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In this work, the free vibration investigation of a porous-functionally-graded-beam
(FGB) along its height utilizing first-order-shear-deformation theory (FOSDT) with
different supporting types, including clamped-clamped, clamped-free and simply
supported, is studied. The power-law equation is used to describe distribution of
mechanical properties of functionally-graded-beam (FGB). The materials used in a
typical case of functionally-graded-beam (FGB) consists of aluminum and alumina
(Al203). Three types of porosity distribution functions: even uniform distribution,
uneven-I central distribution and uneven-Il corner distribution are considered. The
finite element model is applied by utilizing the ANSYS APDL 17.2 and using element
"SHELL28" to calculate the natural frequencies and show the impacts of length/height
ratio, index of power-law model K, distribution of porosity and porosity index (a-
index). The present model's results were compared to literature, showing good
agreement. For even porous functionally-graded-beam (PFGB), as the power-law-index
K rises, the first three frequency parameters decrease, while increasing the porosity
index decreases the frequency parameter. The influence of power-law-index and
porosity index is observed in Uneven-I and Uneven-11 porous-FGBs. The length/height
ratio has minimal influence. Frequency parameters increase with higher mode numbers.
Uneven-1 materials causes the smallest influence of porosity on the frequency
parameters due to distribute the porosity near the center of cross section area of beam.

1. INTRODUCTION

Composite materials are one of the modern materials
created to develop the material properties to achieve the
requirement of the modern engineering applications. The
physical combination of two or more materials is the basic idea
of composite material. Several methods can be used to achieve
this combination and to get better material properties, and one
of these methods is the combination of different materials as
layered media, called laminated composite materials and this
type of combination leads to the occurrence of stress and
temperature discontinuities in the material [1]. In 1980,
functionally-graded-material (FGM) is a novel type of
materials. FGM was suggested to overcome this problem. The
properties of these materials undergo a progressive
transformation from the first material to second one based on
a specified equation. Nowadays, because of their higher
material properties, FG materials are applied in different
fields, especially in nuclear, biomedical, aerospace, and
optical engineering applications [2-5]. Numerous studies on
the mechanical behavior of structures have been done as a
result of the widespread uses of FGM [6-13]. However, during
the manufacturing process, these materials may display certain
flaws like porosity. Therefore, a study on this topic has to be
added as soon as possible to have a solid understanding of the
porosity influence on the mechanical and structural behaviors
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of FGM. Because of its various applications, beams—along
with plates and shells—have always piqued the interest of
researchers among the three types of structures. Simple beam
theories such as classical, first, second and higher-order-shear-
deformation theory are just a few of the many beam theories
that are used to analyze beam structures. On the other hand,
researchers can lower the computational cost and keep the
resulting error within the permitted range by employing a
straightforward model. Furthermore, in order to give the
designer an accurate understanding of the mechanical
properties, beams composed of FGM with porosity must be
thoroughly investigated.

Chen et al. [14] investigated the static bending and elastic
buckling of porous-FGB depending on Timoshenko-beam-
theory (TBT). The mechanical properties and porosity are
gradually distribution along the height of FGB. Two
distribution models are used to describe the porosity
distribution. They calculated the transverse displacement and
critical buckling using Ritz method with various supporting
type, i.e., boundary conditions (BC) to investigate the impact
of length/height ratio and porosity. Also, Wattanasakulpong
and Chaikittiratana [15] analyzed the transverse beam
vibration under various boundary conditions considering the
impact of inertia and shear effect and using TBT. To determine
the material parameters of the FGBs, such as the volume
fraction, the revised rule of mixture was utilized of porosity
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assuming three types of porous distribution models across the
beam section. They calculated the natural frequencies of
porous-FGBs under various supported ends and they found
that "FGM beams with uniform porosity distribution have a
stronger influence on natural frequencies compared to uneven
porous-FGBs. This method is effective for eigenvalue analysis
of structural problems".

In 2016, Al Rjoub and Hamad [16] improved new analytical
solution to investigate free vibration of porous-FGB with
different boundary conditions using Euler-Bernoulli-theory
(EBT) and Timoshenko-beam-theory (TBT). They employed
the transfer-matrix method in order to compute non-
dimensional frequencies of pure and porous FGBs assuming
uniform distribution of porosities along the height of the beam.
Their results showed the effects of material index, volume
fraction, boundary conditions, length/height ratio, and
porosity on dimensionless frequency parameters of pure and
porous FGBs. Galeban et al. [17] investigated the free
vibration of porous beams by deriving the governing equations
using Euler-Bernoulli theory. The mechanical properties are
changes in the cross-section porous beam. The results showed
that the porosity, mass, fluid compressibility, distribution of
pores and supporting types, i.e., boundary conditions (BC)
impact the natural frequencies of beams. Hinged-hinged
beams exhibit unique natural frequency behavior.

Fouda et al. [18] investigated the porosity influence on the
mechanical behavior of FGB assuming Euler-Bernoulli theory
and power distribution along the thickness of FG beam to
construct the governing equations and the kinematic relations.
They concluded that “the static deflection and buckling load
affected the porosity and the material distribution parameter,
while the frequency is influenced by the material index and
has a stronger correlation with porosity in the proposed
model”. Akbas [19] studied the forced vibrations of porous
FGBs subjected to dynamic loading. In deep beam, the
mechanical properties vary across the height of FGB due to the
presence of porosity. The finite element method is utilized to
resolve the problems within the "plane solid continua model".
Amir et al. [20] analyzed the vibration of a sandwich micro-
beam composed of a porous core and face sheets reinforced
with FG carbon nanotubes and supported on a Winkler-
Pasternak substrate. They considered in their analysis the
beam's response to thermal load and employed "sinusoidal-
shear-deformation-beam-theory” (SSDBT) to define the
displacement components assuming that the properties of the
core and facial sheets are dispersed throughout its height. They
applied "Hamilton’s principle" and "Navier’s method" to drive
the equations of motion to study the influence of porosity
value and function, small scale, various kinds of CNTSs
distribution, and geometrical beam size. The study findings
indicate that the frequency decreases when the porosity
increases.

