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This study presents an integrated Support Vector Regression and GARCH (SVR-G) model 
tailored for simulating synthetic green investment asset returns, which are characterized by 
unique financial properties, including non-normal return distributions, higher volatility, and 
positive skewness. Unlike traditional assets, green investments often exhibit irregular return 
patterns that require advanced predictive and optimization methods. To address these 
complexities, synthetic data was generated using GARCH(1,1) processes and skew-t 
distributions to capture the asymmetry and heavy tails typical of green asset returns, thereby 
simulating realistic market conditions. Through hyperparameter tuning and K-Fold Cross-
Validation, the model achieved high predictive accuracy, with a correlation coefficient of 
0.9992, Nash-Sutcliffe Efficiency of 0.9962, and a minimal Root-Mean-Square Error of 
0.0053, demonstrating its robustness and strong alignment with actual returns. Despite its 
strengths, the model’s reliance on synthetic data highlights the need for validation using real-
world datasets and the exploration of additional risk metrics. By leveraging GARCH(1,1) 
processes and skew-t distributions, this research demonstrates the SVR-G model's capacity to 
generate realistic synthetic datasets for green assets, enabling improved analysis and decision-
making for sustainable investment strategies. 
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1. INTRODUCTION

The accelerating transition toward sustainable finance has
catalyzed unprecedented interest in green assets. This has 
introduced novel challenges for market players due to their 
distinctive financial characteristics. These assets exhibit 
complex return patterns characterized by non-normal 
distributions, elevated volatility, and pronounced positive 
skewness—attributes that demand more sophisticated 
approaches to prediction and optimization. Positive skewness, 
in particular, is a critical feature in the context of green 
investments, as it reflects the potential for disproportionately 
high returns relative to losses. This asymmetry often results 
from market conditions driven by regulatory changes, 
technological advancements, and shifts in investor sentiment 
toward sustainability-focused assets.  

From a portfolio management perspective, positive 
skewness is significant because it aligns with investor 
preferences for assets that offer substantial upside potential 
while limiting downside risk. However, managing portfolios 
with such characteristics requires models capable of accurately 
capturing these skewed return distributions and balancing risk 
with the potential for extreme positive outcomes. 
Conventional portfolio optimization methodologies, 
predicated on assumptions of normality and volatility 
stationarity, prove inadequate in capturing these dynamics, 
necessitating the development of more refined financial 

models specifically calibrated for green assets. 
This study addresses this methodological gap by 

introducing an integrated Support Vector Regression and 
GARCH (SVR-G) framework engineered for green asset 
portfolio optimization. The model synthesizes Support Vector 
Regression's capacity to capture non-linear relationships—a 
crucial advantage for complex financial data. Through the 
application of synthetic data generated via GARCH(1,1) 
processes combined with skew-t distributions, this research 
conducts a comprehensive evaluation of the model's efficacy 
across multiple performance metrics, including correlation 
coefficient, Nash-Sutcliffe Efficiency, and Root-Mean-Square 
Error. This methodological approach not only captures the 
statistical intricacies inherent in green asset returns but also 
establishes a robust framework for portfolio allocation in 
environmentally conscious investments. 

We will review existing studies, provide a detailed 
explanation of our methodology, and present the findings of 
our research in the following sections. 

2. LITERATURE REVIEW

2.1 Non-normal distribution of returns in green 
investments 

The non-normal distribution of returns from green 
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investments is a significant aspect of financial analysis, 
particularly in the context of environmental, social, and 
governance (ESG) criteria. Research indicates that returns 
from green investments often exhibit skewness and kurtosis, 
deviating from the assumptions of normality typically used in 
risk assessment [1, 2]. This deviation can impact risk 
management strategies and investment decisions [3-7]. 

Studies have shown that returns from green investments 
frequently display statistical properties such as skewness and 
kurtosis that differ from the normal distribution, indicating a 
need for alternative risk measures [8]. For instance, Duttilo et 
al. [9] highlight that the performance of ESG indices during 
periods of market turmoil reveals distinct behaviors in their 
returns and volatility compared to traditional investments, 
suggesting a unique risk-return profile that necessitates 
tailored analytical approaches. Górka and Kuziak [10] 
validated the presence of heavier tails in ESG investment 
returns using statistical tests such as the Jarque-Bera test and 
Q-Q plots, emphasizing the need for advanced analytical 
techniques to account for these characteristics. 
 
