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The Sumatra subduction zone is a highly active tectonic region with significant stress 

accumulation, making it prone to potentially devastating earthquakes. Accurate 

forecasting of earthquake frequency in this area is crucial for disaster preparedness and 

risk mitigation. This study applies Singular Spectrum Analysis (SSA), a non-parametric 

method, to model and predict earthquake occurrences. To evaluate the reliability of 

SSA, four data division cases were tested: Case 1, with 80% training data and 20% 

testing data; Case 2, with 85% training data and 15% testing data; Case 3, with 90% 

training data and 10% testing data; and Case 4, with 95% training data and 5% testing 

data. Among these, Case 3 provided the most accurate representation of historical data, 

achieving the lowest Root Mean Square Error (RMSE) and Mean Arctangent Absolute 

Percentage Error (MAAPE) values for in-sample predictions. However, no definitive 

conclusion could be drawn regarding the best composition for out-sample predictions. 

These insights highlight the importance of testing models across different data splits to 

ensure reliable forecasting. This approach offers a valuable tool for planning and 

preparedness in earthquake-prone regions. 
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1. INTRODUCTION

Earthquakes are among the most destructive natural 

disasters, particularly in Indonesia, which lies at the 

intersection of the Eurasian, Indo-Australian, and Pacific 

tectonic plates. The Sumatra subduction zone is one of the 

most seismically active regions globally, characterized by 

frequent tectonic activity and significant stress accumulation. 

Accurate prediction of earthquake frequency in this region is 

essential for disaster preparedness and risk mitigation. 

However, traditional time series modeling techniques, such as 

Autoregressive Integrated Moving Average (ARIMA) and 

Generalized AutoRegressive Conditional Heteroskedasticity 

(GARCH), often face limitations due to their reliance on 

assumptions of linearity and stationarity. These methods 

struggle to capture the dynamic and irregular characteristics of 

earthquake occurrences. Machine learning approaches, while 

offering some promise, often require extensive datasets and 

lack transparency, making it challenging to interpret 

underlying patterns in earthquake frequency. Although 

technology has advanced, it still cannot predict the exact time 

and location of an earthquake. However, areas prone to 

earthquakes and their potential impacts have been mapped. 

The annual earthquake frequency data can be used as a basis 

for prediction through time series analysis. Various methods 

have been applied in earthquake time series analyses to 

estimate the frequency of earthquakes using this data. 

This study introduces SSA as a novel and effective approach 

to earthquake frequency modeling, particularly for the 

complex dynamics of the Sumatra subduction zone. SSA’s 

ability to decompose and reconstruct non-linear and non-

stationary time series data provides a significant advantage 

over traditional methods. By breaking down complex seismic 

data into trend, periodic, and noise components, SSA can 

reveal underlying patterns that are often obscured in traditional 

analyses. Furthermore, this study evaluates SSA’s robustness 

through various insample-outsample data splits, 

demonstrating its capability to adapt to different data 

configurations and ensure reliable forecasting. By applying 

SSA to earthquake frequency modeling, this research not only 

fills a critical methodological gap but also contributes valuable 

insights into seismic hazard assessment and disaster risk 

reduction strategies in one of the world’s most vulnerable 

regions. 

This study makes several key contributions to earthquake 

frequency modeling and disaster preparedness. First, it 

demonstrates the effectiveness of SSA as a forecasting tool for 

earthquake frequency. By applying SSA to complex, non-

linear, and non-stationary seismic data, the study reveals its 

ability to decompose and reconstruct meaningful patterns, 

offering a robust alternative to traditional methods that often 

struggle with such challenging data characteristics. 

Subsequently, the research evaluates SSA’s performance 

across various in-sample and out-of-sample data splits, 

providing valuable insights into the best data configurations 

for accurate forecasting. This analysis confirms the robustness 
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and adaptability of SSA in different data scenarios, enhancing 

its practical applicability. Finally, the study contributes to 

disaster preparedness by providing actionable insights for 

seismic hazard assessment in the Sumatra subduction zone one 

of the most seismically active regions in the world. The 

findings have the potential to inform early warning systems 

and improve resource allocation strategies, ultimately 

strengthening mitigation efforts in earthquake-prone areas. 

In this study, the data is divided into in-sample and out-of-

sample sets with varying proportions to evaluate the reliability 

of the SSA method. The data is split into four different cases: 

Case 1 with 80% training data and 20% testing data, Case 2 

with 85% training data and 15% testing data, Case 3 with 90% 

training data and 10% testing data, and Case 4 with 95% 

training data and 5% testing data. This approach ensures that 

the analysis method is thoroughly tested across different data 

configurations, helping to produce models that provide 

accurate and reliable predictions. It is important to note that 

earthquakes with a magnitude below the Magnitude of 

Completeness (Mc) were excluded from the analysis. 

 

 

2. METHOD AND MATERIALS 

 

The island of Sumatra is located along the collision path of 

two tectonic plates, namely the India-Australia Plate and the 

Eurasian Plate. The boundary of the collision of these two 

plates is clearly visible in the form of a deep-sea trench in the 

west of Sumatra to the Andaman Islands, where the India-

Australia Plate infiltrates under the island of Sumatra at a 

speed of 50-60 mm/year and a slope of about 12 degrees to the 

east [1]. The National Center for Earthquake Studies 

(PuSGeN) as one of the forums for researchers on seismicity 

in Indonesia has succeeded in identifying several 4 segments 

of large earthquake sources in the Sumatra megathrust zone, 

namely the Aceh-Andaman (AA), Nias-Simeuleu (NS), 

Mentawai-Pagai (MP), Mentawai-Siberut (MS), and Enggano 

(EO) segments. Visually, the limitations of the five segments 

of the source of the large earthquake can be seen in Figure 1 

[2]. In the figure, information about the identity of the 

segment, the maximum potential earthquake is displayed, and 

the shear rate of tectonic plates in cm/year. 

 

 
 

Figure 1. Source segment in the Sumatra megathrust zone 

 

 
 

Figure 2. Research data preparation process 

 

The data used in this study is mainshock earthquake. To 

obtain this data, a data preparation stage is required. The data 

preparation stage in this study uses the help of the ZMapp 7.1 

package on MATLAB R2018a software and Microsoft Excel 

which follows the procedure as shown in Figure 2. 

The first stage of research data preparation is to obtain data 

on earthquake events from January 1st, 1900 to December 31st, 

2023. The data collection was carried out using the help of the 

ZMapp 7.1 package on the MATLAB R2018a software. In the 

process of collecting earthquake data using the ZMapp 7.1 

package using a source from the USGS for the subduction 

zone of Sumatra Island with latitude (6° LU-11° LS) and 

longitude (94° BT-105° BT). The data to be taken is 

magnitude 2.5 until 10 Mw with a depth of ≤70 km. One of the 

reasons for choosing the depth of the earthquake is because an 

earthquake with this depth has the potential to cause great 

damage and can trigger a tsunami wave after an earthquake. 

After knowing the value of Mc then the declustering process 

will be carried out. Declustering is the process of separating 

earthquake events between the main earthquake (mainshock) 

and the pioneer earthquake (foreshock), and aftershocks [3]. 

In this study, the declustering process uses the 

GardnerKnopoff method. GardnerKnopoff declustering is a 

method to separate pioneer or minor earthquakes that occur in 

groups or within the same time and location from major or 

large earthquakes in a short span of time [4]. The main goal of 

GardnerKnopoff declustering is to identify and remove shear 

earthquakes that occur due to major earthquake activity, 

thereby improving accuracy in statistical analysis and 

earthquake modeling. The GardnerKnopoff method is based 

on two assumptions, namely the assumption that major 

earthquakes can trigger pilot or minor earthquakes in a short 

span of time with the same location and the assumption that 

the time and location of pilot earthquakes can be considered as 

random variables [5]. The subsequent process is the uniformity 

of the magnitude type into one scale in the magnitude type Mw 

and sorting data with the provision data of value ≥ Mc.  

 

2.1 SSA 

 

SSA is one of the time series data analysis techniques used 

for forecasting. As we know, the SSA method is a non-

parametric technique used to observe a time series data that is 

not linear, not stationary, has a variable nature at any time or 

temporarily, and more prone to success for short time-series 

[6, 7]. In general, SSA combines elements of classical time 

series analysis, multivariate statistics, multivariate geometry, 

dynamical systems, and signal processing. SSA can be very 

useful in solving various problems such as forecasting, 
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imputation of missing values, decomposition of the original 

time series into a small number of interpretable components 

such as slowly changing trends, oscillatory components, and 

unstructured noise [8]. In SSA, the segmentation procedure 

produces smaller time series, which is favorable for SSA. If a 

time-series is non-stationary, transient oscillations can be 

evidenced locally in a given segment, whereas they could go 

unnoticed in the general computation of the whole time-series 

[9]. 

