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Corn is an important cereal crop that ranks third as a global food necessity after rice and 
wheat, and it is a primary source of carbohydrates in Indonesia after rice. The varied 
products of corn, including animal feed and industrial raw materials, make it a high-
value commodity. However, corn food productivity is often disrupted by diseases such 
as leaf rust and leaf blight, which can significantly reduce yields. To overcome this 
problem, this research aims to increase food productivity by looking for a combination 
model of Convolutional Neural Network (CNN) Model with Optimizer and Batch Size 
in identifying diseases on corn leaves. This study uses the MobileNetV2 CNN 
architecture to classify images of disease corn leaf. Adam and RMSProp optimization 
parameters equipped with predetermined learning rates were utilized in this study for 
training and testing data divided into 70% and 30% respectively. Test results show a 
significant increase in accuracy, precision, recall, and F1 score over training epochs. 
The test results of the CNN model with MobileNetV2 architecture with a learning rate 
of 0.0001, batch size of 64, and RMSProp optimizer showed the most significant 
performance improvement in several metrics, such as accuracy. The consistent 
enhancement in training accuracy is shown by the increase in value from 66.64% to 
99.34% in the first and last epochs. Training precision also shows a positive trend with 
an upward movement from 66.20% to 99.34%. Improvement in training recall is evident 
from the value increasing from 66.64% to 99.34%. The variation in the F1 training score 
is shown by the change in value from 66.21% to 99.34%. 
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1. INTRODUCTION

Corn is one of the cereal crops and ranks as the third primary 
necessity after rice and wheat in the world [1, 2]. In Indonesia, 
corn is an important food crop because it contains 
carbohydrates, making it the second staple food after rice [3, 
4]. This plant has high food productivity and various benefits 
[5]. Corn plays a key role in the national economy and has 
various uses, including as animal feed. Additionally, corn can 
be processed into industrial raw materials [6]. One product 
made from sweet corn is sweet corn milk, which is low in 
starch and fat. Unlike regular corn, sweet corn is harvested 
while still young, before it fully matures. Food productivity 
and the price of corn are influenced by various environmental 
and agronomic factors, such as plant geomorphology 
management, the use of organic fertilizers, and pest control [7]. 
Planting with a narrow spacing pattern can increase corn seed 
yield by enhancing the growth rate of the plants [2]. 
Additionally, the use of organic fertilizer from corn cobs has 
been proven to support the growth and yield of corn on sub-
optimal land. Corn also has potential for use in the food and 

nutraceutical industries due to its bioactive components [8]. 
Thus, corn is not only important as a source of food and feed 
but also as a high-value industrial raw material [9]. However, 
several factors contribute to the decline in corn production, 
including the plant's susceptibility to pest and disease attacks, 
which can occur at any time [10]. The main diseases affecting 
corn plants include leaf rust, caused by the fungus Puccinia 
Sorghi Schwein, and leaf blight, caused by the fungus 
Helminthosporium Turcicum (Pass) [11]. To prevent crop 
failure, it is crucial to monitor corn plants for susceptible 
diseases [3]. Current monitoring is done manually, which is 
not only time-consuming but also less efficient [7]. To address 
this issue, researchers have developed a digital image 
classification system aimed at identifying diseases in corn 
plants. This system works by categorizing diseased corn leaves. 

With advancements in technology, disease detection can be 
identified through artificial intelligence [12]. One technology-
based detection method is image processing and pattern 
recognition. One of the most popular method that recognized 
for achieving better results compare to other method is 
Convolutional Neural Networks (CNNs) [13]. CNNs are a 
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type of deep learning [14] that process images as input and can 
identify aspects or objects present in those images. This allows 
machines to "learn" to recognize and differentiate between 
images. There are several CNN models that have been tried in 
corn leaf disease classification such as AlexNet with an 
accuracy of 85.07%, ResNet-101 with an accuracy of 85.43%, 
ResNet-18 with an accuracy of 86.60%, SqueezeNet with an 
accuracy of 88.67% and ResNet-50 with an accuracy of 
95.59% [9]. 

Studies on corn leaf diseases have been extensively 
conducted using various methods, such as Naive Bayes, 
Random Forest, and Neural Networks which achieved 
accuracy of 73.33%, 69.76%, and of 74.44% respectively [9].  