2.2 Unique risk-return profiles of green assets 

 
The unique risk-return profile of green assets has been a 

focal point of several studies. Duttilo et al. [9] demonstrated 
that ESG indices exhibit distinct behaviors in their returns and 
volatility during periods of market turmoil, differing 
significantly from traditional investments. The phenomenon 
known as "greenium"—where green assets, such as German 
green bonds, outperform their non-green counterparts—
further illustrates how environmental concerns can influence 
returns in ways that may not align with traditional risk-return 
expectations [11]. Additionally, research indicates that return 
shocks in green energy markets can significantly influence 
adjacent markets, complicating the dynamics of return 
distributions [12]. The impact of climate policy uncertainty on 
return spillovers among green assets has also been explored by 
Pham et al. [13], who found significant interdependencies 
among green assets influenced by policy changes. This 
interconnectedness further complicates portfolio management 
strategies, as fluctuations in one asset class can reverberate 
through related markets. 
 
2.3 Advancements in analytical approaches for green 
investments 

 
While the non-normal distribution of returns presents 

challenges in risk assessment, it also opens avenues for 
innovative investment strategies and models that better capture 
the unique characteristics of green investments. For example, 
Samunderu and Murahwa [8] argue for alternative modeling 
approaches to assess risks associated with non-normally 
distributed returns across various asset classes, including 
green investments. Their findings emphasize the necessity for 
financial models that account for skewness and kurtosis to 
enhance risk management practices. 

Moreover, Górka and Kuziak [10] confirm that ESG 
investment returns often exhibit heavier tails than those 
predicted by normal distributions. Their study utilized 
statistical tests such as the Jarque-Bera test and Q-Q plots to 
validate these findings, highlighting the unique risk 
characteristics associated with ESG investments. 

In summary, the literature highlights the unique statistical 
properties of green asset returns, including non-normal 

distributions, positive skewness, and heavy tails, which 
necessitate advanced analytical approaches. While prior 
studies have explored alternative risk measures and 
highlighted the limitations of traditional models, there remains 
a significant gap in integrating machine learning techniques 
with investment strategies specifically tailored to green assets. 

This study addresses this gap by proposing and simulating 
an integrated Support Vector Regression and GARCH (SVR-
G) model for synthetic green investment data generation. The 
SVR-G component leverages machine learning to predict the 
complex, non-linear behavior of green asset returns. This 
research aims to enhance decision-making in sustainable 
investments, particularly in scenarios where traditional 
financial models fall short. 
 
 
3. RESEARCH METHODOLOGY 
 

To achieve the study's objectives, a systematic methodology 
was developed, encompassing data simulation, model training, 
and evaluation. The proposed framework begins with the 
generation of synthetic data to simulate green asset 
characteristics. A sensitivity analysis is also incorporated to 
assess the robustness of the model under varying assumptions. 
 
3.1 Data characteristics and assumptions 

 
This study utilizes synthetic data generation to model the 

unique characteristics of green assets using Support Vector 
Regression model. The following assumptions guide the data 
generation process: 
• Non-Normal Distribution of Returns: Green asset returns 

are assumed to follow a non-normal distribution, 
characterized by fat tails. The market uncertainties 
significantly impact green investments in emerging 
markets, causing asymmetric responses and highlighting 
the non-normal distribution of returns [14]. 

• Higher Volatility: It is assumed that green assets exhibit 
higher volatility compared to traditional assets. 
Regulatory uncertainty is the primary driver of price 
volatility in green certificate markets, increasing risk for 
investors [15]. 

• Positive Skewness: The return distribution of green assets 
is expected to show positive skewness, indicating a 
potential for significant upside gains. This characteristic 
makes these assets attractive to investors seeking high 
returns while accepting the risk of occasional losses [16]. 

• Cyclical Trends: The performance of green assets is 
influenced by cyclical trends driven by policy changes 
and technological advancements. These trends necessitate 
a model that can adapt to shifts in market conditions and 
investor behavior [17]. 

• Correlation with Environmental Factors: The returns are 
also correlated with various environmental factors, such 
as carbon pricing and sustainability indices. These 
correlation coefficients are essential in environmental 
analysis, helping to uncover and understand strong 
relationships between variables [18]. 

To effectively simulate these characteristics, daily returns 
are generated using a skew-t distribution, which captures both 
the fat tails and skewness of returns. Additionally, volatility is 
modeled using a GARCH(1,1) process to account for time-
varying volatility and autocorrelation in returns. 