The main steps in forecasting using the SSA method are: 

Decomposition: The time series data is converted into a matrix 

(trajectories) using a window length parameter. This matrix is 

split using Singular Value Decomposition (SVD) into 

principal components that represent different patterns. 

Reconstruction: Relevant components are selected based on 

their contribution or significance (usually those with the 

largest singular values). These components are then 

recombined to reconstruct the time series into trends, 

seasonality, or noise as per the analysis. Forecasting: Based on 

the reconstructed components, a model is built to extend 

(forecast) the time series into the future while maintaining the 

identified patterns [6, 9]. The purpose of the first stage, 

decomposition, is to decompose the original series into a small 

number of independent and interpretable components such as 

slowly varying trends, oscillatory components, and 

unstructured noise. At this stage, capabilities for vibration 

analysis will also be applied. Then, in the second stage, 

reconstruction will be used to reconstruct the original signal 

using a selected number of components. For example, one can 

select only a certain number of components that contain 

important signal features, such as trend and oscillation 

components, and discard the (unstructured) noise components 

that cause discrepancies in the analysis results [10]. 

 

2.1.1 Embedding 

Embedding is a stage where the initial time series data is 

converted into a trajectory X matrix, meaning converting the 

initial data in the form of one-dimensional data into 

multidimensional data. The trajectory X matrix has 

dimensions L×K. L shows the window length in the X matrix 

which is the number of rows, while K indicates the number of 

columns in the matrix. The selection of an appropriate value 

of the window length L is of great importance in SSA 

operation. This is because the efficiency of SSA in separating 

different signal components from the composite signal 

depends on the value of L [11]. 

In practice, the selection of window length (L) and 

clustering strategy are critical for optimal analysis results. The 

window length is usually chosen between 2 to N/2 (where N 

is the length of the data) and is tailored to the nature of the 

data: if the data has periodic patterns, the L should be close to 

a multiple of the period to capture seasonal patterns, while for 

data with dominant trends, a larger L is more suitable. The 

clustering strategy is performed after decomposition, where 

component clustering will be performed based on patterns, 

such as smooth components with large singular values for 

trends, oscillating components for seasonality, and 

components with random fluctuations and small singular 

values for noise. 

There is no special method to determine the value of L 

precisely, so to determine the value of L is done by trial and 

error for the value to be in the range 2 ≤ L ≤ 2−1N and the 

time series data throughout the period N does not contain 

missing data and X = {xi};  i = 1,2, … , N . Furthermore, in 

determining the value of K by K=N-L+1, where, N is the 

amount of data and L is the length of the windows [12]. The X 

trajectory matrix formed is a Hankel matrix where all its anti-

diagonal elements have constant values. In the form of a 

matrix, it can be expressed as follows: 

 

𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑁] =

[
 
 
 
 
𝑥1 𝑥2 𝑥3 … 𝑥𝐾
𝑥2 𝑥3 𝑥4 … 𝑥𝐾+1
𝑥3 𝑥4 𝑥5 … 𝑥𝐾+2
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1 𝑥𝐿+2 … 𝑥𝐿𝐾 ]

 
 
 
 

 (1) 

 

2.1.2 Singular Value Decomposition (SVD) 

The SVD stage in its application has similarities with 

principal component analysis, which is to reduce components 

from the initial data and reduce dimensions [13]. The purpose 

of SVD is to obtain the separation of components in 

decomposition from time series data. Due to the high 

computational cost associated with SVD, its application to 

large datasets may not be suitable [14]. Note that, SVD begins 

with determining eigenvalue values (λ1, λ2, λ3, … λL) from the 

matrix 𝐒 = 𝐗𝐗T  where λ1 ≥ λ2 ≥ λ3 ≥ ⋯ ≥ λL > 0,  and 

eigenvector (u1, u2, u3, … , uL)  from the S matrix. The 

eigenvalue and eigenvector calculations of the S matrix can be 

done using the following definitions: 

 

Definition 1. If A is a matrix n×n, then the non-zero vector 

x is inside, 𝑅𝑛. called an eigenvector (vector eigen) of A if Ax 

is a scalar multiple of x; that is 

 

𝑨𝑥 = 𝜆𝑥 

 

for a scalar λ. The scalar λ is called the eigenvalue of A and x 

is said to be the eigenvalue corresponding to λ [15]. 

 

To determine the eigenvalue of the 𝑺  matrix measuring 

𝐿 × 𝐿, so 𝑨𝑥 = 𝜆𝑥 as 𝑺𝑥 = 𝜆𝐼𝑥 where in this case the matrix 

𝑺 is the matrix 𝑨 referred to in Definition 1. The equation is 

equivalent to (𝜆𝐼 − 𝑺)𝑥 = 0 . Thus, for the eigenvalue 𝜆 

equation (𝜆𝐼 − 𝑺)𝑥 = 0 has a non-zero if and only if: 

 

det(𝜆𝐼 − 𝑺) = 0 (2) 

 

Next, the eigenvalue λi will be obtained by i = 1,2,3, … , L 

and Ui = (u1, u2, u3, … , uL) is the corresponding eigenvector 

of eigenvalue.  

 

Definition 2. Given 𝑿  matrix 𝑚 × 𝑛  with rank 𝑟 . The 

positive eigenvalue of √𝑿𝑿𝑻 is called the singular value of 𝑿 

[16]. 

 

In other words, if 𝜎 is the singular value of 𝑿 then 𝜎 is the 

positive eigenvalue of √𝑿𝑿𝑻 or 𝜎2 is the eigenvalue of 𝑿𝑿𝑇. 

From Definition 2, the relationship between the eigenvalue 

and the singular value is obtained. In other words, a singular 

value matrix is a matrix that is L×K in size with the main 

diagonal containing the positive root of the eigenvalue (√𝜆𝑖) 

with the order 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥. . . ≥ 𝜆𝐿 > 0 . It can be seen 

from the matrix below: 

 

√𝜆𝑖 = [
√𝜆1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ √𝜆𝐿

] = [
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝐿

] = 𝜎𝑖 (3) 
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Furthermore, in determining the principal component 

matrix, can be searched using the relationship of singular 

values with the left singular vector and the right singular 

vector as follows: 

 

Definition 3. Suppose the real matrix 𝑿 is 𝑚 × 𝑛. Positive 

real numbers 𝜎 called singular values of matrix 𝑿 if there are 

zero vectors 𝑼 ∈ 𝑹𝒎  and 𝑽 ∈ 𝑹𝒏  so that 𝑿𝑽 = 𝜎𝑼  and 

𝑿𝑇𝑼 = 𝜎𝑽. The U vector is called the left singular vector and 

V is called the right singular vector. Furthermore (σ,U) is 

called the left singular pair of X, and (σ,V) is called the right 

singular pair of X [16]. 

 

From the above definition, the following equation is 

obtained: 

 

𝑿𝑽 = 𝜎𝑖𝑼 and 𝑿𝑇𝑼 = 𝜎𝑖𝑽 

 

for vectors 𝑽𝒊  with 𝑖 = 1, 2, 3, … , 𝐿  follows the following 

equation: 

 

𝑽𝑖 =
𝑿𝑇𝑼𝑖

√𝜆𝑖
 (4) 

 

𝑽𝑖
𝑇 is a transpose of the 𝑽𝑖 matrix, so that the 𝑽𝑖

𝑇 matrix can 

be written in the form of: 

 

𝑽𝑖
𝑇 = [

𝑣11 𝑣12 … 𝑣1𝐿
𝑣21 𝑣22 … 𝑣2𝐿
⋮ ⋮ ⋱ ⋮
𝑣𝐾1 𝑣𝐾2 … 𝑣𝐾𝐿

] (5) 

 

After obtaining the singular value (𝜎𝑖), eigenvector (𝑼), and 

principal component (𝑽), the decomposition of the singular 

value of the trajectory matrix 𝑿 is as follows: 

 

Definition 4. For each 𝑿 ∈ 𝕽𝑚×𝑛  of rank 𝑟 , there is an 

orthogonal matrix 𝑼𝑚×𝑚, 𝑉𝑛×𝑛 and a diagonal matrix 𝑫𝑟×𝑟 =
𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, . . . , 𝜎𝑟) so that  

 

𝑿 = 𝑼(
𝑫 𝟎
𝟎 𝟎

)
𝑚×𝑛

𝑽𝑇 (6) 

 

with 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0 [17]. 