Therefore, this study will classify each image of corn leaf 
disease by combining the MobileNet-V2 model and the 
RMSProp optimizer and Batch Size. to find out how Batch 
Size and Optimizer affect the accuracy results. 

The information obtained from this research aims to provide 
deeper insights into the effectiveness of each CNN- 
MobileNet-V2 architecture in classifying corn diseases. These 
results are useful for the development of automated systems to 
detect corn diseases quickly and accurately, thus enabling 
farmers and agricultural researchers to take necessary actions 
more efficiently. 

 
 

2. PRELIMINARIES 
 
This research aims to automatically identify corn leaf 

diseases through digital image analysis using CNN. The goal 
is to develop a model capable of classifying corn leaf images 
based on the type of disease. The performance of the model is 
evaluated using a confusion matrix. 

 
2.1 CNN 

 
CNN is a deep learning model proposed by Yann LeCun [15] 

that can classify digital images and train systems with large 
amounts of data. CNNs have three types of layers: 
convolutional layers, pooling layers, and fully connected 
layers [16, 17] as shown in Figure 1. 
 

 
 

Figure 1. Architecture of CNN 
 
The convolutional layer functions to apply a set of filters or 

kernels to the input image. These filters are used to detect 
various features in the image, such as edges, corners, and 
textures. This process produces feature maps that identify the 
location and intensity of specific features within the image. 
Each filter works by combining all the pixels in the input 
image, resulting in diverse feature maps [18].  

The pooling layer, often implemented as max-pooling or 
average-pooling, aims to reduce the dimensions of the feature 
maps. This layer helps decrease the number of parameters and 

computations within the network while retaining important 
information from the feature maps generated by the 
convolutional layer. By reducing dimensions, the pooling 
layer also helps control overfitting, making the model more 
generalizable to new data [18].  

The fully connected layer, or dense layer, is the final stage 
in CNNs where all neurons are connected to each other. This 
layer is responsible for classifying based on the features 
extracted and processed by the convolutional and pooling 
layers. Each neuron in the fully connected layer receives input 
from all neurons in the previous layers, allowing the network 
to learn complex feature combinations and make final 
decisions regarding image classification [18]. 

 
2.2 Architecture MobileNetV2 

 
MobileNetV2 is an advanced model that builds on 

MobileNetV1, showing improved accuracy with fewer 
parameters compared to its predecessor. MobileNetV2 is a 
CNN architecture designed to address the need for high 
computational resources [19]. In the MobileNet architecture, 
the convolution process is divided into two parts: depthwise 
convolution and pointwise convolution. This differentiates 
MobileNetV2 from traditional CNN architectures where 
convolutional layers have filters of varying thickness, 
depending on the thickness of the input image. MobileNetV2 
presents two new features: linear bottlenecks and shortcut 
connections between bottlenecks as shown in Table 1 [20, 21]. 

Linear bottlenecks help preserve important information 
through network layers by reducing information loss during 
compression and decompression processes. Meanwhile, 
shortcut connections, similar to residual connections in 
ResNet, allow for better information flow between layers, 
speeding up convergence and improving model performance 
[20]. 
 

Table 1. Architecture of MobileNetV2 
 

Input Operator t c n s 
2242 × 3 Conv2d - 32 1 2 

1122 × 32 Bottleneck 1 16 1 1 
1122 × 16 Bottleneck 6 24 2 2 
562 × 24 Bottleneck 6 32 3 2 
282 × 32 Bottleneck 6 64 4 2 
142 × 64 Bottleneck 6 96 3 1 
142 × 96 Bottleneck 6 160 3 2 
72 × 160 Bottleneck 6 320 1 1 
72 × 320 Conv2d 1 × 1 - 1280 1 1 

72 × 1280 Avgpool 7 × 7 - - 1 - 
1 × 1 × 1280 Conv2d 1 × 1 - k - - 

 
2.3 Confusion matrix 
 

A confusion matrix is a tool used to evaluate the 
performance of a classification model in detecting diseases on 
corn leaves. This matrix shows the model's predicted results 
compared to the actual data as shown in Figure 2 [22, 23], It 
includes True Positive (TP) for correctly predicted diseases, 
True Negative (TN) for correctly predicted absence of disease, 
False Positive (FP) for incorrectly predicted diseases, and 
False Negative (FN) for incorrectly predicted absence of 
disease. By using a confusion matrix, metrics such as accuracy, 
precision, recall, specificity, and F1 score can be calculated, 
which helps in assessing the model's effectiveness and 
identifying and correcting prediction errors to improve disease 
detection performance [24, 25]. 
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Figure 2. Confusion matrix 