Specific assumptions are as follows:  
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i. Daily returns follow a skew-t distribution: The skew-t 
distribution is a flexible distribution that can model 
asymmetry (skewness) and heavy tails (kurtosis), making 
it ideal for representing the return characteristics of green 
assets. The skew-t distribution allows for the capture of 
both fat tails and positive skewness, as previously 
mentioned. Return has a higher probability of extreme 
value (gain & losses) and helps to capture real world 
phenomena where financial return can show large, sudden 
swings. 

ii. Volatility exhibits GARCH(1,1) behavior: The 
Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model is often used to 
model volatility in financial markets, where today’s 
volatility is influenced by both the previous day’s 
volatility and return shocks. GARCH(1,1) specifically 
captures both the persistence of volatility and how sudden 
market shocks influence future volatility.  

GARCH(1,1) model, the long-run variance is derived as: 
 

1
ω
α β− −

 (1) 

 
In this equation, α+β represents the degree of persistence of 

volatility over time, and if this sum is close to 1, it indicates 
that volatility is highly persistent, meaning it takes longer for 
the process to revert to its long-run variance. 

Mathematical Representation: 
 

2 2 2
t t -1 t -1s = w+cx + ds  (2) 

 
where: 
 
𝜎𝜎𝑡𝑡2  Conditional variance (volatility) at time t. 
𝑥𝑥𝑡𝑡−12   Squared residual from the previous time step. 
𝜎𝜎𝑡𝑡−12   Conditional variance from the previous time 

step. 
𝜔𝜔 > 0  Long-term average variance. 
𝑐𝑐 ≥ 0  Reaction of volatility to immediate past shocks. 
𝑑𝑑 ≥ 0  Persistence of volatility over time (𝑐𝑐 + 𝑑𝑑 < 1 

ensures stationarity). 
 

iii. Autocorrelation in returns decays exponentially: 
Green assets may exhibit short-term autocorrelation, 
meaning that recent returns can inform future returns, but 
this relationship weakens over time. An exponential decay 
model is used to reflect how this autocorrelation decreases 
as the time lag increases.  

From the assumptions of data characteristic about the 
behaviour of green assets, we simulated data in Python using 
these distributions, which will include daily returns from the 
skew-t distribution, volatility modelled with GARCH(1,1) and 
returns with autocorrelation and skew-t distribution. A time 
series of 1,000 simulated trading days was chosen to balance 
computational efficiency and statistical robustness. This 
period reflects approximately four years of trading data, which 
is commonly used in financial research to capture medium-
term trends while avoiding overfitting to a single market cycle. 

The summary statistics of the simulated data include mean 
return, median volatility, minimum and maximum returns, 
skewness, and kurtosis. These statistics suggest the presence 
of fat tails and asymmetry in the return distribution, consistent 
with observed behavior in green assets. While a longer time 

frame could potentially provide more robust results, the 
chosen period allows for efficient testing and validation of the 
model while maintaining relevance to typical investment 
horizons. 
 
3.2 SVR-G model formulation 

 
The SVR component of the integrated model is formulated 

mathematically to predict future returns based on historical 
data and relevant features. Mathematically, the SVR-G model 
minimizes the following objective function: 

 

min
𝜔𝜔,𝑏𝑏,𝜉𝜉+,𝜉𝜉−

1
2
‖𝑤𝑤‖2 + 𝐶𝐶�(𝜉𝜉𝑖𝑖+ − 𝜉𝜉𝑖𝑖−)

𝑁𝑁

𝑖𝑖=1

 (3) 

 
Subject to 
 

𝑟𝑟𝑖𝑖 − (𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) + 𝑏𝑏) ≤ 𝜖𝜖 + 𝜉𝜉𝑖𝑖+, 
(𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) + 𝑏𝑏) − 𝑟𝑟𝑖𝑖 ≤ 𝜖𝜖 + 𝜉𝜉𝑖𝑖−, 

𝜉𝜉𝑖𝑖+, 𝜉𝜉𝑖𝑖− ≥ 0,∀𝑖𝑖, 
 
where, 
 
𝑟𝑟𝑖𝑖  Observed return  
𝑥𝑥𝑖𝑖  Input vector of features such as historical returns 

and volatility 
𝑤𝑤  Weight vector representing model parameters 
𝑏𝑏  Bias term 
𝜙𝜙(𝑥𝑥𝑖𝑖)  Kernel function mapping inputs into a higher-

dimensional space 
C  Regularization parameter, balancing margin 

width and training error 
𝜖𝜖  Margin of tolerance 
𝜉𝜉𝑖𝑖+, 𝜉𝜉𝑖𝑖−  Slack variables allowing deviations from the 

margin 
 
The general formulation of SVR-G is given by: 
 

( ) ( ) ( ) ( )φ φ= + = +T Tf x w x bf x w x b  (4) 
 
where, f(x) is the predicted value, x is the input vector 
consisting of historical returns and other relevant features, w 
is the weight vector representing model parameters, ϕ(x) is the 
kernel function mapping inputs into a feature space suitable 
for regression analysis, and b is the bias term. 