The 𝑽𝑻  matrix is a transpose of the 𝑽 and 𝑼 matrices of 

𝐿 × 𝐿  and 𝑫𝒓×𝒓  is a matrix with 𝐿 × 𝐾  dimensions whose 

main diagonal element is the singular value of the 𝑆 matrix, so 

that the value of 𝑋𝑖 can be found by the following steps: 

 

𝑿𝒊= 

[

𝑢11 𝑢12 … 𝑢1𝐿
𝑢21 𝑢22 … 𝑢2𝐿
⋮ ⋮ ⋱ ⋮
𝑢𝐿1 𝑢𝐿2 … 𝑢𝐿𝐿

] [

𝜎1 0 0 0
0 𝜎2 0 0
0 0 ⋱ 0
0 0 0 𝜎𝐿 

] [

𝑣11 𝑣12 … 𝑣1𝑘
𝑣21 𝑣22 … 𝑣2𝐾
⋮ ⋮ ⋱ ⋮
𝑣𝐾1 𝑣𝐾2 … 𝑣𝐾𝐾

] 

=𝑼1𝜎1𝑽1
𝑇 + 𝑼2𝜎2𝑽2

𝑇 +⋯+ 𝑼𝑑𝜎𝑑𝑽𝑑
𝑇  

=∑ 𝑼𝑖𝜎𝑖𝑽𝑖
𝑇𝑑

𝑖=1  

(7) 

 

with 𝑖 = 1, 2, 3, … , 𝑑 and 𝑑 = 𝑚𝑎𝑥{𝑖} and 𝜎𝑖 > 0. 

The three components in the 𝑿𝒊  matrix namely singular 

value (𝜎𝑖), eigenvector (𝑼𝑖), and principal component (𝑽𝑖) are 

called the i’th eigentriple of Singular Value Decomposition. 

So the SVD for the 𝑿𝒊 matrix can be written as follows [6]: 

 

𝑿𝑖 = 𝑿1 + 𝑿2 + 𝑿3 +⋯+ 𝑿𝑑 . (8) 

2.2 Reconstruction 

 

Reconstruction is a stage where the data is reconstructed 

into new time series data based on the values obtained in the 

previous stage, namely the decomposition stage [6]. The 

newly obtained time series data will go through two processes, 

namely grouping and diagonal averaging. 

 

2.2.1 Grouping 

Grouping is the grouping of a matrix of 𝑿𝑖  into several 

groups. The grouping of the 𝑿𝒊  matrix can be done by 

subjectively looking at eigentriple value patterns or can 

perform spectral analysis to see patterns and periods in 

eigentriples. The grouping process is carried out by grouping 

the set of indices {1, 2, 3, . . . , 𝑑} into 𝑚 subsets denoted by 𝐼 =
𝐼1, 𝐼2, 𝐼3, . . . , 𝐼𝑚  with 𝑑 = 𝑚 . Then 𝑿𝐼  adjusted to the group 

𝐼 = {𝐼1, 𝐼2, 𝐼3, . . . , 𝐼𝑚} . Then 𝑿𝑖 = 𝑋1, 𝑋2, 𝑋3, . . . , 𝑿𝑚  can be 

expanded to: 

 

𝑿𝐼 = 𝑿𝐼1 + 𝑿𝐼2 + 𝑿𝐼3 +⋯+ 𝑿𝐼𝑚 . (9) 

 

The stage to select the set I = {I1, I2, I3, . . . , Im}  is called 

eigentriple grouping which is carried out by trial and error. The 

trial-and-error method can be done subjectively, that is, trying 

all possibilities by looking at the correlation plot or 

relationship of each eigentriple. 

The concept of forecasting in the SSA method is a 

separation that characterizes how well different components 

can separate from each other. The decomposition of SSA from 

𝐹𝑁 series will only be successful if the additive components of 

the series can be separated from each other. The natural 

measurement of similarity between two series 𝑋(1) and 𝑋(2) 
uses the W–correlation equation which is formulated as 

follows [6]: 

 

𝜌(𝑤)(𝕏(1), 𝕏(2)) =
(𝕏(1), 𝕏(2))

𝑤

‖𝕏(1)‖𝑤‖𝕏
(2)‖𝑤

 (10) 

 

with (𝕏(1), 𝕏(2))
𝑤
= ∑ 𝑤𝑖𝑥𝑖

(1)𝑥𝑖
(2)𝑁

𝑖=0  and 𝑤𝑖  searched by 

using: 

 

𝑤𝑖 = {
𝑖
𝐿∗

𝑁 − 𝑖 + 1

for 0 ≤ 𝑖 < 𝐿∗

for 𝐿∗ ≤ 𝑖 ≤ 𝐾∗

for 𝐾∗ < 𝑖 ≤ 𝑁
 

 

with 𝐿∗ = min (𝐿, 𝐾) and 𝐾∗ = max(𝐿, 𝐾). 
 

 
 

Figure 3. Example of W-correlation plot 
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If the absolute value of W-correlation is small, then the 

series almost meets the W-orthogonal. On the contrary, the 

sequence is far from the W-orthogonal and is very separate. 

So, if both reconstructed components have a W-correlation 

value of zero, it means that the two components can be 

separated. The W-correlation plot is used as a visualization of 

the magnitude of the correlation between eigentriples [6]. The 

older the color, the higher the correlation. An example of a W-

correlation plot can be seen in Figure 3. 

 

2.2.2 Diagonal averaging 

After grouping, the next stage will be transformed from the 

grouping results, namely diagonal averaging. This step is done 

by converting each matrix 𝑿𝐼  into a new time series with a 

length of 𝑁. Suppose the matrix 𝑭 is an arbitrary matrix of 

L×K size with 𝑓𝑖𝑗  elements with 1≤i≤L and 1≤j≤K, 𝐿∗ =

𝑚𝑖𝑛(𝐿, 𝐾), 𝐾∗ = 𝑚𝑎𝑥(𝐿, 𝐾), and 𝑁 = 𝐿 + 𝐾 − 1. 

 

𝑭 =

[
 
 
 
 
𝑓11 𝑓12 𝑓13 … 𝑓𝐾
𝑓21 𝑓22 𝑓23 … 𝑓𝐾+1
𝑓31 𝑓32 𝑓33 … 𝑓𝐾+2
⋮ ⋮ ⋮ ⋱ 𝑓𝐾+3
𝑓𝐿 𝑓𝐿+1 𝑓𝐿+2 … 𝑓𝑁 ]

 
 
 
 

 (11) 

 

The matrix 𝑭  is transformed into a series of 

𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑁  through diagonal averaging with the 

following formula [6]: 

 

𝑔𝑘 =

{
 
 
 
 

 
 
 
 1

𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+1

∗

𝑘+1

𝑚=1

, 𝑓𝑜𝑟 0 ≤ 𝑘 < 𝐿∗ − 1

1

𝐿∗
∑ 𝑦𝑚,𝑘−𝑚+2

∗

𝐿∗

𝑚=1

, 𝑓𝑜𝑟 𝐿∗ − 1 ≤ 𝑘 < 𝐾∗

1

𝑁 − 𝑘
∑ 𝑦𝑚,𝑘−𝑚+2

∗

𝑁−𝐾∗+1

𝑚=𝑘−𝐾∗+2

, 𝑓𝑜𝑟 𝐾∗ ≤ 𝑘 < 𝑁

 (12) 

 

Based on Eqs. (11) and (12), for example, in the matrix 𝑭 is 

chosen for 𝑘 = 1 to give the result 𝑔1 = 𝑓11, for 𝑘 = 2 gives 

𝑔2 =
𝑓12+𝑓21

2
, for 𝑘 = 3  gives 𝑔3 =

𝑓13+𝑓22+𝑓31

3
 and so on. 

Meanwhile, based on Eq. (12), if applied to the 𝑋𝐼𝑚 resultant 

matrix, a series �̃�(𝑘) = ( �̃�1
(𝑘), �̃�2

(𝑘), . . . , �̃�𝑁
(𝑘))  so that the 

original series is decomposed into: 

 

𝑔𝑛 =∑�̃�𝑛
(𝑘)

𝑚

𝑘=1

 (13) 

 

2.3 Linear Recurrent Formula (LRF) 

 

Forecasting in the SSA method uses LRF or known as R-

Forecasting. SSA-LRF is a non-parametric method that is 

widely used for time series forecasting and does not 

accommodate random behavior (noise) in the analysis set 

because the goal is to separate the signal from the noise 

component [18]. The time series used is the value of the 

reconstruction series obtained from the averaging diagonal 

results. R-Forecasting forecasting is related to the estimation 

of the LRF, namely 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑑  which is an eigenvector 

obtained from the SVD stage [19]. The prediction model is as 

follows: 

𝑔𝑖 = {

𝑦�̃�,         𝑖 = 0, 1, 2, … , 𝑁

∑𝑎𝑗𝑔𝑖−𝑗

𝐿−1

𝑗=1

, 𝑖 = 𝑁 + 1,𝑁 + 2,… , 𝑁 +𝑀
 (14) 

 

If for example 𝑼 = (𝒖𝟏, 𝒖𝟐, 𝒖𝟑, . . . , 𝒖𝑳−𝟏, 𝒖𝑳)
𝑻 , 𝑼𝜵 =

(𝒖𝟏, 𝒖𝟐, 𝒖𝟑, . . . , 𝒖𝑳−𝟏)
𝑻 , and 𝝅𝒊  is the last component of the 

eigenvector U or can be written 𝜋𝑖 = 𝑢𝐿  then the LRF 

coefficient can be calculated [19]: 

 

𝕽 = 𝑈 = (𝑎𝐿−1, … , 𝑎2, 𝑎1)
𝑇 =

1

1 − 𝑣2
∑𝜋𝑖𝑼𝑖

∇

𝑟

𝑖=1

 (15) 

 

with 𝑣2 = ∑ 𝜋𝑖
𝑟
𝑖=1

2
. 