3. MAIN RESULTS

3.1 Dataset 

This study uses dataset consists of 4,000 images of corn leaf 
that has diseases. The corn leaf dataset was taken from corn 
farmers in the Sampang area of Madura Island, Indonesia. 
These images are divided into four classes: ['Leaf Spot', 
'Healthy Leaf', 'Leaf Blight', 'Leaf Rust'] as depicted in Figure 
3.  

(a) Leaf Spot (b) Leaf Blight

(c) Healthy (d) Leaf Rust

Figure 3. The corn leaf disease 

3.2 Analysis 

Figure 4 illustrates the system flow that has been designed 
and implemented. Below is an explanation covering each stage 
of the system, from input to output, as well as the processes 
occurring between the components. 
a. Input Image

Dataset of this research must be well prepared to provide
appropriate research object. There are four classes that divide 
images of corn leaf diseases from dataset of this study: ['Leaf 
Spot', 'Healthy Leaf', 'Leaf Blight', 'Leaf Rust']. Dataset consist 
of 4,000 images divided into 1,000 images for each class. 

b. Preprocessing
Resizing the image in dataset is the preprocessing used in

this study. This step is utilized to standardize the image size 
by reducing it resolution from 3000 × 4000 pixels to 224 × 224 
pixels. Additionally, resizing helps to simplify the 
computation process [22]. 

Figure 4. Diagram of the system 

c. K-Fold
After the images are resized, the dataset is split into two

parts using the K-Fold cross-validation method, with 80% for 
training and 20% for testing. This ensures that the model can 
learn from the majority of the available data and is tested with 
data that was not used during training to objectively measure 
its performance. 
d. Training Validation

At this stage, the model is trained using the training data.
During the training process, the model is also validated using 
a subset of the training data to monitor and prevent overfitting. 
This validation helps in adjusting the model's hyperparameters 
for optimal performance. 
e. Optimizer

The two main optimizers used are Adam and RMSProp.
These optimizers are responsible for managing weight updates 
in the neural network during training. Adam (Adaptive 
Moment Estimation) and RMSProp (Root Mean Square 
Propagation) were chosen to evaluate which optimizer 
performs better in handling convergence issues and 
accelerating the training process with adaptive learning rate 
adjustments. 
f. Classiffier MobileNetV2

This study also implements a classification model built
using the MobileNetV2 architecture and employs parameters 
such as learning rate, dense layers, batch size, and optimizers 
Adam and RMSProp. 
g. Evaluation Model

The final step is model evaluation. The trained and tested
model is assessed to measure its overall performance. This 
evaluation includes measuring metrics such as accuracy, 
precision, recall, and F1 score. 
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4. DISCUSSION 
 
This section explains about the results of the experiments on 

classification of corn leaf disease using the MobileNetV2 
model. The data is partitioned into 80% and 20% of training 
and testing. Adaptive moment estimation (Adam) and root 
means square propagation (RMSProp) were used as the 
optimizers in these experiments with learning rates of 0.0001 
and 0.05, respectively. Furthermore, the experiments exploited 
batch sizes of 64 and 32. The results of the experiments from 
scenario 1 to scenario 8 are described in Table 2. 

Table 2 shows the results of the experiment with 8 different 
scenarios with different optimizers and batch sizes. The 
RMSprop optimizer has an accuracy of 99.34% better than 

using the Adam optimizer of 98.87% in the case of corn leaf 
disease classification. While Batch Size can affect the 
accuracy of around 1%. 