To capture non-linear relationships inherent in green asset 
returns effectively, we employ a Radial Basis Function (RBF) 
kernel defined as: 

 

( ) ( )2
, exp γ= − −i j i jK x x x x  (5) 

 
where, 𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� represents the similarity between two input 
vectors 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗,and 𝛾𝛾 controls the width of the RBF kernel. 
A higher 𝛾𝛾  value makes the kernel narrower, meaning that 
only points very close to each other in the input space will have 
high similarity. This is useful for identifying asset-specific 
anomalies or short-term trends in green investments. A lower 
𝛾𝛾 value will make the kernel broader, capturing more distant 
points as similar. The low 𝛾𝛾 value captures generalized trends 
and longer-term dependencies across the dataset. 

This kernel enables the model to learn complex patterns in 

821



the data that linear models may miss [19]. The choice of the 
RBF kernel is justified by its flexibility and effectiveness in 
modeling non-linear patterns. Green assets, characterized by 
complex and irregular return distributions, often exhibit 
relationships that are not well-captured by linear kernels. The 
RBF kernel enables the SVR-G model to adapt to these 
complexities, making it particularly suited for the high-
dimensional, non-linear dependencies observed in green 
investments. 
 
3.3 Hyperparameter optimization 

 
The performance of the SVR-G model is sensitive to the 

choice of hyperparameters (𝐶𝐶, 𝜖𝜖, 𝛾𝛾). Research by Açikkar [20] 
emphasized that grid search is not only straightforward and 
easy to implement but also highly reliable, as it ensures the 
optimal configuration is identified by evaluating every 
possible hyperparameter combination. To ensure optimal 
model performance, the following hyperparameters were 
systematically tuned using grid search technique. 

i. Regularization Parameter (C): This parameter 
controls the trade-off between achieving low-error 
margin and minimizing model complexities. A well-
chosen C helps prevent overfitting while ensuring 
adequate model complexity. A higher C prioritizes 
minimizing training error, potentially leading to 
overfitting, as the model becomes sensitive to 
individual data points. A lower C increases the 
margin width, promoting generalization but possibly 
at the expense of higher training error. 

ii. Epsilon (ϵ): This parameter defines a margin of 
tolerance within which no penalty is assigned for 
prediction errors. A smaller ϵ results in a tighter fit to 
the data, increasing model sensitivity but potentially 
capturing noise. A larger ϵ allows the model to ignore 
minor deviations, focusing on broader trends. 

iii. Gamma (γ): This parameter influences the width of 
the RBF kernel and directly affects the ability of the 
model to capture data patterns. Through the grid 
search, γ was optimized to balance the detection of 
localized features and overall trends in green asset 
returns. Higher values increase sensitivity to 
individual data points while lower values create 
smoother decision boundaries. 
 

3.4 Numerical simulation process 
 
To evaluate the effectiveness of the SVR-G model in 

predicting green asset returns, a systematic numerical 
simulation process was developed. This process replicates the 
unique statistical properties of green assets, including non-
normal return distributions, fat tails, and time-varying 
volatility. The simulation consists of the following steps: 

i. Generating Synthetic Data: The synthetic data 
simulation process was designed to replicate the 
statistical properties of green asset returns, including 
non-normality, fat tails, and time-varying volatility. 
The two core components of this process are the (a) 
skew-t distribution to capture asymmetry (positive 
skewness) and extreme returns (heavy tails); and (b) 
the GARCH(1,1) process to replicate periods of high 
and low market volatility observed in financial time 
series. 
 

a. Skew-t Distribution 
The skew-t distribution models the returns of green assets, 

capturing both asymmetry (skewness) and heavy tails. This 
allows the data to represent scenarios where returns deviate 
significantly from the average, a common feature in green 
investments influenced by external factors such as regulatory 
changes and market sentiment. Unlike the normal distribution, 
which assumes symmetry and light tails, the skew-t 
distribution incorporates skewness and heavy tails, making it 
more appropriate for financial modeling. The probability 
density function (PDF) of the skew-t distribution is defined as: 

 
𝑓𝑓(𝑥𝑥; 𝜉𝜉,𝜔𝜔,𝛼𝛼, 𝜈𝜈) =

2
𝜔𝜔
𝑡𝑡𝑣𝑣 �

𝑥𝑥−𝜉𝜉
𝜔𝜔
�𝑇𝑇𝑣𝑣+1 �𝛼𝛼

𝑥𝑥−𝜉𝜉
𝜔𝜔 �

𝑣𝑣+1

𝑣𝑣+ �𝑥𝑥−𝜉𝜉𝜔𝜔 �
2�, (6) 

 
where, 
 
𝑥𝑥  The random variable (returns). 
𝜉𝜉  Location parameter (mean). 
𝜔𝜔  Scale parameter (variance). 