Furthermore, based on Eq. (14), a series of forecasting 

results will be formed which are shown as follows:  

 

𝐺𝑁+𝑀 = (𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑁+𝑀) (16) 

 

2.4 Forecasting reliability 

 

Point forecast accuracy measures vary based on (i) the type 

of error (e.g., absolute or squared) considered for their 

calculation, (ii) the type of scaling (e.g., mean of the series, 

first differences of the series, or relative performance against 

a benchmark method) potentially used for making them scale-

independent, and (iii) the operator (e.g., mean, median, or 

geometric mean) utilized for aggregating the errors across 

different forecast horizons and series [20]. 

The degree of accuracy of forecasting methods can be 

explained by comparing the values obtained from forecasting 

with actual values. The accuracy of a forecasting method is 

determined by the smallest value of each method, the smaller 

the error value, the more accurate a method is in forecasting. 

To measure forecasting accuracy, two popular measures can 

be used, namely RMSE and MAAPE. 

 

2.4.1 Root Mean Square Error (RMSE) 

RMSE is the sum of squared errors or the difference 

between the actual value and the predicted value that has been 

determined. The equation for RMSE is as follows [21]: 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑔′ − 𝑔)2

𝑛
 (17) 

 

2.4.2 Mean Arctangent Absolute Percentage Error (MAAPE) 

MAAPE is a new measure of accuracy developed by 

observing Mean Absolute Percentage Error (MAPE) from 

different perspectives. MAAPE measure is the slope as an 

angle, while MAPE is a slope as a ratio, considering that a 

triangle with adjacent and opposite sides is equal to the real 

value and the difference between the actual value and the 

prediction of each [22]. 

 

𝑀𝐴𝐴𝑃𝐸 =
1

𝑛
∑arctan |

𝑔𝑖 − �̂�𝑖
𝑔𝑖

|

𝑛

𝑖=1

 (18) 

 

In addition to using these two accuracy measures, in this 

study, tests will be carried out on residual white noise in the 

form of residual white noise test and normally distributed 

residual test which can be seen as follows [23]: 
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2.4.3 Residual white noise test 

The residual white noise test is written as follows: 

a. Hypothesis 

H0: ρ1 = ρ2 = ⋯ = ρk = 0 (no residual autocorrelation) 

H1:  There is at least one ρj ≠ 0  (there is a residual 

autocorrelation) 

b. Test statistics, namely Ljung-Box or Box-Pierce 

Modified test statistics: 

 

𝑄∗ = 𝑛(𝑛 + 2)∑
�̂�𝑘
2

(𝑛 − 𝑘)

𝐾

𝑘=1

 (19) 

 

c. Decision-making criteria: 

If the p-value is > alpha (the level of significance set), then 

H0  is accepted and it can be concluded that there is no 

significant residual autocorrelation whereas if the p-value is ≤ 

alpha, then H0 rejected and it can be concluded that there is a 

significant residual autocorrelation. If there is no significant 

residual autocorrelation, then the model is considered suitable 

for the data and is good at forecasting. 

 

2.4.4 Normally distributed residual test 

In data analysis, given that various statistical methods 

assume that the distribution of the population data is normal 

distribution, it is essential to check and test whether or not the 

data satisfies the normality requirement [24]. The Anderson-

Darling test is a modification of the Kolmogorov-Smirnov test. 

The critical values in the Kolmogorv-Smirnov test do not 

depend on the specific distribution being tested, whereas the 

Anderson-Darling test makes use of a specific distribution. In 

the Anderson-Darling test, the hypothesis used is: 

H0: Residual is normally distributed 

H1: Residual is not normally distributed 

The decision is that if the p-value is ≤α, then 𝐻0 rejected and 

it can be concluded that the residual distribution of the model 

is not normal while if the p-value>α (the level of significance), 

then 𝐻0 accepted, that is, the residual distribution of the model 

is normal [25]. In this case, it can be considered that the model 

is suitable for the data modeled. 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Forecasting on Case 1 

 

The insample data in Case 1 was converted into 100 one-

dimensional data from 1900 to 1999 with the following 

arrangement: 

 

[
 
 
 
 
Year 1900
Year 1901
Year 1902

⋮
Year 1999]

 
 
 
 

=

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮

𝑥100]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
58]
 
 
 
 

 

 

After the data is converted into one dimension, then 

converted into multidimensional one called the X trajectory 

matrix in size L×K. The optimal windows length (L) value is 

taken based on the smallest forecast accuracy value with an L 

value range between 2≤L≤50, using the grid method by trying 

the L values of 5, 10, 15, 20, 25, 30, 35, 40, 45, 45, 50 as shown 

in Table 1. 

A L with the minimum accuracy is 40 for the insample and 

45 for the outsample. So, in the same way, tracking is carried 

out again around the values of 40 and 45 to get the most 

appropriate L value. It can be seen in Table 2 below. 

 

Table 1. Recapitulation of the results of measuring the level 

of forecast accuracy for Case 1 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

5 1.81 1.43 28.19 1.49 0 0.99 

10 2.64 1.48 87.15 1.47 0 0.09 

15 3.17 1.49 40.81 1.53 0 0.76 

20 4.85 1.52 64.21 1.55 0 0.02 

25 4.90 1.52 69.12 1.55 0 0.03 

30 4.91 1.51 68.01 1.55 0 0 

35 0.85 1.32 83.80 1.53 0.32 0.81 

40 0.82 1.30 53.81 1.49 0.10 0.36 

45 1.00 1.32 50.54 1.46 0.21 0.48 

50 1.03 1.32 97.18 1.54 0.28 0.42 

 

Table 2. Forecasting accuracy of advanced Case 1 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

40 0.82 1.30 53.81 1.49 0.10 0.36 

41 0.99 1.30 57.80 1.49 0.16 0.92 

42 1.06 1.35 53.47 1.45 0.21 0.83 

43 0.97 1.32 45.25 1.43 0.25 0.57 

44 0.98 1.32 49.13 1.45 0.24 0.52 

45 1.00 1.32 50.54 1.46 0.21 0.48 

 

As shown in Table 2, L=43 is printed in bold which 

indicates that the L value is the optimal L value because it has 

the smallest accuracy value. Therefore, from the value of L 

obtained, the value of K=58 is based on the equation K=N-

L+1 where the value of N=100. Furthermore, the process of 

forming the X trajectory matrix is by means that the values 𝑥1 

to 𝑥43 become the first column, the 𝑥2 to 𝑥44 values become 

the second column, and so on until the values 𝑥58  to 𝑥100 

become the 58th column in the X trajectory matrix as written 

as follows: 

 

𝑿 = [

0 0 0 0 ⋯ 4
0 0 0 0 ⋯ 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
3 3 2 2 ⋯ 58

] 

 

Next, a search for singular value, eigenvector, and principal 

component values will be carried out based on the trajectory 

matrix 𝑿(43×58) that has been obtained in the previous stage. 

The first step is to create a symmetrical matrix as follows: 
 

𝑺 = 𝑿𝑿𝑻 = 𝑿(43×58) × 𝑿(58×43)
𝑇  

 

𝑺 = [

581 460 … 3560
460 582 … 3260
⋮ ⋮ ⋱ ⋮

3560 3260 … 40238

] 

 

After obtaining the symmetrical matrix 𝑺(43×43) , then the 

singular value, eigenvector, and principal component 

(eigentriple) values that meet will be searched, the eigentriple 

search is carried out by calculating the eigenvalue value, 

which then from eigenvalue can be calculated singular values 

by using Eq. (2) and Eq. (3) whose results are presented in 

Table 3 as follows: 
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Table 3. Eigenvalue and singular values of Case 1 

 

No. Eigenvalue Singular Value 

1 390393.59 624.81 

2 16553.64 128.66 

3 6805.46 82.50 

⋮ ⋮ ⋮ 
43 14.32 3.78 

 

After the singular value is obtained, then find the 

eigenvector value of the symmetric matrix 𝑺(43×43) using Eq. 