 
Table 2. Test result 

 
Trials  Learning Rate Batch Optimizer High Accuracy 

Scenario 1 0.05 64 Rmsprop 88.63% 
Scenario 2 0.05 32 Rmsprop 87.15% 
Scenario 3 0.05 64 Adam  86.64% 
Scenario 4 0.05 32 Adam  85.04% 
Scenario 5 0.0001 64 Rmsprop 99.34% 
Scenario 6 0.0001 32 Adam  98.28% 
Scenario 7 0.0001 32 Rmsprop 98.01% 
Scenario 8 0.0001 64 Adam  98.87% 

 

 
 

Figure 5. Graphic results of scenario 1 using RMSProp optimizer 
 

 
 

Figure 6. Graphic results of scenario 2 using RMSProp optimizer 
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Figure 7. Graphic results of scenario 3 using Adam optimizer 
 

Figure 5 explained that based on the testing results of the 
MobileNetV2 model with a learning rate of 0.05, batch size of 
64, and RMSProp optimizer, there is a significant variation in 
model performance across several epochs. Training accuracy 
shows a consistent improvement, starting from 47.30% in the 
first epoch and reaching 88.63% in the final epoch. Training 
precision also follows a similar trend, with a minimum value 
of 45.30% and a maximum of 88.64%. Training recall ranges 
from 47.30% to 88.63%, and the training F1 score varies 
between 45.36% and 88.64%. For validation, validation 
accuracy starts at a low value of 25.00% and increases to 
84.69% by the final epoch. Validation precision fluctuates, 
with a minimum of 36.53% and a maximum of 84.87%. 
Validation recalls ranges from 25.00% to 84.69%, while the 
validation F1 score varies from 65.33% to 84.75%. Training 
loss shows a decrease from 1.2339 at the beginning of testing 
to 0.3179 in the final epoch, indicating that the model is 
learning to reduce errors over time. Conversely, validation loss 
starts at 1.5084 and decreases to 0.4133, reflecting the model's 
improving ability to generalize to new data as the epochs 
progress. Overall, this graph shows that the model experiences 
significant improvement in performance metrics such as 
accuracy, precision, recall, and F1 score for both training and 
validation over time, while the training and validation loss 
decreases. This indicates an enhancement in the model's 
ability to make predictions more accurately and efficiently. 

Based on the testing results of the MobileNetV2 model with 
a learning rate of 0.05, batch size of 32, and RMSProp 
optimizer, there is significant variation in model performance 
across several epochs as shown in Figure 6. Training accuracy 
shows a consistent improvement, starting from 46.05% in the 
first epoch and reaching 87.15% in the final epoch. Training 
precision also improves, with a minimum of 44.98% and a 
maximum of 87.08%. Training recall ranges from 46.05% to 
87.15%, and the training F1 score varies between 43.69% and 
87.10%. For validation, validation accuracy starts at a low 
value of 25.31% and increases to 84.22% by the final epoch. 
Validation precision fluctuates, with a minimum of 58.20% 
and a maximum of 84.41%. Validation recalls ranges from 

25.31% to 84.22%, while the validation F1 score varies from 
57.43% to 84.21%. Training loss decreases from 1.2394 at the 
beginning of testing to 0.3436 in the final epoch, indicating 
that the model is learning to reduce errors over time. 

Conversely, validation loss starts at 1.4620 and decreases to 
0.3824, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while the 
training and validation loss decreases. This indicates an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 

Based on Figure 7, it shows the results of testing the 
MobileNetV2 model with a learning rate of 0.05, batch size 64, 
and Adam optimizer, there is significant variation in model 
performance across several epochs. Training accuracy shows 
consistent improvement, starting from 37.30% in the first 
epoch and reaching 86.64% in the final epoch. Training 
precision also improves, with a minimum of 37.32% and a 
maximum of 86.67%. Training recall ranges from 37.30% to 
86.64%, and the training F1 score varies between 32.32% and 
86.65%. For validation, validation accuracy starts at a low 
value of 25.00% and increases to 85.31% by the final epoch. 
Validation precision fluctuates, with a minimum of 54.99% 
and a maximum of 85.91%. Validation recalls ranges from 
25.00% to 85.31%, while the validation F1 score varies from 
46.77% to 85.52%. Training loss decreases from 1.3315 at the 
beginning of testing to 0.3767 in the final epoch, indicating 
that the model is learning to reduce errors over time.  