𝛼𝛼  Skewness parameter (𝛼𝛼>0 for positive skewness, 
𝛼𝛼 <0 for negative skewness). 

𝜈𝜈 > 0  Degrees of freedom, controlling the tail 
heaviness. 

𝑡𝑡𝑣𝑣  PDF of the t-distribution with 𝜈𝜈  degrees of 
freedom. 

𝑇𝑇𝑣𝑣  CDF of the t-distribution with 𝜈𝜈  degrees of 
freedom. 

 
b. GARCH(1,1) Process 
The GARCH(1,1) process simulates the time-varying 

volatility commonly observed in financial markets. Volatility 
clustering—where high-volatility periods are followed by 
similar periods—is a defining feature of green assets. The 
GARCH(1,1) model defines current volatility ( 𝜎𝜎𝑡𝑡2 ) as a 
function of past volatility and past shocks (residuals). This 
ensures that periods of market instability are realistically 
captured. The process is defined in Eq. (4). 

ii. Training the SVR-G Model: The SVR-G model is 
trained on synthetic data using optimized 
hyperparameters ( 𝐶𝐶, 𝜖𝜖, 𝛾𝛾 ) derived from cross-
validation techniques or prior knowledge about 
expected parameter ranges. The model learns to 
predict future returns by identifying complex, non-
linear patterns in the historical data. The training 
process involves:  

a. Initializing the SVR-G model with an RBF kernel, 
which effectively captures non-linear relationships. 

b. Fitting the model to the synthetic data, using grid 
search and cross-validation to determine the optimal 
hyperparameters. 

c. Generating predictions for future returns based on the 
trained model. 

iii. Evaluating Model Performance: After training, the 
performance of the SVR-G model is assessed against 
actual simulated returns using various statistical 
metrics including: 

• Correlation Coefficient (R): Measures the strength and 
direction of the linear relationship between the actual 
and predicted values. Higher values (closer to 1) 
indicate a strong correlation and better model 
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performance. 
• Nash-Sutcliffe Efficiency (NSE): Evaluates the 

predictive power of the model. NSE values range from 
-∞ to 1, with values closer to 1 indicating that the 
model is an excellent predictor, while values close to 
0 or negative show poor performance. 

• Root-Mean-Square Error (RMSE): Quantifies the 
average error between predicted and actual values. 
Lower RMSE values indicate higher accuracy. 

• RMSE-Observation Standard Deviation Ratio (RSR): 
Normalizes the RMSE by dividing it by the standard 
deviation of the observed data. Values closer to 0 
suggest that the model fits well. 

• Legates & McCabe’s Efficiency Index (ELM): 
Provides an alternative to NSE, giving more weight to 
large errors and helping detect significant prediction 
deviations. Values near 1 indicate better performance. 

iv. Simulation Steps: The overall simulation process 
involves the following steps: 

a. Initialize the SVR-G model with specified kernel 
parameters for the skew-t distribution and 
GARCH(1,1) process to reflect the statistical 

properties of green assets. 
b. Generate synthetic data by creating daily returns and 

volatility using the specified distributions. 
c. Fit the model to the generated data and optimize 

hyperparameters using grid search and cross-
validation. 

d. Use the trained SVR-G model to predict future returns. 
e. Analyze results across different configurations by 

varying hyperparameters (C,ϵ,γ) to identify optimal 
model settings that yield superior predictive 
performance. 

 
3.5 Sensitivity analysis 

 
To evaluate the robustness of the SVR-G model and assess 

how changes in key assumptions influence its performance, a 
sensitivity analysis was conducted. This analysis focused on 
variations in volatility persistence, a critical parameter in the 
GARCH(1,1) process, as well as skewness and kurtosis, which 
significantly affect the behavior of green asset returns. By 
systematically altering these assumptions, the study aimed to 
determine their impact on both the synthetic data and the 
model’s predictive accuracy. 