In 2020, Zanoosi [21] studied the vibration of a porous-FG
micro-beam while considering the influence of thermal effects
by utilizing the elasticity of modified strain gradient theory
(MSGT). They used MSGT instead of MCST to analyze the
size-dependent porous structures and they applied "Hamilton's
principle” and the "Navier solution” to determine the natural
frequency the micro-beam under simply supported conditions.
They investigated the influence of temperature changes, length
scale, material index, length/height ratio, and volume fraction
of porosity on FG micro-beam natural frequency. They
concluded that the temperature increases reduced the micro-
beam's frequency. Zghal et al. [22] used a "refined-mixed-
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finite-element-beam” model for studying static bending
analysis of porous-FGBs. They used two distributions of
porosity, even and uneven and to ascertain the mechanical
properties of porous-FGB, use a modified power-law model.
They conducted a parametric study to examine how the
boundary conditions, porosity coefficient, types of porosity
distributions and power law index affect the displacement and
stress of the FGBs. They concluded that “the porosity
parameter in modern structural design of cannot be overstated.
The percentage of porosity present in the structure can have a
profound impact on its overall performance and response”.
Rahmani et al. [23] used various theories in order to
investigate bending, buckling, and study of vibration of
porous-FGBs. They employed the finite element approach to
solve problems assuming a power law model to represent the
mechanical properties along the height of the FGB, and they
used "Hamilton's principle" to drive the equation of motion.
They investigated the impact of porosity exponents, power-
law index, and supporting type on the bending behavior,
buckling characteristics, and natural frequencies of the beam
using ANSYS Software. They found that the displacement,
critical buckling and frequencies increase when length /height
ratio increases. Also, the nondimensional frequencies decrease
with decreasing values of the porosity index and power-law
index. Ultimately, the FG beam becomes less rigid as porosity
and power-law index increase, leading to higher deflection and
decreased critical buckling load”. Karamanli and Vo [24],
used three alternative models of porosity distribution to
examine the size-dependent behavior of porous-FG micro-
beams using a quasi-3D theory and a modified-strain-gradient-
theory (MSGT). They applied the rule of mixture for
determining material properties and material length scale
parameters (MLSPs) based on the porosity index, thickness,
and material index, thereby enabling a comprehensive
understanding of the material characteristics. They checked
the accuracy of the suggested model and studied the impacts
of varying MLSP, material index, porosity index, and
boundary condition on responses of porous-FG micro-beam.

Rahmani [25] modified the "high-order-sandwich-beam-
theory" to investigate the frequency responses of clamped-free
sandwich beams with homogeneous face sheets and a FG core
using a modified power-law model and two porosity
distribution models to characterize the material qualities along
its height. They used "Hamilton’s principle" and a "Galerkin
method" to solve Governing equations of motion. They
showed a comparison with specific scenarios outlined in
existing literature. They concluded that “as a power-law index,
temperature, cross-section, length, and porosity volume
fraction increase, the basic frequency parameter falls.
Conversely, an increase in the wave number leads to an
increase in the frequency”. Anirudh et al. [26] used a
"trigonometric-shear-deformation-theory" to examine the
transverse vibration and buckling behavior of curved beams
composed of porous-FG graphene-reinforced nanocomposites
to study the impact of various theories on the static and
dynamic performance. They used Lagrangian equations of
motion and finite element analysis to derive the equilibrium
equations. They conducted a comprehensive study to assess
how parameters such as radius of curvature, porosity
coefficient, length-to-thickness ratio, distribution pattern of
porosity and graphene platelets, platelet geometry, and
supporting types affect static bending, elastic stability and free
vibration.

Ton [5] studied the impact of porosity on the free vibration



behavior of a porous FGB using simple beam theory. He
examined the effects of boundary conditions, porosity
distribution models, and material distribution on the free
vibration problem of porous FGB. He concluded that “the
results align well with existing references and confirm the
applicability of classical beam theory in analyzing functionally
graded porous beams. The mechanical information provided
may prove useful to designers for specific purposes”.
Adiyaman [1] analyzes the porous-FGB's free vibration
behavior utilizing a higher-order-shear-deformation-theory
(HOSDT). He used Lagrange’s principle, power law model,
and different porosity distribution functions to derive the
governing equations and applied FEM to solve these
equations. He calculated the dimensionless natural frequencies
and studied the influence of material properties, supporting
types, and porosity on the nondimensional frequency and
mode shape. His results showed that “The mode shapes have
comparable traits. despite the influence of porosity on
frequencies”. Nguyen et al. [27] investigated three models of
porosity distribution using a straightforward two-variable
shear-deformation-theory (SDT) to analyze the transverse
displacement, bucking, and vibration problems of porous-
FGBs. They used Lagrange’s principle, the power law model
to derive the governing equations. They applied exponential
approximations to  determine the buckling. load,
displacement., frequency, and. stress of beams under various
supporting types using ANSYS model. They studied the
influence of boundary conditions, porosity parameters, porous
distribution  pattern, height-to-span ratio, and shear
deformation on the stress., deflection., frequency., and critical
buckling load of beams. Turan et al. [28], analyzed the.
buckling behavior and porous-FGB's unrestricted vibration
under different boundary conditions considering first-order-
shear-deformation-theory (FOSDT). They used the power law
model, Lagrange's principle, and the Ritz method to derive and
solve the equations of motion analytically. While they used
Finite-Element-Method (FEM) and artificial-neural-network-
method (ANN) to solve the problem numerically. They
investigated the critical buckling loads and normalized natural
frequencies for different boundary conditions, porosity
coefficient, power-law index, length/height ratio, and porosity
distribution models. Their results obtained from the analytical,
FEM, and ANN methods were found to be in good agreement.

In this paper, the Finite-Element-Model is built using
ANSYS software to calculate the free vibration behavior of
porous-FGB and study the impacts of porosity and material
distribution and supporting types on the natural frequencies
and shape mode, in addition to length/height ratio important
parameters, which is don’t study previously.

In order to achieve these points, this paper is divided into:
Problem Description: in this part, the configuration of the
porous-FGB and the variation of mechanical properties due to
materials and porosity distributions are described. In the next
part, ANSYS or Finite element Model is described in detail,
and the third part Validation of the ANSYS Model deals with
the comparison between the frequency results of the ANSYS
model and that of available literature. Finally, the part Results
and Discussion is used to describe the frequency results due
to variation of length/height ratio, power-law index K,
porosity distribution, and porosity index (a-index).

2. PROBLEM DESCRIPTION

Changes in the FG's mechanical and physical characteristics
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beam along its height are necessary for a number of structural
and mechanical applications. Three widely used models were
used to characterize this difference in material properties over
the height of the FGB: The sigmoid, exponential, and power-
law models. A FGB with dimensions of length (L), height (h),
and width (W) is examined in this work as illustrated in Figure
1. The variation of elastic modulus, density, and Poisson ratio
along the height of FGB can described as following equations
using the power-law model [29, 30]:

k

E(Z) = (Etop - Ebottom) (0-5 + %) + Ebottom (la)
k

u(z) = (ﬂtop - Mbottom) (0-5 + %) + Upottom (1b)
k

p(Z) = (ptop - pbottom) (05 + %) + Pbottom (IC)

where, E(z), u(z) and p(z) are the elastic modulus of, Poisson
ratio and density at any point in height of FGB. Eiop and Epottom
are the elastic modulus of top and bottom materials. w0 and
Ubottom are Poisson ratio of top and bottom materials. piwp and
Prottom are the density of top and bottom materials. k is power-
law index or material distribution index.
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Figure 1. The geometry of FG beam