Conversely, validation loss starts at 1.3956 and decreases to 
0.4046, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while 
training and validation loss decreases, indicating an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 
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Figure 8. Graphic results of scenario 4 using Adam optimizer 
 

 
 

Figure 9. Graphic results of scenario 5 using RMSProp optimizer 
 

 
Figure 8 shows the testing results of the MobileNetV2 

model with a learning rate of 0.05, batch size of 32, and Adam 
optimizer, there is significant variation in model performance 
across several epochs. Training accuracy shows consistent 
improvement, starting from 36.17% in the first epoch and 
reaching 85.04% in the final epoch. Training precision also 
improves, with a minimum of 40.85% and a maximum of 
84.98%. Training recall ranges from 36.17% to 85.04%, and 
the training F1 score varies between 29.25% and 85.01%. For 
validation, validation accuracy starts at a low value of 28.91% 
and increases to 83.28% by the final epoch. Validation 
precision fluctuates, with a minimum of 39.46% and a 
maximum of 83.53%. Validation recalls ranges from 28.91% 

to 83.28%, while the validation F1 score varies from 49.85% 
to 83.35%. Training loss decreases from 1.3099 at the 
beginning of testing to 0.3925 in the final epoch, indicating 
that the model is learning to reduce errors over time. 
Conversely, validation loss starts at 1.3729 and decreases to 
0.4334, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while 
training and validation loss decreases, indicating an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 
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Figure 9 presents the experiment results of scenario 5 
utilized the MobileNetV2 model with a learning rate of 0.0001, 
batch size of 64, and RMSProp optimizer. There is significant 
variation in model performance through several epochs. 
Training accuracy demonstrates consistent improvement, 
starting from 66.64% in the first epoch and reaching 99.34% 
in the final epoch. Training precision also presents similar 
advances, with a minimum of 66.20% and a maximum of 
99.34%. The minimum result of training recall was 66.64% 
and the maximum reaches 99.34%. The training F1 score had 
lowest value of 66.21% and highest value of 99.34%. For 
validation, validation accuracy starts at a low value of 25.00% 
and increases to 88.91% by the final epoch. Validation 
precision fluctuates, with a minimum of 78.24% and a 

maximum of 89.20%. Validation recalls ranges from 25.00% 
to 88.91%, while the validation F1 score varies from 57.86% 
to 88.97%. Training loss decreases from 0.7640 at the 
beginning of testing to 0.0206 in the final epoch, indicating 
that the model is learning to reduce errors over time. 
Conversely, validation loss starts at 1.7756 and decreases to 
0.3654, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while 
training and validation loss decreases, indicating an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 

Figure 10. Graphic results of scenario 6 using Adam optimizer 

Figure 11. Graphic results of scenario 7 using RMSProp optimizer 
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Figure 12. Graphic results of scenario 8 using Adam optimizer 

Figure 10 shows the testing results of the MobileNetV2 
model with a learning rate of 0.0001, batch size of 32, and 
Adam optimizer, there is significant variation in model 
performance across several epochs. Training accuracy shows 
consistent improvement, starting from 65.90% in the first 
epoch and reaching 98.28% in the final epoch. Training 
precision also improves similarly, with a minimum of 65.71% 
and a maximum of 98.29%. Training recall ranges from 
65.90% to 98.28%, and the training F1 score varies between 
64.25% and 98.28%. For validation, validation accuracy starts 
at a low value of 47.97% and increases to 90.47% by the final 
epoch. Validation precision fluctuates, with a minimum of 
65.54% and a maximum of 90.44%. Validation recall ranges 
from 47.97% to 90.47%, while the validation F1 score varies 
from 34.40% to 90.34%. Training loss decreases from 0.8849 
at the beginning of testing to 0.0538 in the final epoch, 
indicating that the model is learning to reduce errors over time. 
Conversely, validation loss starts at 1.3602 and decreases to 
0.2959, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while 
training and validation loss decreases, indicating an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 

Figure 11 shows the testing results of the MobileNetV2 
model with a learning rate of 0.0001, batch size of 32, and 
RMSProp optimizer, there is significant variation in model 
performance across several epochs. Training accuracy shows 
consistent improvement, starting from 74.14% in the first 
epoch and reaching 98.01% in the final epoch. Training 
precision also improves similarly, with a minimum of 74.06% 
and a maximum of 98.01%. Training recall ranges from 
74.14% to 98.01%, and the training F1 score varies between 
74.09% and 98.01%. For validation, validation accuracy starts 
at a low value of 48.13% and increases to 90.16% by the final 
epoch. Validation precision fluctuates, with a minimum of 
68.06% and a maximum of 90.27%. Validation recall ranges 

from 48.13% to 90.16%, while the validation F1 score varies 
from 41.03% to 90.15%. Training loss decreases from 0.6167 
at the beginning of testing to 0.0638 in the final epoch, 
indicating that the model is learning to reduce errors over time. 
Conversely, validation loss starts at 1.5362 and decreases to 
0.3333, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while 
training and validation loss decreases, indicating an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 