 

 
 

Figure 1. Process flowchart 
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a. Volatility Persistence in the GARCH(1,1) Process
Volatility persistence, represented by the sum of α (reaction

to immediate past shocks) and β (long-term persistence), plays 
a crucial role in modeling the clustering effect observed in 
financial time series. For the baseline scenario, α=0.1 and 
β=0.85 were chosen, reflecting moderate persistence 
(α+β=0.95). Sensitivity analysis involved varying these 
parameters as follows: 

• Low Persistence: α=0.05, β=0.7 (α+β=0.75).
• High Persistence: α=0.15, β=0.9 (α+β=1.05, non-

stationary).
For each configuration, the synthetic dataset was 

regenerated, and the SVR-G model was retrained and 
evaluated. Changes in performance metrics such as 
Correlation Coefficient (R), Nash-Sutcliffe Efficiency (NSE), 
and Root-Mean-Square Error (RMSE) were analyzed to 
identify the model’s sensitivity to varying degrees of volatility 
persistence. 

b. Skewness and Kurtosis of the Skew-t Distribution
The skewness and kurtosis parameters of the skew-t

distribution were varied to examine their influence on the 
simulated data and the model’s predictions. The baseline 
skewness and kurtosis values were set at 2.8 and 34.12, 
respectively, consistent with observed characteristics of green 
asset returns. Sensitivity analysis involved the following 
adjustments: 

• Reduced Skewness: Skewness = 1.5, Kurtosis = 20.
• Increased Skewness: Skewness = 4.0, Kurtosis = 50.

For each scenario, the summary statistics of the synthetic data, 
such as mean return, volatility, and distribution shape, were 
recalculated. The SVR-G model was then trained on the 
modified datasets to assess the impact of skewness and 
kurtosis changes on predictive performance. The process 
flowchart is illustrated in Figure 1. 

4. RESULTS AND DISCUSSION

The results of the SVR-G model demonstrate its
effectiveness in predicting returns on green assets. The model 
was evaluated using synthetic data that accurately reflects the 

unique characteristics of green investments, including non-
normal return distributions, higher volatility, and positive 
skewness. 

4.1 Simulation parameters and data statistics 

The model was evaluated using 1,000 simulated trading 
days, representing approximately four years of data. This 
period was selected to balance computational feasibility and 
the ability to capture medium-term market behaviors relevant 
to green assets. The synthetic data generated daily returns from 
a skew-t distribution, capturing non-normality, positive 
skewness, and heavy tails, while time-varying volatility was 
modeled using a GARCH(1,1) process.  

Key statistics of the simulated dataset include a mean daily 
return of approximately 0.0005 (or about 0.5% per day), 
indicating small, positive returns. Volatility varied with a 
mean of 0.0294, representing realistic fluctuations associated 
with green asset returns. Skewness was measured at 2.80, 
indicating the presence of asymmetrical return distributions 
with a long right tail, while kurtosis was 34.12, confirming 
significant fat tails. These characteristics are consistent with 
green assets, which often display high upside potential 
alongside susceptibility to extreme outcomes. 

4.2 Initial model performance (without parameter 
optimization) 

The initial SVR-G model configuration was tested without 
parameter tuning. Table 1 summarizes the key statistical 
indices, and Figures 2 and 3 provide graphical representations 
of predicted returns and error distributions, respectively. 

Table 1. Statistical indices (without parameter optimization) 

Statistical Indices Value 
Correlation coefficient (R)  -0.0762

Nash–Sutcliffe Efficiency (NSE) -0.2313
Root-Mean-Square Error (RMSE) 0.0958

RMSE-observation standard deviation ratio (RSR) 1.1096 
Legates & McCabe's Index (ELM) -0.0536

Figure 2. Actual vs predicted return (without parameter optimization) 
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Figure 3. Error distribution (without parameter optimization) 

The initial evaluation of the SVR-G model revealed several 
areas where predictive performance could be enhanced. Prior 
to parameter optimization, the model's metrics indicated weak 
predictive alignment with observed data. The correlation 
coefficient (R=−0.0762) suggested an almost negligible 
relationship between predicted and actual returns. The Nash-
Sutcliffe Efficiency (NSE = −0.2313) indicated poor 
performance, with the mean of the observed values 
outperforming the model. RMSE of 0.0958 and RSR of 1.1096 
underscored the model’s lack of reliability, while ELM of -
0.0536 highlighted significant prediction deviations. 

The error distribution (Figure 3) revealed that errors were 
symmetrically distributed around zero with fat tails, indicating 
that the model exhibited systematic over- or under-predictions 
under certain conditions. Fat tails indicate that the model 
struggles to capture the high-risk, high-reward scenarios 
characteristic of green asset returns. This is consistent with the 
skewed and heavy-tailed nature of the synthetic dataset, where 
extreme values occur more frequently than predicted by 
normal distributions. These results collectively highlight the 
model's limitations in its initial configuration, as the low 
correlation, poor NSE, and high RSR emphasized the 
necessity for parameter tuning and alternative kernel 
configurations to improve the model's sensitivity to outliers 
and extreme values. 

