 

Figure 19 depicts as deep learning classification processes. 

Table 3 presents the performance analysis of the suggested 

handshake recognition technique. 97.9% sensitivity, 95.9% 

specificity, 98.7% accuracy, and 98.2% recognition rate are 

attained by the camera shaking detection and identification 

technique presented in this study that employs the multi-scale 

DCNN classification algorithm. Real-time gesture picture 

recognition for various applications is inappropriate with these 

simulation results. Consequently, we integrate the ANN 

algorithm with the multi-scale DCNN classification technique 

to enhance the false positive system's performance. The 

ensemble approach attained 96.9% sensitivity, 91.1% 

specificity, 96.2% accuracy, and 97.1% identification rate. 

When the multi-scale DCNN with ANN approach was used 

instead of the multi-scale DCNN without ANN method, the 

sensitivity of the multi-scale DCNN rose by 6.5%. When 

compared to multi-scale DCNN without ANN technology, the 

specificity ratio of the latter improved by 8.9%. When 

reaching the multi-scale DCNN with the ANN method to the 

multi-scale DCNN without the ANN method, the accuracy of 

the former is increased by 4.5%. Comparing multi-scale 

DCNN with ANN technology to multi-scale DCNN without, 

there is a 7% increase in recognition rate. The suggested hand 

action recognition system is characterized by 98.9% 

sensitivity, 95.6% specificity, 98.9 % accuracy, and 98.2% 

recognition rate (AHE+multi-scale DCNN classification 

approach). When comparing solely the multi-scale DCNN 

classification approach, Table 4 clearly shows that the 

suggested gesture detection method utilizing this method 

yields the most outstanding performances. 

The suggested method is examined by employing the ANN 

classification approach. As demonstrated in Table 5, the 

AHE+DCNN+ANN classification approach yielded 94.5% 

sensitivity, 92.1% specificity, 98.6% accuracy, and 96.2% 

recognition rate. We contrast the suggested gesture 

recognition systems based on multi-scale DCNN. There are 

two types of ANN classifier kernels: nonlinear and linear. 

These are used in machine learning. ANN regression patterns 

are more exponential than ANN classifier regression patterns. 

This study contrasts the classification outcomes of multi-scale 

DCNN with ANN. 

 

 
 

Figure 19. Deep learning classification processes 

 

Table 3. Performance metrics- proposed hand gesture 

method 
 

Parameters (%) 

Sensitivity 97.9 

Specificity 95.9 

Accuracy 98.7 

Recognition rate 98.2 

 

Table 4. Performance measures-proposed multiscale DCNN 

 

Parameters 
CNN 

Classification  

DCNN 

Classification  

MSDCNN-

ENcTO 

Sensitivity 92.8 96.9 98.9 

Specificity 86 91.1 95.6 

Accuracy 92.5 96.2 98.9 

Recognition rate 93.6 97.1 98.2 
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Table 5. Performance metrics-proposed hand gesture 

detection methodologies using EncTO 

 

Parameters 
ANN 

Classification  

DCNN 

Classification  

MSDCNN-

ENcTO 

Sensitivity 89.5 90.4 94.5 

Specificity 80.1 87.4 92.1 

Accuracy 88.6 92.7 98.6 

Recognition rate 89.3 91.6 96.2 

 

Table 6. State of Art Techniques with the proposed method 

for PolyU dataset 

 
References Model Accuracy 

[12] Fuzzy c-means 76% 

[15] ANN 91% 

[13] CNN 93.94% 

[11] CNN-PSO 98.12% 

[10] DCNN 98.75% 

Proposed Multiscale DCNN 99.54% 

 

The model was executed on several computers with varying 

preprocessing steps applied, and the outcomes are displayed 

below. The model using input ROI color space images was 

found to get the best results. To determine which hyper 

parameter value gives the highest accuracy and loss, we 

evaluated a variety of them on the model. By doing this, one 

of the objectives stated in the introduction is achieved in 

addition to making future research easier. The performance 

comparison between current method and conventional method 

is displayed in Table 5. Table 6 Shows the performance of 

proposed method in comparison with existing methods. 
 

 

6. CONCLUSION 

 

For hand gesture identification, this research suggests a 

lightweight model that is based on the Multiscale DCNN 

learning models with Entrophy Controlled Tiger Optimization 

(ENcTO). With an accuracy of 99.16%, the developed hand 

gesture recognition system recognizes objects and movements 

in real-time from video frames. The ASL and Poly U dataset 

is used for reorganization by the proposed vision-based system, 

which can then be translated into text. For gesture detection, 

we discovered Media Pipe hand gesture characteristics and 

SIFT models to be helpful. In the Real-time gesture image 

recognition, integrate the ANN algorithm with the multi-scale 

DCNN classification technique to enhance the false positive 

system's performance. The ensemble approach attained 96.9% 

sensitivity, 91.1% specificity, 96.2% accuracy, and 97.1% 

identification rate. As demonstrated in the 

AHE+DCNN+ANN classification approach yielded 94.5% 

sensitivity, 92.1% specificity, 98.9% accuracy, and 96.2% 

recognition rate. The capture, matching, recognition, and 

authentication of palmprint images may be done using the 

SIFT approach, and OpenCV is used to mimic the matching 

performance. Instead of inputting the alphabet from the 

keyboard or into a search engine, you may utilize the alphabet 

you discover in a Word document. Real-time application tasks 

that use multiple characters or word recognition to interact or 

control the program might be added to this task. 
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