Two types of materials that are frequently utilized in the
creation of FGMs are ceramics and metal. But during the
fabrication process, voids and cavities, which are typically
created in contrast to the metallic phase, in the ceramic phase
form in the FG materials. Researchers have been concentrating
on figuring out how this porosity affects the FG beam's
mechanical behavior lately. Several researchers assumed the
material qualities are generally impacted by the porosity in the
beam and can described as:

k
E(Z) = (Etop - Ebottom) (0-5 + %) + Ebottom -

. (a)
(;) * g(z) * (Etop + Ebottom)
z k
u(z) = (ﬂtop - :“bottom) (O-S + E) + Upottom (2b)
(24
- (E) * g(z) * (:utop + :ubottom)
z k
p(Z) = (ptop - pbottom) (0-5 + Z) + Pbottom — (20)



(g) * g(z) * (ptop + pbottom)

where, a-index is the porosity index (0<a-index<1) and g(z)is
the function described the porosity distribution in the cross-
section area of porous beam. In this work, even, uneven-I and
uneven-l1 porosity distributions are considered as shown in
Figure 2 and these porosity distributions can be described by
the following equations:

9:(z) =1 (3a)
g2(z) =1-22 (3b)
93(2) = sin (") (3¢)

12 ——K=0-a=0 ——K=0-a=0.2 ——K=1-a=0

——K=1-0=0.2 —+—=K=2-0-0 —0—K=2-a=0.2

0.8 1

0.6 1

E(z)/Etop.
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-1 -2
92(2) =1 "

Figure 2. The functions of porosity distribution used in this

work [1]
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Figure 3. Young's modulus ratio (E(z)/Etop) in Even, Uneven-I and Uneven-1I when K=0, 1 and 2, and a-index=0 and 0.2

3. ANSYS MODEL

The ANSYS model used the element “SHELL281” for
simulating the variation of the properties across the height of
FGB. The characteristics of “SHELL281” are: “Analysis of
thin to moderately-thick shell structures are appropriate for
SHELL281. The element consists of eight nodes, each of
which has six degrees of freedom: x, y, and z axis translations
as well as rotations around those axes. The element only has
translational degrees of freedom when the membrane option is

used. Applications requiring large rotation, large strain, or
both are ideally suited for SHELL281. Nonlinear analyses take
into consideration changes in shell thickness. The element
takes into consideration the impact of scattered stresses on
followers, load stiffness. Layered applications such as
sandwich building or composite shell modeling can make use
of SHELL281. First-order shear-deformation theory (also
known as Mindlin-Reissner shell theory controls modeling
accuracy for composite shells. True stress measures and
logarithmic strain serve as the foundation for the element
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formulation. Finite membrane strains are possible due to the
element's kinematics stretching. On the other hand, it is
believed that the curvature variations within a time increment
are minimal” [31] (see Figure 4).

Figure 4. Geometry of SHELL281 [31]

The ANSYS model of porous-FGB was built by applying
the following steps [29, 30]:

1. The FGB is drawn as the top area (L*W) as illustrated in
Figure 5(a).

2. The required properties of porous-FGB are estimated by
the following points:

(a) The height of beam is divided into (N) parts (in this work
N=10). Each part is called “layer”.

(b) The height of each layer is calculated as (height of layer=
height of beam/N).

(c) From step (a), the required material properties are
calculated for N+1 points along the height of porous-FGB
using Eqg. (2) and assuming [zi=zo+((h/N) *(i-1))] where zo=-
h/2 and (i) is number of point (1<i<(N+1)).

(d) The following formula is used to determine the
necessary material qualities for each layer:

E(2))+E(Zi41)

(Elayer)l- = A 2 e (4a)
(z)+u(zisq1)

(.ulayer)i = £ ZZEH (4b)
p(z)+p(Ziy1)

(player)i = - 2 = (4¢)

3. The (N) set of material properties are input into the
ANSYS APDL software using the commend “section”
assuming the layer is isotropic material as shown in Figure
5(b).

4. The drawing area is meshing using the element
“SHELL281” as shown in Figure 5(c) considering the
convergence criteria of element size.

5. Three types of supports are considered in this work,
clamped-clamped beam (C-C), simply supported beam (S-S)
and clamped-free beam (C-F). The boundary conditions of
each type of supports are:

(a) Clamped-Clamped beam (C-C): All degree of freedom
(UX, UY, UZ, ROTX, ROTY and ROTZ) of the nodes at
edges x=0 and x=L are zero.

(b) Simply Supported beam (S-S): The degree of freedom
(UX, UY and UZ) of the nodes at edge x=0 is zero. Also, the
degree of freedom (UY and UZ) of the nodes at edge x=L are
zZero.
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(c) Clamped-Free heam (C-F): All degree of freedom (UX,
UY, UZ, ROTX, ROTY and ROTZ) of the nodes at edge x=0
only is zero.

The model analysis is selected to analyze the free vibration
problem of porous-FGB as shown in Figure 5(d).

TYPE NUM

(a) Beam geometry
I\ Create and Modify Shell Sections X
Section Edit Tools
Layup Section Cunlm\s‘ Summary ]

Layup

Create and Modify Shell Sections Name ID|1 M|
Thickness Material ID Orientation Integrafion Pts Pictorial View E

10 [T 10 =p 3 El :

9 Joo2 la -0 3 S

8 ooz s o 3 -/

Add Layer Delete Layer
Section Offset | Mid-Plane =] User Defined Value
Section Function|None | Pattemn |

oK Cancel Hep
(b) Height and properties of each layer

ANSYS

R17.2
& shse

ELEMENTS

FEB 2

(c) Meshing of drawn area

(d) Analysis type

Figure 5. General steps of present ANSY'S model



4. VALIDATION OF ANSYS MODEL

To verify the ANSYS model that is employed in this paper,
the comparisons between the natural frequency results of the
present model and that found in available literatures ware
made. In this comparison, the FGB consists of aluminum and
Alumina. The material properties of these materials are listed
in Table 1.

Table 1. The aluminum and alumina material properties [4]

Properties Unit Metal  Ceramic
Modulus of Elasticity (E) GPa 70 380
Density (p) Kg/m?3 2707 3960
Poisson Ratio (10 - 0.3 0.3

(a) Functionally graded beam without porosity

The first comparison is made between the frequency results
of the present model with that of Kahya and Turan [32]
utilizing the FEM approach based on FOSDT. Nguyen et al.
[33] used HOSDT as the foundation for an analytical solution
technique. Vo et al. [34] implemented FEM with an advanced
theory of shear deformation and Gokhan Adiyaman [1]
employed FEM with HOSDT as a basis for the perfect cross
section of power law FG beam, i.e., non-pours FG beam (see
Table 2). Where the equation can be used to compute the
dimensionless frequency parameter:

— _ wl? [pm
w=— 5 %)

There is a great deal of agreement in the comparison. with
the results of present model and that of available literatures for
FGB with different material index and various supporting
types (S-S, C-C and C-F).