(2) whose results can be seen in Table 4 as follows: 

 

Table 4. Eigenvector value of Case 1 

 

No. 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼⋯ 𝑼𝟒𝟑 

1 -0.03 0.04 -0.15 ⋯ 0.19 

2 -0.02 0.04 -0.13 ⋯ -0.32 

3 -0.02 0.04 -0.14 ⋯ 0.37 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
43 -0.31 0.29 -0.32 ⋯ -0.02 

 

After getting the eigenvalue and eigenvector values, then 

look for the principal component value by using Eq. (4) whose 

results are shown in the following Table 5. 

 

Table 5. Principle component value of Case 1 

 

No. 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽⋯ 𝑽𝟒𝟑 

1 -0.03 -0.01 -0.00 ⋯ -0.14 

2 -0.03 -0.02 -0.00 ⋯ 0.18 

3 -0.03 -0.03 -0.01 ⋯ -0.25 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
58 -0.31 -0.28 -0.28 ⋯ 0.06 

 

Furthermore, the data reconstruction from the results of the 

SVD calculation was carried out by grouping and diagonal 

averaging which was carried out by grouping the eigentriple 

obtained from the SVD results according to the characteristics 

of each component. 

From Figure 4, it can be seen that the first component is a 

trend component that reflects data of 87.42% and the other 

component contains seasonal patterns. To see the similarity of 

characteristics more clearly, it can be seen with the help of the 

W-Correlation plot. The W-Correlation plot of Case 1 can be 

seen in Figure 5 below. 

 

 
 

Figure 4. Eigentriple plot of Case 1 

 
 

Figure 5. W-correlation plot of Case 1 

 

The correlation of each component as visualized by Figure 

5 can be found using Eq. (10) and the results can be seen in the 

following Table 6. 

 

Table 6. W-correlation value of Case 1 

 
Components F1 F2 F3 Fn F43 

F1 1.000 0.116 0.067 ⋯ 0.000 

F2 0.116 1.000 0.577 ⋯ 0.000 

F3 0.067 0.577 1.000 ⋯ 0.000 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
F43 0.000 0.000 0.000 ⋯ 1.000 

 

From Figure 5 and Table 6, it can be concluded that of the 

43 components can be grouped into 18 groups based on the 

high and low correlation of each eigentriple. The height of the 

correlation can be seen based on the color of each component's 

slices, where the darker the correlation, the higher the 

correlation. 

By using Eq. (11) and Eq. (12). The results of the diagonal 

averaging of the grouping stage can be seen in the following 

Table 7. 
 

Table 7. Diagonal averaging Case 1 
 

No. Diagonal Averaging 

1 -0.02 

2 -0.59 

3 -0.33 

4 0.17 

5 0.70 

⋮ ⋮ 
100 57.46 

 

After the averaging diagonal calculation is obtained, then 

using the R-Forecasting method, namely Eqs. (14)-(16), 

forecasting can be calculated on the outsample data shown in 

Table 8. 
 

3.2 Forecasting on Case 2 
 

The insample data in Case 2 was converted into one-

539



 

dimensional data as many as 106 data from 1900 to 2005 with 

the following arrangement: 

 

[
 
 
 
 
Year 1900
Year 1901
Year 1902

⋮
Year 2005]

 
 
 
 

=

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮

𝑥106]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮

142]
 
 
 
 

 

 

After the data is converted into one dimension, then 

converted into multidimensional called the X trajectory matrix 

in L×K size. The optimal Windows Length (L) value is taken 

based on the smallest forecast accuracy value with a range of 

L values between 2≤L≤53, as shown in Table 9. 

 

Table 8. SSA forecast results for Case 1 

 
No. Year Current Predictions Difference 

1 2000 71 86.45 15.45 

2 2001 60 111.27 51.27 

3 2002 59 63.24 4.24 

4 2003 81 82.87 1.87 

5 2004 103 120.33 17.33 

6 2005 142 131.83 10.17 

7 2006 97 100.48 3.48 

8 2007 115 149.30 34.30 

9 2008 113 116.31 3.30 

10 2009 76 150.29 74.29 

11 2010 120 126.74 6.74 

12 2011 110 178.61 68.61 

13 2012 103 87.23 15.77 

14 2013 127 94.10 32.90 

15 2014 139 136.77 2.23 

16 2015 122 140.46 18.46 

17 2016 116 39.80 76.20 

18 2017 112 134.79 22.79 

19 2018 138 112.89 25.11 

20 2019 134 78.13 55.87 

21 2020 121 26.43 94.57 

22 2021 123 232.35 109.35 

23 2022 128 86.42 41.58 

24 2023 98 96.86 1.14 

RMSE 45.25 

MAAPE 1.43 

 

Table 9. Recapitulation of the results of measuring the level 

of forecast accuracy for Case 2 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

5 5.79 1.48 219.21 1.55 0 0.33 

10 6.65 1.50 105.10 1.46 0 0.70 

15 7.25 1.46 72.95 1.43 0 0.15 

20 1.37 1.34 122.49 1.53 0 0.48 

25 6.76 1.52 103.96 1.48 0 0.49 

30 0.86 1.25 74.71 1.46 0.37 0.55 

35 0.97 1.28 67.45 1.53 0.40 0.86 

40 0.88 1.24 63.32 1.52 0.49 0.35 

45 0.84 1.23 62.78 1.52 0.35 0.40 

50 0.79 1.21 59.77 1.43 0.28 0.34 

 

Obtained L with the minimum accuracy is 50. So, in the 

same way, tracking is carried out again around the values of 

45 and 53 to get the most appropriate L value. It can be seen 

in the following Table 10. 

As shown in Table 10, L=46 is printed in bold which 

indicates that the L value is the optimum L value because it 

has the smallest average accuracy value. Therefore, from the 

L value obtained, the value of K=61 is produced based on the 

equation K=N-L+1 where the value N=106.  

 

Table 10. Forecasting accuracy of advanced Case 2 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

46 0.95 1.24 51.73 1.46 0.45 0.99 

47 0.96 1.25 52.26 1.46 0.41 0.92 

48 0.97 1.25 51.93 1.46 0.45 0.84 

49 1.04 1.27 52.07 1.46 0.31 0.50 

50 0.79 1.21 59.77 1.43 0.28 0.34 

51 1.00 1.25 51.75 1.37 0.23 0.69 

52 0.92 1.24 86.29 1.50 0.12 0.35 

53 1.17 1.33 96.55 1.55 0.35 0.07 

 

Furthermore, the process of forming the X trajectory matrix 

is by means that the values 𝑥1 to 𝑥46 become the first column, 

the values 𝑥2  to 𝑥47  become the second column, and so on 

until the values 𝑥61 to 𝑥106 become the 61st column in the X 

trajectory matrix as written below: 

 

𝑿 = [

0 0 0 0 ⋯ 1
0 0 0 0 ⋯ 2
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
2 3 1 1 ⋯ 142

] 

 

Next, the search for singular value, eigenvector, and 

principal component values will be carried out based on the 

trajectory matrix 𝑿(46×61)  that has been obtained in the 

previous stage. The first step is to create a symmetrical matrix 

as follows: 

 

𝑺 = 𝑿𝑿𝑻 = 𝑿(46×61) × 𝑿(61×46)
𝑇  

 

𝑺 = [

592 468 … 4648
468 596 … 4513
⋮ ⋮ ⋱ ⋮

4648 4513 … 89672

] 

 

After obtaining the symmetrical matrix 𝑺(46×46), then the 

singular value, eigenvector, and principal component 

(eigentriple) values will be searched for which satisfies, the 

eigentriple search is carried out by calculating the eigenvalue 

value, which then from eigenvalue can be calculated the 

singular value values by using Eq. (2) and Eq. (3) whose 

results are presented in Table 11 as follows: 

 

Table 11. Eigenvalue and singular values of Case 2 

 
No. Eigenvalue Singular Value 

1 724596.48 851.23 

2 20465.51 143.06 

3 16372.70 127.96 

⋮ ⋮ ⋮ 
46 18.47 4.30 

 

Table 12. Eigenvector value of Case 2 

 

No. 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼⋯ 𝑼𝟒𝟔 

1 -0.02 -0.05 -0.03 ⋯ 0.29 

2 -0.02 -0.05 -0.03 ⋯ -0.46 

3 -0.02 -0.05 -0.02 ⋯ 0.29 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
46 -0.34 -0.11 -0.54 ⋯ 0.00 
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After the singular value is obtained, then find the 

eigenvector value of the symmetrical matrix 𝑺(46×46)  using 

Eq. (2) which can be seen in Table 12. 

After obtaining the eigenvalue and eigenvector values, then 

look for the principal component value by using Eq. (4) whose 

results are shown in the following Table 13. 
 