4.3 Optimized model performance (after parameter tuning) 

To enhance the model’s performance, a grid search 
technique was employed to optimize hyperparameters C, ϵ, 
and γ, systematically exploring predefined ranges. The final 
values (C=10, ϵ=0.01, and γ=0.01) were selected based on 
their ability to minimize prediction error. The choice of C=10 
balances the trade-off between model complexity and error 
minimization, ensuring sufficient flexibility to fit the data 
without overfitting, ϵ=0.01 establishes a narrow tolerance for 
error, reducing the model’s sensitivity to small fluctuations in 
the data, and γ=0.01 defines an effective kernel width for the 
RBF kernel, enabling the model to capture complex non-linear 
relationships inherent in green asset returns. 

Grid Search Range: 
• C: Examined over [0.1,1,10,100] to balance margin

maximization and error minimization.
• ϵ: Evaluated over [0.01,0.1,1] to determine the optimal

tolerance for error.
• γ: Explored over [0.01,0.1,1] to control the influence of

individual data points in the RBF kernel.
The 𝜅𝜅-Fold Cross-Validation was employed in place of a

single train-test split. By dividing the dataset into 𝜅𝜅  equal-
sized subsets (where 𝜅𝜅  =5), this approach enabled multiple 
training and validation rounds across different data splits, 
ensuring consistent performance across varied subsets of data. 
The Cross-validated Mean Squared Error (MSE) of 0.0007 
with 𝜅𝜅 =5 folds indicates that the model’s predictions are, on 
average, closely aligned with actual values across all folds. 
This demonstrated the SVR-G model's strong predictive 
performance and reliable generalization to unseen data. 

While the grid search method successfully identified the 
optimal hyperparameters, it was computationally intensive 
due to its exhaustive exploration of parameter combinations. 
For the dataset of 1,000 simulated trading days, the complexity 
of the RBF kernel, which scales quadratically with the number 
of data points, contributed significantly to the computational 
cost. Although the runtime was manageable for this dataset, 
larger datasets would necessitate alternative approaches such 
as parallelized computation or Bayesian optimization to 
reduce execution time. 

The results from cross-validation confirmed that the 
selected hyperparameters (C=10, ϵ=0.01, and γ=0.01) 
provided optimal predictive accuracy and stability for the 
SVR-G model. The optimized model demonstrated significant 
improvements (Table 2). The best-performing parameter 
configuration was found with C=10, ϵ=0.01, and γ=0.01, 
yielding results that highlight the model’s robustness. The 
correlation coefficient (R) rose dramatically to 0.9992, 
indicating a near-perfect positive relationship between the 
model’s predictions and actual values, which aligns with the 
model’s objective to capture green asset returns accurately. 
Similarly, the Nash-Sutcliffe Efficiency (NSE) increased to 
0.9962, approaching the ideal value of 1, suggesting almost 
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complete alignment between predicted and observed data 
points. 

 
Table 2. Statistical indices (after parameter tuning) 

 
Statistical Indices Value 

Correlation coefficient (R)  0.9992 
Nash–Sutcliffe Efficiency (NSE) 0.9962 
Root-Mean-Square Error (RMSE)  0.0053 

RMSE-observation standard deviation ratio (RSR) 0.0617 
Legates & McCabe's Index (ELM) 0.9463 

Cross-validated Mean Squared Error 0.0007 
 
The Root-Mean-Square Error (RMSE) decreased to 0.0053, 

illustrating a substantial reduction in prediction error and 
confirming the optimized model’s capacity for precise return 
forecasts. Additionally, the RMSE-observation standard 
deviation ratio (RSR) dropped to 0.0617, a value close to zero, 
which reflects an excellent fit for the observed data. Legates 

& McCabe’s Index (ELM) further supported these findings 
with a high value of 0.9463, indicating strong predictive 
reliability and generalization. Furthermore, cross-validation 
results yielded a mean squared error of 0.0007, suggesting that 
the model performs consistently well across varied data splits 
and is likely to generalize effectively to unseen data. 

Graphical analysis in Figures 4 and 5 reinforced these 
quantitative findings, showing that the model’s error 
distribution is centered around zero with minimal spread, and 
the scatter plot of predicted versus actual values aligns closely 
with the ideal red dashed line representing perfect predictions. 
The symmetrically distributed errors confirm the model's 
capability in producing unbiased predictions, effectively 
capturing the complex, non-linear behavior typical of green 
asset returns. This optimized performance emphasizes the 
SVR-G model’s potential as a robust tool for green asset 
investment generation, effectively addressing unique asset 
characteristics such as higher volatility and positive skewness. 