(b) Functionally graded beam with porosity

The second comparison is mode to validate the authenticity
of the current model of the porous-FGB. Three parameters
were studied, and theses parameters were power law index 0,
0.5, 1, 2, 5 and 10, porosity index 0, 0.1, 0.2 and 0.3 and
supporting type S-S, C-C and C-F in additional to the
distribution function of porosity, Even, Uneven-1 and Uneven-
Il. Tables 3-5 show the dimensionless frequency comparison
between of the porous-FGB obtained by present model and
that of Adiyaman [1] when the distribution function of
porosity is Even, Uneven-I and Uneven-11 respectively.

For different distribution of porosity, Even, Uneven-I,
Uneven-I1, the porous-FGB's frequency parameter results are
closely matched for different porosity index, boundary
conditions and the power law index and the maximum
discrepancy between the comparing results is not exceed 10%
(see Figures 6-8). From Figure 6, the maximum discrepancy
between the comparing results is approximately 4.5% for each
supporting type and Even distribution function of porosity.
While the maximum discrepancy between the comparing
results is 3.5%, 10% and 9.5% for S-S, C-C and C-F supports
respectively and when the distribution function of porosity is
Uneven-1 (see Figure 7). For Uneven-Il, the maximum
discrepancy between the comparing results is 0.75%, 0.5% and
4.5% for S-S, C-C and C-F supports respectively as illustrated
in Figure 8.

Table 2. The comparison among the frequency results of the current work with that of Kahya and Turan [32], Nguyen et al. [33],
Vo et al. [34], and Adiyaman [1] when L/h=5

B.C References K=0 K=0.5 K=1 K=2 K=5 K=10
Kahya and Turan [32] 5.2219 4.4692 4.0496 3.6936 3.4881 3.3643
Nguyen et al. [33] 5.1528 4.4102 3.9904 3.6264 3.4009 3.2815

SS Vo et al. [34] 5.1528 4.4019 3.9716 3.5979 3.3743 3.2653
Adiyaman [1] 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644
Present work 5.155718  4.370045  3.980049 3.60215 3.3654 3.26865

Kahya and Turan [32] 10.0864 8.7547 7.9841 7.2715 6.7148 6.3741
Nguyen et al. [33] 10.0726 8.7463 7.9518 7.1776 6.4929 6.1658

CcC Vo.etal. [34] 10.0678 8.7457 7.9522 7.1801 6.4961 6.1662
Adtyaman [1] 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
Present work 10.0660 8.70081 7.962938 7.16084 6.4396 6.10286

Kahya and Turan [32] 1.9077 1.6286 1.4739 1.3446 1.2751 1.2636
Nguyen et al. [33] 1.8957 1.6182 1.4636 1.3328 1.2594 1.2187

CF Vo et al. [34] 1.8952 1.6180 1.4633 1.3326 1.2592 1.2184
Adiyaman [1] 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
Present work 1.90472 1.613582  1.473539  1.340905 1.261807 1.16474

Table 3. The frequency parameters of a porous —FGB with various porosity index (a-index), power law index K and supporting

type when the porosity function is Even and L/A=5

B.C a-Index References K=0 K=0.5 K=1 K=2 K=5 K=10
0 Present Work  5.155718  4.370045 3.980049 3.602155 3.365477 3.268657

Adiyaman [1] 5.1532 4.4016 3.971 3.5970 3.3725 3.2644
01 Present Work  5.230494  4.360659 3.897554 3.416172 3.102989  3.007281

SS Adiyaman [1] 5.2223 4.3934 3.8835 3.4050 3.1083 3.0028
02 Present Work  5.318299  4.344111 3.777085 3.122255 2.635685 2.527751

' Adiyaman [1] 5.3047 4.3798 3.7577 3.1023 2.6403 2.5273
0.3 Present Work  5.423208 4.315892 3.591473 2.594932 1.477182  1.113058
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Adiyaman [1] 5.4040 4.3573 3.5658 2.5572 1.4574 1.1164
Present Work ~ 10.06605 8.700818  7.962938  7.16084  6.439631 6.102861

0 Adiyaman [1]  10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
01 Present Work ~ 10.22968 8.718108  7.85488  6.873097 5.980539  5.630864
cc Adiyaman [1]  10.1621 8.7170 7.7918 6.8439 6.0019 5.6231
0.2 Present Work  10.42048 8.728605 7.686927  6.408757 5.180417  4.741579
Adiyaman [1]  10.3225 8.7178 7.6032 6.3561 5.2216 4.7437
03 Present Work ~ 10.64648  8.724282  7.409681 5.536144  3.220927  2.257545
' Adiyaman [1]  10.5158 8.7094 7.3061 5.4349 3.2140 2.3636
0 Present Work ~ 1.90472  1.613582 1.473539 1.340905 1.261807 1.16474
Adiyaman [1] 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
01 Present Work ~ 1.929666  1.608086  1.441801 1.272119 1.166963 1.091014
CF ' Adiyaman [1] 1.9203 1.6147 1.4313 1.2630 1.1649 1.1266
02 Present Work ~ 1.959552  1.600121  1.39654  1.163999 0.997405 0.961283
' Adiyaman [1] 1.9506 1.6098 1.3858 1.1533 0.9963 0.9592
03 Present Work ~ 1.995798  1.588203  1.327815 0.969866 0.565044  0.434232

Adiyaman [1] 1.9872 1.6016 1.3162 0.9539 0.5559 0.4339

Table 4. The frequency parameters of a porous —FGB with various porosity index (a-index), power law index K and supporting
type when the porosity function is Uneven-I and L/A=5

B.C a-Index References K=0 K=0.5 K=1 K=2 K=5 K=10
Present Work ~ 5.155718  4.370045 3.980049 3.602155 3.365477  3.268657