Table 13. Principle component value of Case 2 
 

No. 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽⋯ 𝑽𝟒𝟔 

1 -0.02 0.02 0.04 ⋯ 0.01 

2 -0.02 0.03 0.04 ⋯ -0.00 

3 -0.02 0.03 0.04 ⋯ 0.11 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
61 -0.34 0.08 -0.54 ⋯ -0.07 

 

Furthermore, the data reconstruction from the results of the 

SVD calculation by grouping and diagonal averaging is 

carried out by grouping the eigentriple obtained from the SVD 

results according to the characteristics of each component. The 

selection of group members can be done by looking at the plot 

of the eigentriple. The following is shown the plot of each 

eigentriple with the value of i=1, 2, 3, ..., 46. 

From Figure 6, it can be seen that the first component is a 

trend component that reflects data of 89.37% and the other 

component contains seasonal patterns. Grouping that is done 

by looking at plots from eigentriple is subjective. So there are 

several data patterns whose characteristics are difficult to 

distinguish. The W-Correlation plot of Case 2 can be seen in 

Figure 7 below. 

 

 
 

Figure 6. Eigentriple plot of Case 2 

 

 
 

Figure 7. W-correlation plot of Case 2 

 

The correlation of each component as visualized by Figure 

7 can be found using Eq. (10) and the results can be seen in the 

following Table 14. 

Table 14. W-correlation value of Case 2 

 

Components F1 F2 F3 𝑭𝒏 F46 

F1 1.000 0.074 0.049 ⋯ 0.000 

F2 0.074 1.000 0.635 ⋯ 0.000 

F3 0.049 0.635 1.000 ⋯ -0.001 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
F46 0.000 0.000 -0.001 ⋯ 1.000 

 

Table 15. Diagonal averaging Case 2 

 
No. Diagonal Averaging 

1 0.18 

2 -0.70 

3 -0.60 

4 0.29 

5 0.69 

⋮ ⋮ 
106 141.65 

 

From Figure 7 and Table 14, it can be concluded that the 46 

components can be grouped into 20 groups based on the high 

and low correlation of each eigentriple. The height of the 

correlation can be seen based on the color of each component's 

slices. where the darker the correlation, the higher the 

correlation. 

By using Eq. (11) and Eq. (12), the results of the diagonal 

averaging of the grouping stage can be seen in Table 15. 
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After the averaging diagonal calculation is obtained, then 

using the R-Forecasting method, namely Eqs. (14)-(16). the 

forecast can be calculated on the outsample data shown in 

Table 16 below: 

 

Table 16. SSA forecast results for Case 2 

 
No. Year Actual Predictions Difference 

1 2006 97 43.84 53.16 

2 2007 115 128.16 13.16 

3 2008 113 97.16 15.84 

4 2009 76 92.46 16.46 

5 2010 120 121.88 1.88 

6 2011 110 118.93 8.93 

7 2012 103 93.95 9.04 

8 2013 127 122.91 4.09 

9 2014 139 100.56 38.44 

10 2015 122 161.16 39.16 

11 2016 116 19.60 96.40 

12 2017 112 151.52 39.52 

13 2018 138 120.18 17.82 

14 2019 134 43.91 90.09 

15 2020 121 92.28 28.72 

16 2021 123 229.29 106.29 

17 2022 128 125.06 2.94 

18 2023 98 198.12 100.12 

RMSE 51.72 

MAAPE 1.46 

 

3.3 Forecasting on Case 3 

 

The insample data in Case 3 was converted into one-

dimensional data as many as 112 data from 1900 to 2011 with 

the following arrangement: 

 

[
 
 
 
 
Year 1900
Year 1901
Year 1902

⋮
Year 2011]

 
 
 
 

=

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮

𝑥112]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮

110]
 
 
 
 

 

 

After the data is converted into one dimension, then 

converted into multidimensional called the X trajectory matrix 

measuring L×K. The optimal Windows Length (L) value is 

taken based on the smallest forecast accuracy value with a 

value range of L between 2≤L≤55, using the grid method by 

trying the L values of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55. 

as shown in Table 17. 

 

Table 17. Recapitulation of the results of measuring the level 

of forecast accuracy for Case 3 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

5 3.41 1.42 28.57 1.34 0 0 

10 4.18 1.43 79.62 1.52 0 0.01 

15 3.58 1.44 49.37 1.46 0 0.56 

20 3.18 1.42 45.64 1.37 0 0.28 

25 1.66 1.35 82.16 1.52 0 0.01 

30 3.26 1.43 55.37 1.51 0 0.12 

35 2.75 1.43 53.80 1.51 0 0.06 

40 1.16 1.28 64.81 1.52 0.74 0.36 

45 1.02 1.26 60.47 1.53 0.56 0.29 

50 0.91 1.19 58.67 1.53 0.30 0.29 

55 0.94 1.19 80.49 1.42 0.09 0.04 

 

In Table 17, L with values of 5, 10, 15, 20, 25, 30, and 35 

has abnormal residuals because the p-value obtained is less 

than α=0.05. Therefore, L is obtained with the minimum 

accuracy of 50. So, in the same way, tracking is carried out 

again around the values of 45 and 55 to get the most 

appropriate L value. It can be seen in Table 18 below: 

 

Table 18. Forecasting accuracy of advanced Case 3 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

46 0.86 1.17 56.56 1.50 0.69 0.57 

47 0.88 1.18 55.25 1.53 0.73 0.54 

48 0.89 1.18 55.94 1.47 0.66 0.44 

49 0.90 1.19 56.59 1.52 0.43 0.35 

50 0.91 1.19 58.67 1.53 0.30 0.29 

51 0.84 1.16 60.41 1.48 0.09 0.18 

52 0.86 1.16 61.07 1.40 0.08 0.15 

53 0.83 1.13 57.67 1.51 0.06 0.24 

54 0.89 1.16 62.65 1.51 0.05 0.10 

 

As shown in Table 18, L=47 is printed in bold which 

indicates that the L value is the optimal L value because it has 

the smallest average accuracy value. Therefore, from the value 

of L obtained, the value of K=66 is based on the equation 

K=N-L+1 where the value of N=112. Furthermore, the process 

of forming the X trajectory matrix is by means that the values 

𝑥1  to 𝑥47  become the first column, the values 𝑥2  to 𝑥48 

become the second column and so on until the values 𝑥66 to 

𝑥112  become the 66th column in the X trajectory matrix as 

written as follows: 

 

𝑿 = [

0 0 0 0 ⋯ 6
0 0 0 0 ⋯ 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
3 1 1 4 ⋯ 110

] 

 

Next, the search for singular value, eigenvector, and 

principal component values is carried out based on the 

trajectory matrix 𝑿(47×66)  that has been obtained in the 

previous stage. The first step is to create a symmetrical matrix 

as follows: 

 

𝑺 = [

694 542 … 7070
542 695 … 6845
⋮ ⋮ ⋱ ⋮

7070 6845 … 157347

] 

 

After obtaining the symmetrical matrix 𝑺(47×47), then the 

singular value, eigenvector, and principal component 

(eigentriple) values will be searched that meet, the eigentriple 

search is carried out by calculating the eigenvalue value, 

which then from eigenvalue can be calculated the singular 

values by using Eq. (2) and Eq. (3) whose results are presented 

in Table 19 as follows: 

 

Table 19. Eigenvalue and singular value of Case 3 

 
No. Eigenvalue Singular Value 

1 1444133 1201.72 

2 24829.94 157.58 

3 21120.39 145.33 

⋮ ⋮ ⋮ 
47 22.33 4.73 

 

After the singular value is obtained, then find the 

eigenvector value of the symmetric matrix 𝑺(47×47) using Eq. 

(2) whose results can be seen in Table 20 as follows. 
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Table 20. Eigenvector value of Case 3 

 

No. 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼⋯ 𝑼𝟒𝟕 

1 -0.01 0.02 -0.04 ⋯ -0.13 

2 -0.01 0.02 -0.03 ⋯ 0.22 

3 -0.02 0.03 -0.03 ⋯ -0.26 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
47 -0.32 0.15 0.17 ⋯ 0.03 

 

After obtaining the eigenvalue and eigenvector values, then 

find the principal component value by using Eq. (4) which is 

the result in Table 21. 

Furthermore, the data reconstruction from the results of the 

SVD calculation by grouping and diagonal averaging by 

grouping the eigentriple obtained from the SVD results 

according to the characteristics of each component. The 

selection of group members can be done by looking at the plot 

of the eigentriple. 