 

 
 

Figure 4. Actual vs predicted return (after parameter turning) 
 

 
 

Figure 5. Error distribution (after parameter turning) 
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4.4 Sensitivity analysis 
 
Adjustments to α and β in the GARCH(1,1) process 

revealed the model’s robustness under varying levels of 
volatility persistence. For high persistence (α+β=1.05), RMSE 
increased by 10%, and the error distribution showed slight 
widening. Low persistence (α+β=0.75) reduced RMSE by 5%, 
but the model's ability to capture extreme outcomes 
diminished slightly. 

Increased skewness and kurtosis led to broader error 
distributions and a marginal increase in RMSE (+8%), 
highlighting the challenges of extreme non-normality. 
Reduced skewness and kurtosis improved RMSE (-4%) but 
underestimated the upside potential of green assets. These 
findings emphasize the model’s adaptability to realistic 
conditions while highlighting limitations under extreme 
assumptions. 
 
4.5 Discussion 

 
The substantial improvement in performance following 

parameter tuning reveals the importance of hyperparameter 
optimization for SVR-G models. The optimized parameters 
(C=10, ϵ=0.01, and γ=0.01) provided an effective balance 
between capturing complex patterns and avoiding overfitting. 
The sensitivity analysis demonstrated that the model performs 
well under moderate variations in assumptions but may face 
challenges in extreme scenarios, such as highly persistent 
volatility or excessive skewness. The exceptionally high 
correlation coefficient (R=0.9992) raises potential concerns 
about overfitting, necessitating further validation on real-
world datasets to ensure the model’s generalizability. 

The fat tails in the initial error distribution highlight the 
challenges of modeling green assets, which are prone to 
extreme returns. The optimized model effectively addressed 
these issues, producing a more symmetric and narrower error 
distribution. This suggests that the SVR-G framework is well-
suited for green investment asset generation, offering robust 
predictions even in the presence of skewness and heavy tails. 

Additionally, while the grid search process yielded optimal 
parameters, its computational cost was significant. Future 
studies could explore alternative methods, such as random 
search or Bayesian optimization, to reduce computational 
overhead while maintaining performance. 

Overall, the results highlight the potential of the SVR-G 
model as a powerful tool for supporting sustainable investment 
strategies, effectively addressing unique characteristics such 
as positive skewness, higher volatility, and non-normal return 
distributions. 
 
 
5. CONCLUSIONS 

 
The SVR-G framework demonstrates exceptional 

predictive accuracy and optimization efficacy for green 
investment asset generation, establishing its viability as an 
advanced tool for sustainable investment management. 
Following hyperparameter optimization, the model achieved 
remarkable congruence between predicted and actual returns, 
evidenced by superior correlation and Nash-Sutcliffe 
Efficiency metrics. The implementation of 𝜅𝜅  -Fold Cross-
Validation further substantiated the model's reliability and 
generalizability, yielding consistently minimal cross-validated 
Mean Squared Error values across diverse data partitions. 

These results highlight the model's capability to effectively 
address the inherent complexities of green assets—particularly 
their non-normal distributions, volatility patterns, and positive 
skewness—characteristics frequently overlooked by 
traditional optimization approaches. 

The SVR-G model demonstrated strong capability in 
simulating synthetic green investment assets, accurately 
reflecting their statistical properties such as non-normal 
distributions and volatility patterns. This framework lays the 
groundwork for advanced analyses of green investments, 
providing high-quality data for future studies on risk 
management and investment strategies. Future research 
directions could extend this work through application to 
empirical green asset data and investigation of additional 
determinants of green asset performance, including 
environmental indices and regulatory dynamics.  
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NOMENCLATURE 

𝑐𝑐 coefficients that determine how much weight is given to
recent shocks 

𝑑𝑑 coefficients that determine how much weight is given to
past volatility 

𝑥𝑥𝑡𝑡−1
2

squared return shock (or innovation) from the previous 
period. This is also called the "news" or "error" term 
thermal 

Greek symbols 

α coefficient of the lagged squared return (or past shocks) 

β coefficient of the lagged conditional variance 
(persistence of volatility) 

φ kernel function mapping inputs into a feature space 
suifigure for regression analysis 

𝜔𝜔 constant in the variance equation 

𝜎𝜎𝑡𝑡
2 

conditional variance (volatility) at time 𝑡𝑡 , i.e., the 
forecasted variance for the next period based on the 
information up to time 𝑡𝑡 − 1 

𝜎𝜎𝑡𝑡−1
2 conditional variance from the previous period 
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