0 Adiyaman [1]  5.1532 44016 39710 35970  3.3725  3.2644
o1 Present Work ~ 5.223887  4.410736 3.994621 3.578135 3.308423  3.212653
s ' Adiyaman [1]  5.2184  4.4429 39850 35737  3.3193  3.2112
02 Present Work 5297058  4.454268  4.00802  3.543433  3.219877  3.116389
Adiyaman [1]  5.2888  4.4872  3.9978 35405  3.2417  3.1252
03 Present Work 5375909 4500826 4.019443 3.493418  3.05742  2.869708
' Adiyaman [1]  5.3644 45345  4.0087  3.4939 31251  2.9710
0 Present Work ~ 10.06605 8700818  7.962938  7.16084  6.439631  6.102861
Adiyaman [1] 100321 87114  7.9200  7.1496  6.4626  6.1355
o1 Present Work ~ 10.18831 8773063  7.984549  7.096622 6.251301  5.895081
e Adiyaman [1] 101273 87717  7.9324  7.0887 62970  5.9242
02 Present Work ~ 10.31736  8.848395 8.001839  7.004001 5947751 5.535897
Adiyaman [1] 102342  8.8350  7.9412  7.0081  6.0665  5.6045
03 Present Work ~ 10.45568  8.928049  8.011718 6.868157 5337564  4.563499
Adiyaman [1] 103482 89015  7.9447 69009 57300  5.0676
0 Present Work ~ 1.90472 1613582 1.473539 1.340905 1.261807  1.16474
Adiyaman [1]  1.8948 16176 14629 13322 12586  1.2178
o1 Present Work ~ 1.930037 1629018 1.479899 1.334175 1.240998  1.130347
- ' Adiyaman [1]  1.9202 16342 14699  1.3264 12445  1.2055
02 Present Work  1.944239 1645629 1.486073 1.324172 1211792  1.089347
' Adiyaman [1]  1.9475 16521 14767 13173 12230  1.1844
03 Present Work ~ 1.959429  1.663535 1.491878 1.309352 1.175669  1.037479

Adiyaman [1] 1.9769 1.6713 1.4830 1.3038 1.1895 1.1455

Table 5. The frequency parameters of a porous —FGB with various porosity index (a-index), power law index K and supporting
type when the porosity function is Uneven-II and L/h=5

B.C a-Index References K=0 K=0.5 K=1 K=2 K=5 K=10
0 Present Work  5.155718  4.370045 3.980049 3.602155 3.365477 3.268657
Adiyaman [1] 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644
01 Present Work ~ 5.169241 4.31935 3.877733  3.431423 3.151152 3.053221
ss ' Adryaman [1] 5.1633 4.3512 3.8633 3.4184 3.1517 3.0452
0.2 Present Work  5.183875  4.258467 3.750719 3.206787 2.850751  2.749177
Adryaman [1] 5.1747 4.2911 3.7297 3.1828 2.8423 2.7376
03 Present Work ~ 5.199682  4.184309 3.589188 2.896506 2.389252 2.271006
Adryaman [1] 5.1872 4.2184 3.5602 2.8568 2.3646 2.2533
0 Present Work  10.06605 8.700818  7.962938 7.16084 6.439631 6.102861

cc Adiyaman [1] 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
0.1 Present Work  10.12409  8.648333  7.826476  6.920642 6.142008 5.815612
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Adiyaman [1] 10.0749 8.6571 7.7698 6.8867 6.1421 5.8047
0.2 Present Work  10.18584  8.579176  7.646174 6.585354 5.703294 5.347876
' Adiyaman [1] 10.1269 8.5875 1.5747 6.5227 5.6788 5.3373
03 Present Work ~ 10.25253  8.487173  7.401037 6.084892 4.972514 4.562697
‘ Adryaman [1] 10.1832 8.4973 7.3142 5.9865 49161 4.5760
0 Present Work 1.90472 1.613582 1.473539  1.340905 1.261807 1.16474
Adryaman [1] 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
01 Present Work  1.906635 1.592155 1.433403 1.275577 1.180177 1.121579
CF ' Adryaman [1] 1.8973 1.5978 1.4222 1.2654 1.1760 1.1356
0.2 Present Work ~ 1.908981 1567148 1.384375 1.190736 1.067056  1.029452
' Adiyaman [1] 1.9001 1.5743 1.3720 1.1777 1.0607 1.0209
03 Present Work ~ 1.911821 1537385 1.322999 1.074898 0.89509 0.85217
‘ Adiyaman [1] 1.9032 1.5461 1.3086 1.0569 0.8832 0.8411
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Figure 6. The discrepancy percentage of the frequency
parameter of pours-FGM for various porosity index,

supporting type, and power law index for Even distribution

function of porosity
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Figure 7. The discrepancy percentage of the frequency
parameter of pours-FGM for various porosity index,
supporting type, and power law index for Uneven-I
distribution function of porosity
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5. RESULTS AND DISCUSSION

In this work, first, second and third natural frequencies of
porous-FGB with three supporting types, C-C, S-S and C-F are
calculated using ANSYS APDL and the element
“SHELL281”. In additional to the supporting types, the
impacts of length/height ratio L/h, power-law index K, type of
porosity distribution and porosity index o are investigated.
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5.1 Even porous-FGB

Figure 9 illustrates the natural frequency parameters results
of even porous-FGB when the porosity index « increases from
zero to 0.3 for various supporting type and power-law index
K. For first mode, the frequency parameter reduces when the
power-law index K rises at any porosity index and any
supporting types (see Figure 9(a)). In other side, the impact of
porosity index is differing and depending on power-law index.
For example, the frequency parameter increases when the
porosity index increases at K=0, while, for K=10, For any
supporting type, the frequency parameter falls as the porosity
index rises. In other hand, the frequency parameter of C-C
beam is larger than that of S-S and C-F beams (see Figure
9(a)). The same behavior is found in second and third natural
frequencies (see Figure 9(b) and (c)). Also, the value of
frequency parameter increases with increasing the mode
number.

To explain the above results, the frequency of Euler -
Bernoulli beam is considered, as an example, and the general
equation are written as [35]:

— (p.I)2 5 2| _Beqrl . _
w; = (BiL)* = /peqmm, i = mode number

The il value depends on the supporting type, A and | are
the cross-section area and second moment of area of beam and

their values are constant in this work. The value of /Eﬂ is the
eq

(6)

effective part in Eq. (6). This part 5ﬂ depends on modulus
eq

Ebottom - qensity ratio of FG beam 22ettom
Etop Ptop
power-law index and porosity index. In this work, the modulus

and density ratio are constant and smaller than 1 as illustrated
in Table 1: modulus ratio= % and density ratio= %.
According Eqg. (1), when K=0 and infinity the equivalent
material properties are the material properties of metal and
ceramic respectively. When the power-law increases (larger
than zero) the equivalent material will be larger than the metal
material properties and smaller than the ceramic material
properties. According to modulus and density ratio: modulus
. 70 . . 2707 .
ratlo:% and density ratlo:%, the equivalent modulus
increases with rate larger than that of equivalent density for the

ratio of FG beam

. Eeq . .
same power-law index, therefor, the part /pﬂ increases with
eq

increasing power-law index and this leads to increases
frequency.