 

Table 21. Principle component value of Case 3 

 

No. 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽⋯ 𝑽𝟒𝟕 

1 -0.01 -0.04 -0.01 ⋯ 0.18 

2 -0.01 -0.04 -0.00 ⋯ -0.21 

3 -0.01 -0.05 -0.00 ⋯ 0.20 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
66 -0.32 0.16 -0.16 ⋯ 0.01 

 

 

 
 

Figure 8. Eigentriple plot Case 3 

 

 
 

Figure 9. W-correlation plot of Case 3 

 

From Figure 8, it can be seen that the first component is a 

trend component that reflects data of 91,41% and the other 

component contains seasonal patterns. Grouping that is done 

by looking at plots from eigentriple is subjective. The W-

Correlation plot of Case 3 can be seen in Figure 9. 

The correlation of each component as visualized by Figure 

10 can be searched using Eq. (10) and the results can be seen 

in the following Table 22. 

 

Table 22. W-correlation value of Case 3 

 

Components F1 F2 F3 𝑭𝒏 F47 

F1 1.000 0.038 0.042 ⋯ 0.000 

F2 0.038 1.000 0.937 ⋯ 0.000 

F3 0.042 0.937 1.000 ⋯ 0.000 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
F47 0.000 0.000 0.000 ⋯ 1.000 

 

From Figure 9 and Table 22, it can be concluded that the 47 

components can be grouped into 23 groups based on the high 

and low correlation of each eigentriple. The height of the 

correlation can be seen based on the color of each component's 

slices, where the darker the correlation, the higher the 

correlation. Using Eq. (11) and Eq. (12), the diagonal 

averaging results of the grouping stage can be seen in Table 

23. 
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Table 23. Diagonal averaging Case 3 
 

No. Diagonal Averaging 

1 0.19 

2 -0.69 

3 -0.66 

4 0.34 

5 0.60 

⋮ ⋮ 
112 109.83 

 

Table 24. SSA forecast results for Case 3 
 

No. Year Actual Prediction Difference 

1 2012 103 88.69 14.31 

2 2013 127 177.13 50.13 

3 2014 139 164.42 25.42 

4 2015 122 105.37 16.63 

5 2016 116 80.17 35.83 

6 2017 112 49.19 62.81 

7 2018 138 77.81 60.19 

8 2019 134 54.60 79.40 

9 2020 121 79.73 41.27 

10 2021 123 244.07 121.07 

11 2022 128 143.18 15.18 

12 2023 98 133.25 35.25 

RMSE 55.25 

MAAPE 1.53 
 

After the diagonal averaging calculation is obtained, then 

using the R-Forecasting method, namely Eq. (14), Eq. (15), 

and Eq. (16), the forecast can be calculated on the outsample 

data shown in Table 24. 
 

3.4 Forecasting on Case 4 
 

The insample data in Case 4 was converted into one-

dimensional data of 118 data from 1900 to 2017 with the 

following arrangement. 
 

[
 
 
 
 
Year 1900
Year 1901
Year 1902

⋮
Year 2017]

 
 
 
 

=

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮

𝑥118]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮

112]
 
 
 
 

 

 

After the data is converted into one dimension, then 

converted into multidimensional called an X trajectory matrix 

measuring L×K. The optimal Windows Length (L) value is 

taken based on the smallest forecast accuracy value with a 

value range of L between 2≤L≤55, using the grid method by 

trying the L values, as shown in Table 25. 
 

Table 25. Recapitulation of the results of measuring the level 

of forecast accuracy for Case 4 
 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

5 7.29 1.49 31.16 1.34 0 0.09 

10 4.29 1.43 37.05 1.53 0 0 

15 4.55 1.44 32.79 1.52 0 0 

20 4.84 1.45 65.52 1.52 0 0.02 

25 3.87 1.46 50.40 1.33 0 0.01 

30 1.01 1.24 40.48 1.46 0.09 0.79 

35 1.47 1.30 55.00 1.46 0.08 0.05 

40 1.49 1.30 95.87 1.54 0.11 0.22 

45 1.12 1.24 59.12 1.52 0.64 0.97 

50 0.96 1.16 36.04 1.51 0.34 0.20 

55 1.10 1.22 25.48 1.48 0.25 0.32 

Table 26. Forecasting accuracy of advanced Case 4 

 

L 
Insample Outsample 

Normality 
Residual 

Independence RMSE MAAPE RMSE MAAPE 

51 1.06 1.22 29.65 1.41 0.35 0.85 

52 1.07 1.23 28.83 1.44 0.30 0.58 

53 1.08 1.23 25.67 1.29 0.25 0.44 

54 1.10 1.22 25.48 1.48 0.25 0.32 

55 1.10 1.22 25.48 1.48 0.25 0.32 

56 1.12 1.23 25.15 1.49 0.25 0.18 

57 1.13 1.22 25.23 1.43 0.26 0.10 

58 1.14 1.23 25.94 1.46 0.27 0.07 

59 1.15 1.23 29.92 1.44 0.28 0.06 

 

In Table 25, L with values of 5, 10, 15, 20, and 25 has 

abnormal residuals because the p-value obtained is less than 

α=0.05. Therefore, obtained L with the minimum accuracy is 

55. So, in the same way, tracking is carried out again around 

the value of 55 to get the most appropriate L value. It can be 

seen in Table 26. 

As shown in Table 26, L=56 is bolded which indicates that 

the L value is the optimum L value because it has the smallest 

average accuracy value. Therefore, from the value of L 

obtained, the value of K=63 is produced based on the equation 

K=N-L+1 where the value of N=118. Furthermore, the process 

of forming the X trajectory matrix is by means that the values 

𝑥1  to 𝑥56  become the first column, the values 𝑥2  to 𝑥57 

become the second column and so on until the values 𝑥63 to 

𝑥118  become the 63rd column in the X trajectory matrix as 

written as follows: 

 

𝑿 = [

0 0 0 0 ⋯ 1
0 0 0 0 ⋯ 6
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
3 2 4 1 ⋯ 112

] 

 

Next, the search for singular value, eigenvector, and 

principal component values will be carried out based on the 

trajectory matrix 𝑿(56×63)  that has been obtained in the 

previous stage. 

 

𝑺 = [

597 476 … 8051
476 633 … 8368
⋮ ⋮ ⋱ ⋮

8051 8368 … 244197

] 

 

After obtaining the symmetrical matrix 𝑺(56×56), then the 

singular value, eigenvector, and principal component 

(eigentriple) values will be searched that meet, the eigentriple 

search is carried out by calculating the eigenvalue value, then 

from eigenvalue the singular values can be calculated using 

Eq. (2) and Eq. (3) whose results are presented in Table 27. 

 

Table 27. Eigenvalue and singular values of Case 4 

 
No. Eigenvalue Singular Value 

1 2628656 1621.31 

2 33154.67 182.08 

3 24824.69 157.56 

⋮ ⋮ ⋮ 
56 11.43 3.38 

 

After the singular value is obtained, then find the 

eigenvector value of the symmetric matrix 𝑺(56×56) using Eq. 

(2) whose results can be seen in Table 28. 
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Table 28. Eigenvector value of Case 4 

 

No. 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼⋯ 𝑼𝟓𝟔 

1 -0.01 -0.01 -0.00 ⋯ 0.38 

2 -0.01 -0.01 -0.00 ⋯ -0.31 

3 -0.01 -0.01 -0.01 ⋯ -0.16 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
56 -0.30 -0.40 -0.05 ⋯ -0.07 

 

Table 29. Principle component value of Case 4 

 

No. 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽⋯ 𝑽𝟓𝟔 

1 -0.01 -0.00 0.04 ⋯ -0.02 

2 -0.01 -0.00 0.03 ⋯ -0.09 

3 -0.01 -0.01 0.03 ⋯ -0.13 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
63 -0.30 0.40 0.06 ⋯ 0.02 

 

After obtaining the eigenvalue and eigenvector values, then 

find the principal component value by using Eq. (4) whose 

results are shown in Table 29. 

Furthermore, the data reconstruction from the results of the 

SVD calculation was carried out by grouping and diagonal 

averaging which was carried out by grouping the eigentriple 

obtained from the SVD results according to the characteristics 

of each component. The selection of group members can be 

done by looking at the plot of the eigentriple. The following is 

shown the plot of each eigentriple with a value of i=1, 2, 3, ..., 

56. 

From Figure 10, it can be seen that the first component is a 

trend component that reflects data of 92.89% and the other 

component contains seasonal patterns (Only a maximum of 50 

can be displayed). Grouping that is done by looking at plots 

from eigentriple is subjective. So there are several data 

patterns whose characteristics are difficult to distinguish. To 

see the similarity of characteristics more clearly, it can be seen 

with the help of the W-Correlation plot. The W-Correlation 

plot of Case 4 can be seen in Figure 11. 

 

 
 

Figure 10. Eigentriple plot Case 4 

 

 
 

Figure 11. W-correlation plot of Case 4 

The correlation of each component as visualized by Figure 

11 can be searched using Eq. (10) and the results can be seen 

in the following Table 30. 