Figure 12 shows the testing results of the MobileNetV2 
model with a learning rate of 0.0001, batch size of 64, and 
Adam optimizer, there is significant variation in model 
performance across several epochs. Training accuracy shows 
consistent improvement, starting from 52.34% in the first 
epoch and reaching 98.87% in the final epoch. Training 
precision also improves similarly, with a minimum of 51.99% 
and a maximum of 98.87%. Training recall ranges from 
52.34% to 98.87%, and the training F1 score varies between 
47.65% and 98.87%. For validation, validation accuracy starts 
at a low value of 25.00% and increases to 90.78% by the final 
epoch. Validation precision fluctuates, with a minimum of 
55.16% and a maximum of 90.73%. Validation recalls ranges 
from 25.00% to 90.78%, while the validation F1 score varies 
from 82.44% to 90.67%. Training loss decreases from 1.0963 
at the beginning of testing to 0.0402 in the final epoch, 
indicating that the model is learning to reduce errors over time. 
Conversely, validation loss starts at 1.8648 and decreases to 
0.2969, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, this graph shows 
that the model experiences significant improvement in 
performance metrics such as accuracy, precision, recall, and 
F1 score for both training and validation over time, while 
training and validation loss decreases, indicating an 
enhancement in the model's ability to make predictions more 
accurately and efficiently. 
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Table 3. Best test result 
 
Trials  Accuracy 

(%) 
Precision 

(%) 
Recall  

(%) 
F1 Score 

(%) 
Scenario 1 88.63 88.64 88.63 88.64 
Scenario 2 87.15 87.08 87.15 87.10 
Scenario 3 86.64 86.67 86.64 86.65 
Scenario 4 85.04 84.98 85.04 85.01 
Scenario 5 99.34 99.34 99.34 99.34 
Scenario 6 98.28 98.29 98.28 98.28 
Scenario 7 98.01 98.01 98.01 98.01 
Scenario 8 98.87 98.87 98.87 98.87 
 
Table 3 shows the best test results, namely in scenario 5 

with a learning rate of 0.0001 with a batch size of 64 and using 
the RMSProp optimizer with accuracy, precision and recall 
and F1 score of 99.34%. 
 

 
5. CONCLUSION 

 
The conclusion of this study indicates that corn is an 

important staple crop with high productivity and various 
benefits, including as livestock feed and industrial raw 
material. To address challenges in corn production, 
particularly related to diseases such as leaf rust and leaf blight, 
artificial intelligence-based detection technologies like 
Convolutional Neural Networks (CNNs) have been employed 
to identify diseases more efficiently. Based on the testing 
results of the MobileNetV2 model with a learning rate of 
0.0001, batch size of 64, and RMSProp optimizer, there is 
significant variation in model performance across several 
epochs. Training accuracy shows consistent improvement, 
starting from 66.64% in the first epoch and reaching 99.34% 
in the final epoch. Training precision also improves similarly, 
with a minimum of 66.20% and a maximum of 99.34%. 
Training recall ranges from 66.64% to 99.34%, and the 
training F1 score varies between 66.21% and 99.34%. For 
validation, validation accuracy starts at a low value of 25.00% 
and increases to 88.91% by the final epoch. Validation 
precision fluctuates, with a minimum of 78.24% and a 
maximum of 89.20%. Validation recalls ranges from 25.00% 
to 88.91%, while the validation F1 score varies from 57.86% 
to 88.97%. Training loss decreases from 0.7640 at the 
beginning of testing to 0.0206 in the final epoch, indicating 
that the model is learning to reduce errors over time. 
Conversely, validation loss starts at 1.7756 and decreases to 
0.3654, reflecting the model's improving ability to generalize 
to new data as the epochs progress. Overall, the CNN model 
based on MobileNetV2 proves effective in classifying diseases 
in corn leaves, and the results can be used to develop an 
automated detection system that will assist farmers and 
researchers in managing and improving corn production more 
efficiently. 
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