In order to investigate the impact of porosity index, the
porosity in porous-FGB is assumed to effect averagely on the
material properties [1]. This means the porosity is found in
metal and ceramic materials at the same time and the impact
of porosity depends on porosity index and function of porosity
distribution in additional to average of the modulus and
density of metal and ceramic (see Eq. (2)). In even porous-
FGB, the function of porosity distribution is constant and don’t
depend on the position in height of beam, i.e., z direction.
Generally, the porosity existence causes reduction in material
properties elastic modulus and density. For pure metal beam,
the reducing rate of modulus due to porosity is larger than the

reducing rate of density, therefore, the part Z\E reduces and

this leads to increase the frequency of pure beam. But for pure



metal beam, the reducing rate of modulus due to porosity is
smaller than the reducing rate of density, therefore, the part

Z\E reduces and this leads to decrease the frequency of pure

beam. For porous-FGB, i.e., 0<K<ow, the increase of porosity
index affects reversely on the frequency of beam while
increase of the power-law index affects proportionally on the
frequency of beam. In other words, the impact of power-law

index is opposite to the impact of porosity index and the part

z jﬂ depends on the combination effect of these two indices.
eq

Therefore, the part * jﬂ decreases at high porosity index and
eq

at any power-law index. It can see that the frequency decreases
when the porosity index increases at high power-law index.
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Figure 9. The variation of the first, second and third
frequency parameters of even porous-FGB due to variation of
porosity index (a-index) for different supporting types when
L/h=40

Figure 10 shows the natural frequency parameters results of
even porous-FGB when the power-law index K increases from
zero to 10 for different porosity index and supporting type. At
every power-law index K, the frequency parameter falls as the
porosity index rises and any supporting types. In other hand,
the frequency parameter of C-C beam is larger than that of S-
S and C-F beams (see Figure 10(a)). The same behavior is
found in second and third natural frequencies (see Figures
10(b) and (c)). Also, the value of frequency parameter
increases with increasing the mode number.
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25 5.2 Uneven-I porous-FGB

Figures 11 and 12 show the impacts of the porosity index

E—; g and power-law index on the natural frequency parameters of
% 18 \5;;_..%__ ) porous-FGB for Uneven-1 porosity distribution function and
3 - S e —— —— different supporting type. From Figure 11, the first frequency
a parameter reduces slightly when the porosity index rises at any
§ 10 power-law index and any supporting types (see Figure 11(a)).
E- In other side, the influence of power-law index on the natural
g 7 ' frequency parameters appears sharply and take the same
profile in first, second and third natural frequency (see Figures
0 11(b) and (c)). Also, the value of frequency parameter
S L L increases with increasing the mode number. For Uneven-I
Power Law Index. porosity distribution function, the influence of porosity
(b) 2nd MODE depends on z coordinate and concentrates at the center of FG
beam. The influence of Uneven-1 porosity distribution
80 | function is less than that of even one, therefore, the slight
» | —4—a=0 —a-0l a= 0.2 il hanall variation in natural frequency parameter is appear as shown in
¥ Figure 12.
i) |
? 0 | i
. NS e L . . —e
S w " ———— . 2% 4 5 .
£ w0 ém $ ? . :
% = 5
£ R — . —
S w g —,— .
o6
[ ) E
¢ 1 2 3 4 5 6 7 & 9 W I g4
Power Law Index. £ k0 K02 K05 K1
2
40 - =2 ——K=5 e K=10
—g=0 ——g=0l a=0.2 a= 3 [/
a5 - 0 005 o1 015 0z 025 03 035
8 g - Porosity Index ().
[ I 25
; e SR
L —7 —3 , L !
g S G : -t
E 15 E : : . ——a
g g 15
S s N e ———e——"
g
ot - 3
0 1 2 3 4 5 6 7 8§ 9 W I E us
Fower Law Index. R R P R K1
60 | | 0 K-2 —e— K=5 == K=1i)
—a=g el ~R3 Te=aod 0 065 41 41§ 42 025 43 03%
B ' Porosity Index (@),
40 7
% A
é N— —— -
Rl D G — 6 . »
E‘ ::- — S 1
= - - g
§ i : . -
g 4
:? 10 £ = s
g
[ ) E
0 1 2 3 4 5 6 7 § 9 w u E 2
Power Law Index. -3 ——K—0 —a—K-0.2 ——K-0.5 k-1
1
(c) 3rd MODE (-2 e Kf K10
0
Figure 10. The variation of the first, second and third g a5 a1 41f5 42 2§ A3 35
parameters of even porous-FGB due to variation of power- Porosity Index (@)
law index K for different supporting types when L/h=40 (a) 1st MODE

698



Fregquency Parametfer.

Fregquency Paramefen

Frequency Paramncten

Fregquency Parameter:

35 rs * + ol
30 - . >
25 o . a
20* . B
15
I
—— K= ——K=(.2 ——K=0.5 ——K=1
K=2 —— K=5 ——K=10
[
[ 005 (%) 015 02 0.25 a3 n3s
Porosity Index (a).
14
2% t ! 1
w" * : I
g =
-
&
d
== K1 —— K02 == K05 =K1
2
K2 —h— K5 == K=11
[}
i o.05 /%] 015 [ 23 /%] 035
Porosity Index {u).
25
e . . :
15 o -4
i
—a— K- —a—R-i2 - K-05 —— K-
9 K= —— K=5 —a— K=Ii
4 a0y (/%] 15 @z 2y (/%) 035
Porosity Index fu).
(b) 2nd MODE
80
70 - s +
& . * -
50 * i 7
20— re : —
30
20
—— K= —a—K=012 —o—K=015 —o— K=1
I
k=2 K-35 = K=10
[
[ 005 (%) 015 02 0.25 a3 n3s

Porosity Index (a).

4
k. g ' i &
% 300 2 . .
e
= 4 - o -
i 1 —
§ 15
g w
o —a— K=} —a—RK=(l2 —o— K=0.5 —o— K=
5
A= ——K=5 —— K=}
(4 05 ¥ 15 02 5] i3 035
Porosity Index fu).
6t
L/ . - =
% . * Y 4
g w0 . %
3 — = 2 o
H
L —
}-‘l
S
>
E i
—o— K= —a—K=(2 —o—K=0.5 —o— K=
P k=2 ——K-5 == R=1

[ aos i [L¥A) 0z 23 03 ois
Porosify Index fu).

(c) 3rd MODE

Figure 11. The variation of the first, second and third
frequency parameters of uneven-I porous-FGB due to
variation of porosity index (a-index) for different supporting
types when L/h=40
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Figure 12. The variation of the first, second and third
frequency parameters of uneven-I porous-FGB due to
variation of power-law index K for different supporting types
when L/h=40

5.3 Uneven-11 porous-FGB

Figures 13 and 14 show the impacts of the porosity index
and power-law index on the natural frequency parameters of
porous-FGB for uneven-Il porosity distribution function and
different supporting type. From Figure 13, the first frequency
parameter decreases when the porosity index increases at any
power-law index and any supporting types (see Figure 13(a)).
In other side, the effect of power-law index on the natural
frequency parameters appears sharply and take the same
profile in first, second and third natural frequency (see Figures
13(b) and (c)). Also, the value of frequency parameter
increases with increasing the mode number. For uneven-II
porosity distribution function, the influence of porosity
depends on z coordinate and concentrates at the edges of FG
beam. The influence of uneven-11 porosity distribution



function is larger than that of Uneven-I porosity distribution
function and smaller than that of even one. Therefore, Figure
14 shows sharply the variation in natural frequency parameter
due to porosity distribution function, supporting type and
mode number.
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power-law and porosity index are shown in Figures 15-17
respectively. Generally, the effect of length-to-height ratio on
the first frequency parameter vanishes when the length-to-
height ratio is greater than 20 for any supporting type, power-
law index and porosity index. Also, the effect of length- to-
height ratio on the first frequency parameter of C-C porous-
FGB is greater than that of S-S and C-F porous-FGB
respectively for any power-law index and porosity index. The
reason of this behavior is similar to that described previously.
The shear effect due to variation in material properties is small
when the length-to-height ratio of porous-FGB increases,
therefore the variation in the first frequency parameter
decreases.