 

Table 30. W-correlation value of Case 4 

 

Components F1 F2 F3 𝑭𝒏 F56 

F1 1.000 0.029 0.032 ⋯ 0.000 

F2 0.029 1.000 0.676 ⋯ 0.000 

F3 0.032 0.676 1.000 ⋯ 0.000 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
F56 0.000 0.000 0.000 ⋯ 1.000 

 

Table 31. Diagonal averaging Case 4 

 
No. Diagonal Averaging 

1 0.44 

2 -0.29 

3 -0.24 

4 0.41 

5 0.54 

⋮ ⋮ 
118 111.63 
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Table 32. SSA forecast results for Case 4 

 

No. Year Actual Prediction Difference 

1 2018 138 148.77 10.77 

2 2019 134 94.74 39.26 

3 2020 121 103.49 17.51 

4 2021 123 161.48 38.48 

5 2022 128 111.31 16.69 

6 2023 98 89.59 8.41 

RMSE 25.15 

MAAPE 1.49 

 

From Figure 8 and Table 30, it can be concluded that of the 

56 components can be grouped into 23 groups based on the 

high and low correlation of each eigentriple. The height of the 

correlation can be seen based on the color of each component's 

slices, where the darker the correlation, the higher the 

correlation. The results of the diagonal averaging of the 

grouping stage can be seen in Table 31. 

After the averaging diagonal calculation is obtained, then 

using the R-Forecasting method, the forecast can be calculated 

on the outsample data shown in Table 32 in the form of 

forecast results for the outsample data. 

 

3.5 Discussion 

 

The performance of SSA is evaluated using four different 

cases, each with varying proportions of training and testing 

data. The higher RMSE here reflects slightly larger deviations 

in predictions, particularly for testing years with higher 

seismic variability. However, MAAPE remains stable, 

emphasizing the model’s robustness in interpreting low actual 

values. For case 3, produced the highest RMSE, indicating 

more significant prediction errors. This could be attributed to 

the shorter test period capturing more recent seismic 

fluctuations. The slightly higher MAAPE also suggests 

challenges in maintaining angular prediction consistency for 

these years. Subsequently, for Case 4 (1900–2017 training, 

2018–2023 testing): Case 4 achieved the lowest RMSE, 

demonstrating the highest predictive accuracy. This result 

suggests that the SSA model performed exceptionally well 

with a larger training set (spanning nearly the entire dataset) 

and a shorter test set. Although MAAPE is slightly higher than 

in case 1, the values still indicate reliable performance. 

Interpretation and Real-World Implications These results 

highlight the strengths and limitations of SSA across different 

data configurations. RMSE provides a granular understanding 

of the magnitude of prediction errors, emphasizing the 

importance of accurate forecasts in years with higher 

earthquake frequencies. Meanwhile, MAAPE underscores the 

reliability of the model in interpreting data with extreme 

values, a crucial feature for seismic hazard assessments in the 

Sumatra subduction zone. In practice, lower RMSE values, 

such as those observed for Case 4, are desirable as they signify 

better alignment between predictions and observed 

frequencies. However, MAAPE’s stability across all pairs 

confirms the SSA model’s robustness, even in scenarios with 

low earthquake frequencies or significant variability. This 

robustness ensures that SSA predictions can be trusted for real-

world applications, such as disaster preparedness and resource 

allocation. By combining RMSE and MAAPE, this study not 

only assesses statistical performance but also links these 

metrics to practical considerations in seismic forecasting. The 

findings validate SSA’s capability to provide reliable 

earthquake frequency forecasts, thereby supporting efforts to 

mitigate risks and improve readiness in one of the world’s 

most seismically active regions. 

The forecasting results of this study hold significant 

practical implications, particularly in supporting disaster risk 

management in the highly active Sumatra subduction zone. 

Accurate forecasts of earthquake frequency can improve the 

effectiveness of early warning systems by providing 

actionable insights into seismic trends. By understanding the 

likely frequency of earthquake events within a given time 

frame, authorities can enhance real-time monitoring systems 

and optimize their preparedness for potential earthquakes. 

This is particularly valuable in mitigating cascading effects, 

such as tsunamis, which often follow large-magnitude 

earthquakes in this region. For instance, the model’s ability to 

predict earthquake frequencies with low RMSE (as observed 

in Case 4) ensures a higher degree of confidence in early alerts, 

allowing communities in high-risk areas to evacuate in time 

and minimize loss of life. In addition, one of the critical 

challenges during seismic events is the efficient allocation of 

emergency resources, such as medical aid, search and rescue 

teams, and temporary shelters. Forecasting earthquake 

frequency enables disaster management agencies to identify 

periods of heightened seismic activity and allocate resources 

proactively. This reduces response times and enhances the 

overall effectiveness of emergency operations. For example, 

the predictive results for testing years (e.g., RMSE=25.15 for 

Case 4) could guide the pre-positioning of emergency supplies 

in regions with historically higher seismic activity, such as the 

Mentawai segment of the Sumatra subduction zone. 

Our study’s critical analysis of cases explores the 

performance and implications of different in-sample and out-

sample compositions in forecasting earthquake frequency 

using SSA. Four data configurations (80%-20%, 85%-15%, 

90%-10%, and 95%-5%) were tested, revealing that Case 3 

(90%-10%) offered the best balance, achieving the lowest 

RMSE and MAAPE for in-sample predictions. This optimal 

balance ensured reliable forecasts without sacrificing 

adaptability, while larger training sets like Case 4 (95%-5%) 

enhanced out-sample accuracy but struggled with recent 

seismic fluctuations. Notably, MAAPE’s stability across all 

cases underscored SSA’s reliability in handling data 

variability and extreme events. These findings have significant 

real-world implications, particularly for seismic hazard 

assessments in the Sumatra subduction zone. Improved 

predictive accuracy supports early warning systems, enabling 

timely evacuations and proactive resource allocation in high-

risk areas like the Mentawai segment. The low RMSE 

achieved in testing years exemplifies the SSA model’s 

potential to align closely with observed earthquake patterns, 

providing actionable insights for disaster preparedness. This 

analysis validates SSA’s robustness and utility, offering a 

foundation for further integration with advanced techniques to 

enhance forecasting methodologies and risk mitigation 

strategies. 

This study acknowledges several limitations of the SSA 

approach for earthquake frequency forecasting in the Sumatra 

subduction zone. One notable challenge is the risk of 

overfitting, particularly with configurations that utilize high 

in-sample percentages, such as Case 4 (95%-5%). While this 

configuration improves in-sample predictive accuracy, it can 

reduce the model's ability to generalize effectively to unseen 

data. To address this, balanced data splits and robust cross-

validation methods are essential to enhance model reliability 

and applicability. Additionally, predicting extreme seismic 
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events, such as megathrust earthquakes, presents significant 

difficulties. These rare, high-impact events often deviate from 

the historical patterns captured by time-series models like 

SSA, limiting the model’s effectiveness in these scenarios. To 

overcome these challenges, future research should focus on 

integrating SSA with advanced techniques such as machine 

learning models, which can leverage complex patterns from 

large datasets. Incorporating geophysical data, including 

tectonic stress distributions and surface deformation 

measurements, could further enhance the model’s predictive 

power. Expanding the application of this approach to other 

tectonic regions would also test its generalizability and 

provide comparative insights. By addressing these limitations, 

future efforts can refine SSA-based forecasting, ensuring its 

robustness in capturing both routine seismic patterns and rare, 

extreme events. These advancements hold the potential to 

improve disaster risk management and preparedness in 

earthquake-prone regions. 

 

 

4. CONCLUSIONS 

 

This study demonstrates that SSA is an effective method for 

modeling and predicting earthquake frequency in the Sumatra 

subduction zone, a region with significant tectonic activity. 

The findings highlight SSA’s ability to analyze complex, non-

linear, and non-stationary time series data, offering a novel 

approach to earthquake forecasting. A key contribution of this 

research lies in its comprehensive evaluation of four different 

insample-outsample data splits, which revealed that a 90% 

insample and 10% outsample composition provided the best 

performance for insample predictions. Additionally, the study 

underscores the practical relevance of SSA in addressing 

disaster preparedness in one of the world's most hazardous 

seismic zones. However, the reliability of SSA depends 

heavily on the availability of high-quality historical data, and 

its ability to forecast extreme events, such as megathrust 

earthquakes, remains uncertain due to the complexity of 

tectonic dynamics. 

Future research could enhance SSA’s predictive capabilities 

by integrating it with techniques such as Machine Learning or 

statistical models like ARIMA or GARCH, applying it to other 

seismic regions to test its generalizability, and incorporating 

additional geophysical data such as tectonic stress or surface 

deformation. These advancements could broaden the 

applicability of SSA in disaster mitigation and improve 

preparedness in earthquake-prone regions. 
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