6. CONCLUSIONS AND FUTURE WORKS

In this work, the first, second and third natural frequencies
of the porous-FGB are calculated by applying finite element
method using ANSYS APDL software and element
SHELL281. The first three natural frequencies are written as a
frequency parameter to study the impacts of power-law index,
porosity index, porosity distribution function, length/height
ratio and supporting type. The combination of the impacts of
theses parameters on the first three natural frequencies of the
porous-FGB in additional to studying the influence of
length/height ratio is the contribution of this work. The power-
law index is assumed 0, 0.2, 0.5, 1, 2, 5 and 10, the porosity
index is 0, 0.1, 0.2 and 0.3, the porosity distribution function
is Even, Uneven-I and Uneven-I1, the length/height ratio is 5,
10, 20, 40 and 100 and finally the supporting type is C-C, C-F
and S-S beam. Based on earlier results, the following points
can conclude:

(1) The comparison among the frequency results of the
present new ANSYS model and that available in literatures
shows an excellent agreement between them and proves the
accuracy of the current ANSY'S model.

(2) For even porous-FGB, the first three frequency
parameters decrease when the power-law index K rises at any
porosity index and any supporting types, while, the frequency
parameter reduces when the porosity index rises for any
power- law and any supporting types.

(3) For uneven-I porous-FGB, the first three frequency
parameter decrease slightly when the porosity index rises at
any power-law index and any supporting types. Also, the
influence of power-law index on frequency parameters appear
sharply and take the same profile in first, second and third
natural frequency.

(4) For uneven-II porous-FGB, the first three frequency
parameter decrease when the porosity index rises at any
power-law index and any supporting types. In other side, the
influence of power-law index on frequency parameters
appears sharply and take the same profile in first, second and
third natural frequency.

(5) The impact of the length/height ratio on the frequency
parameters vanishes if the length/height ratio is equal or larger
than 20.

(6) The values of frequency parameter increase with
increasing the mode number for the same power-law index,
porosity index, porosity distribution function, length/height
ratio and supporting types.

(7) The uneven-I porosity function causes the smallest
influence of porosity on the frequency parameters due to
distribute the porosity near the center of cross section area of
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FGB.

The current research is the first step to analyze the dynamic
response of the porous-FGB under different supporting
conditions. In the future work, the harmonic and transient
vibration behaviors are calculated by ANSYS APDL to
investigate the impacts of power law index, porosity index,
porosity function, length/height ratio and supporting type on
the dynamic response.

REFERENCES
[1] Adiyaman, G. (2022). Free vibration analysis of a porous
functionally graded beam using higher-order shear
deformation theory. Journal of Structural Engineering &
Applied Mechanics, 5(4): 277-288.
https://doi.org/10.31462/jseam.2022.04277288

Huang, C.Y., Chen, Y.L. (2016). Effect of mechanical
properties on the ballistic resistance capability of Al,O;3-
ZrO, functionally graded materials. Ceramics
International, 42(11): 12946-12955.
https://doi.org/10.1016/j.ceramint.2016.05.067

Naebe, M., Shirvanimoghaddam, K. (2016).
Functionally graded materials: A review of fabrication
and properties. Applied Materials Today, 5: 223-245.
https://doi.org/10.1016/j.apmt.2016.10.001

Udupa, G., Rao, S.S., Gangadharan, K.V. (2014).
Functionally graded composite materials: An overview.
Procedia  Materials Science, 5: 1291-1299.
https://doi.org/10.1016/j.mspro.2014.07.442

Ton, L.H.T. (2022). Effect of porosity on free vibration
of functionally graded porous beam based on simple
beam theory. Technical Journal of Daukeyev University,
2(1): 1-10. https://doi.org/10.52542/tjdu.2.1.1-10
Ton-That, H.L., Nguyen-Van, H., Chau-Dinh, T. (2021).
A novel quadrilateral element for analysis of functionally
graded porous plates/shells reinforced by graphene
platelets. Archive of Applied Mechanics, 91: 2435-2466.
https://doi.org/10.1007/s00419-021-01893-6

Ton-That, H.L. (2020). A combined strain element to
functionally graded structures in thermal environment.
Acta Polytechnica, 60(6): 528-539
https://doi.org/10.14311/AP.2020.60.0528

Parida, S.P., Jena, P.C., Dash, R.R. (2019). FGM beam
analysis in dynamical and thermal surroundings using
finite element method. Materials Today: Proceedings,
18: 3676-3682.
https://doi.org/10.1016/j.matpr.2019.07.301

Chen, Y., Jin, G., Zhang, C., Ye, T., Xue, Y. (2018).
Thermal vibration of FGM beams with general boundary
conditions using a higher-order shear deformation
theory. Composites Part B: Engineering, 153: 376-386.
https://doi.org/10.1016/j.compositesb.2018.08.111
Ton-That, H.L., Nguyen-Van, H., Chau-Dinh, T. (2020).
Static and buckling analyses of stiffened plate/shell
structures using the quadrilateral element SQA4C.
Comptes Rendus. Mécanique, 348(4): 285-305.
https://doi.org/10.5802/crmeca.7

Ebrahimi, F., Salari, E. (2015). Thermal buckling and
free vibration analysis of size dependent Timoshenko FG
nanobeams in thermal environments. Composite
Structures, 128: 363-380.
https://doi.org/10.1016/j.compstruct.2015.03.023

[12] Ton-That, H.L. (2020). The linear and nonlinear bending

(2]

(3]

(4]

(3]

(6]

(8]

[10]

[11]


https://doi.org/10.1016/j.mspro.2014.07.442
https://doi.org/10.52542/tjdu.2.1.1-10

[13]

[15]

[16]

[17]

[18]

[19]

(21]

[22]

(23]

analyses of functionally graded carbon nanotube-
reinforced composite plates based on the novel four-node
quadrilateral ~ element. = European  Journal  of
Computational Mechanics, 29(1): 139-172
https://doi.org/10.13052/ejcm2642-2085.2915
Ton-That, H.L., Nguyen-Van, H. (2021). A combined
strain element in static, frequency and buckling analyses
of laminated composite plates and shells. Periodica
Polytechnica Civil Engineering, 65(1): 56-71.
https://doi.org/10.3311/PPci.16809

Chen, D., Yang, J., Kitipornchai, S. (2015). Elastic
buckling and static bending of shear deformable
functionally graded porous beam. Composite Structures,

133: 54-61.
http://doi.org/10.1016/j.compstruct.2015.07.052
Wattanasakulpong, N., Chaikittiratana, A. (2015).

Flexural vibration of imperfect functionally graded
beams based on Timoshenko beam theory: Chebyshev
collocation method. Meccanica, 50: 1331-1342.
https://doi.org/10.1007/s11012-014-0094-8

Al Rjoub, Y.S., Hamad, A.G. (2017). Free vibration of
functionally Euler-Bernoulli and Timoshenko graded
porous beams using the transfer matrix method. KSCE
Journal of Civil Engineering, 21: 792-806.
https://doi.org/10.1007/s12205-016-0149-6

Galeban, M.R., Mojahedin, A., Taghavi, Y., Jabbari, M.
(2016). Free vibration of functionally graded thin beams
made of saturated porous materials. Steel and Composite
Structures, 21(5): 999-1016.
http://doi.org/10.12989/scs.2016.21.5.999

Fouda, N., El-Midany, T., Sadoun, A.M. (2017).
Bending, buckling and vibration of a functionally graded
porous beam using finite elements. Journal of Applied
and Computational Mechanics, 3(4): 274-282.
https://doi.org/10.22055/JACM.2017.21924.1121
Akbas, S.D. (2018). Forced vibration analysis of
functionally graded porous deep beams. Composite
Structures, 186: 293-302.
https://doi.org/10.1016/j.compstruct.2017.12.013

Amir, S., Soleimani-Javid, Z., Arshid, E. (2019). Size-
dependent free vibration of sandwich micro beam with
porous core subjected to thermal load based on SSDBT.
ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift fiir Angewandte Mathematik und
Mechanik, 99(9): €201800334.
https://doi.org/10.1002/zamm.201800334

Zanoosi, A.A.P. (2020). Size-dependent thermo-
mechanical free vibration analysis of functionally graded
porous microbeams based on modified strain gradient
theory. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 42(5): 236.
https://doi.org/10.1007/s40430-020-02340-3

Zghal, S., Ataoui, D., Dammak, F. (2022). Static bending
analysis of beams made of functionally graded porous
materials. Mechanics Based Design of Structures and
Machines, 50(3): 1012-1029.
https://doi.org/10.1080/15397734.2020.1748053
Rahmani, F., Kamgar, R., Rahgozar, R. (2020). Finite
element analysis of functionally graded beams using
different beam theories. Civil Engineering Journal,
6(11): 2086-2102. http://doi.org/10.28991/cej-2020-
03091604

708

(24]

[25]

(27]

(28]

[29]

[30]

[33]

[34]

[35]

Karamanli, A., Vo, T.P. (2021). A quasi-3D theory for
functionally graded porous microbeams based on the
modified strain gradient theory. Composite Structures,
257: 113066.
https://doi.org/10.1016/j.compstruct.2020.113066

Rahmani, M. (2021). Temperature-dependent vibration
analysis of clamped-free sandwich beams with porous
FG core. Journal of Modern Processes in Manufacturing
and Production, 10(4): 61-77.
https://doi.org/20.1001.1.27170314.2021.10.4.5.0

Anirudh, B., Ganapathi, M., Anant, C., Polit, O. (2021).
A comprehensive analysis of porous graphene-reinforced
curved beams by finite element approach using higher-
order structural theory: Bending, vibration and buckling.
Composite Structures, 222: 110899.
https://doi.org/10.1016/j.compstruct.2019.110899

Nguyen, N.D., Nguyen, T.N., Nguyen, T.K., Vo, T.P.
(2022). A new two-variable shear deformation theory for

bending, free vibration and buckling analysis of
functionally graded porous beams. Composite
Structures, 282: 115095.

https://doi.org/10.1016/j.compstruct.2021.115095
Turan, M., Uzun Yaylaci, E., Yaylaci, M. (2023). Free
vibration and buckling of functionally graded porous
beams using analytical, finite element, and artificial
neural network methods. Archive of Applied Mechanics,
93(4): 1351-1372. https://doi.org/10.1007/s00419-022-
02332-w

Neamah, R.A., Nassar, A.A., Alansari, L.S. (2022).
Modeling and analyzing the free vibration of simply
supported functionally graded beam. Journal of
Aerospace Technology and Management, 14: el522.
https://www.jatm.com.br/jatm/article/view/1264/938.
Marzoq, Z.A., Al-Ansari, L.S. (2021). Calculating the
fundamental frequency of power law functionally graded
beam using ANSYS software. IOP Conference Series:
Materials Science and Engineering, 1090(1): 012014.
https://doi.org/10.1088/1757-899X/1090/1/012014
Help of ANSYS APDL Software Version 17.2.

Kahya, V., Turan, M. (2017). Finite element model for
vibration and buckling of functionally graded beams
based on the first-order shear deformation theory.
Composites Part B: Engineering, 109: 108-115.
https://doi.org/10.1016/ j. compositesb.2016.10.039
Nguyen, T.K., Nguyen, T.T.P., Vo, T.P., Thai, H.T.
(2015). Vibration and buckling analysis of functionally
graded sandwich beams by a new higher-order shear
deformation theory. Composites Part B: Engineering, 76:
273-285.
https://doi.org/10.1016/j.compositesb.2015.02.032

Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A., Lee, J.
(2014). Finite element model for vibration and buckling
of functionally graded sandwich beams based on a
refined shear deformation theory. Engineering
Structures, 64: 12-22.
https://doi.org/10.1016/j.engstruct.2014.01.029

Jebur, M.A., Alansari, L.S. (2023). Free vibration
analysis of non-prismatic beam under clamped and
simply supported boundary conditions. Mathematical
Modelling of Engineering Problems, 10(5): 1630-1642.
https://doi.org/10.18280/mmep.100513


https://doi.org/10.3311/PPci.16809
https://doi.org/10.1016/j.compstruct.2017.12.013
https://doi.org/10.1002/zamm.201800334
https://doi.org/10.1007/s40430-020-02340-3
https://doi.org/10.1080/15397734.2020.1748053
https://doi.org/10.1016/j.compstruct.2020.113066
https://doi.org/10.1016/j.compstruct.2019.110899
https://doi.org/10.1016/j.compstruct.2021.115095
https://doi.org/10.1007/s00419-022-02332-w
https://doi.org/10.1007/s00419-022-02332-w
https://www.jatm.com.br/jatm/article/view/1264/938
https://iopscience.iop.org/article/10.1088/1757-899X/1090/1/012014
https://doi.org/10.1016/j.engstruct.2014.01.029
https://doi.org/10.18280/mmep.100513



