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Pneumonia is a respiratory disease characterized by an infection in the lungs, breathing 

difficulties, and other health issues. Early detection of pneumonia not only helps 

determine the appropriate treatment approach but also increases the likelihood of 

recovery. Detecting pneumonia accurately and automatically is a significant challenge 

in medical imaging mainly due to the fact that the signs of the illness are not easily 

identifiable in CT or X-ray scans. Furthermore, it is crucial to address this task as 

millions of individuals succumb to pneumonia annually. In this study, a novel and 

efficient RN50 CNN-AFDA (ResNet-50-based Convolutional Neural Network that 

incorporates an Adaptive Fractional Differential Algorithm) method that has been 

applied to automatically detect pneumonia from chest X-ray images, as well as analyze 

and learn the patterns that indicate pneumonia from chest X-rays. The proposed scheme 

has four main phases; first, a combined approach of ResNet50 and Transfer Learning 

algorithms are used to enhance the collected image's quality and make it appropriate for 

the proposed model (i.e., data augmentation and normalization). Second, the adaptive 

fractional differential function is utilized to determine the optimal fractional order for 

each pixel. This function is constructed by taking into account the characteristics of 

various image areas. Third, the fractional differential mask is modified to include an 

ideal fractional order to process the matching image pixel. Finally, a deep learning 

approach based on the Adam optimizer algorithm is utilized to lower the learning rate, 

fasten the convergence, and enhance the model accuracy. The training and testing of 

the proposed scheme were done on a large dataset of 5856 X-ray images, achieving an 

accuracy of 95.9%. Surprisingly, the results achieved from implementing the 

mathematical proposed method as a reliable tool for early diagnosis of pneumonia 

through chest X-ray imaging exceed the existing studies. 
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1. INTRODUCTION

The accuracy of doctors' diagnoses and treatments of 

pneumonia are directly impacted by the quality of medical 

images created from such cases, making it a critical 

component of modern medicine. Achieving accurate 

diagnoses of pneumonia cases is difficult as a result of the 

issues of low contrast and resolution of the created medical 

images, which directly affects the accuracy and speed of 

doctors' examinations. De-noising of medical images while 

preserving fine details is a challenging issue in image 

processing. Therefore, there is a need to enhance medical 

image quality to accurately and represent the information 

related to an illness [1, 2]. The purpose of medical pneumonia 

image enhancement methods is to improve the visual quality 

of pneumonia images. These methods aim to improve image 

features without changing the underlying information they 

contain. There are various methods employed to achieve this, 

including blur removal and de-noising techniques [3-5].  

Pneumonia image enhancement in the literature can be 

categorized into two domains- spatial and frequency domains. 

Pneumonia image enhancement in the spatial domain involves 

manipulating the image pixel values, whereas, in the 

frequency domain, enhancement is achieved through a 

transform approach applied to the pneumonia images. Several 

techniques for enhancing pneumonia images rely on spatial 

processes that operate on individual image pixels. These 

algorithms aim to generate pneumonia images that are more 

suitable and improved compared to the original input image 

[6]. 

The fractional differentials theory (in mathematics) deals 

with differentials of arbitrary order; it should be noted that 

fractional differentials (FD) have similarities to integral 

differentials [6, 7]. When compared to traditional integral 

differential techniques, the employment of FD in image 

processing improves edges, preserve smooth areas, and 

improve the visibility of texture features [6, 8]. Improved 

contrast and clarity are seen in medical images of pneumonia 

that have been processed using fractional differentials. In the 

conventional FDs, textures, edges, and smooth image areas are 

processed using a consistent fractional order, but this approach 

has limitations. While edges can be efficiently enhanced by 

higher fractional orders, smooth areas and poor textures may 

be overlooked. Lower fractional orders, on the other hand, 
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may weaken the edges but may keep weaker textures and 

smoother areas. As a result, improving images in practice is 

difficult. Researchers have created improved and conventional 

fractional differential algorithms for digital image processing 

in order to address these issues [9, 10]. Adaptive fractional 

derivatives have also been investigated in earlier research to 

address image de-noising issues [11, 12]. For instance, six FD 

masks and the YiFeiPu-2 operator were developed by Pu et al. 

[13] which achieved better convergence and precision owing 

to the fixed human assigned values of the fractional orders in 

the earlier mentioned differential operators. 

Numerous research in the area of computer-aided design-

based artificial intelligence (CAD-AI) has focused on the 

diagnosis of pneumonia infections, including classification, 

detection, and segmentation of suspected pneumonia. 

However, these studies have faced limitations due to issues 

related to the pneumonia image dataset. Additionally, high 

accuracy in pneumonia disease classification has not yet 

reached the optimum level [5, 14]. Because the symptoms of 

the disease are not readily apparent on CT or X-ray scans, the 

objective and automated identification of pneumonia poses a 

significant problem in medical imaging. Furthermore, 

addressing this task is of utmost importance as millions of 

individuals succumb to pneumonia annually [15]. 

Through a brief survey of previous studies, deep neural 

networks have demonstrated remarkable promise for image 

classification. Nonetheless, real-valued data provides the 

foundation for the majority of recent research on image 

classification frameworks. The real-valued CNN, according to 

study presented by Yoon and Kang [16], is unable to 

accurately capture the relationship between multi-image 

channels. the need to devise a new approach that addresses the 

shortcomings of the previous proposed methods becomes 

clear. Therefore, this paper presents a novel and efficient 

RN50 CNN-AFDA method that has been applied to 

automatically detect pneumonia from chest X-ray images, as 

well as analyze and learn the patterns that indicate pneumonia 

from chest X-rays. The proposed scheme has four main 

phases; first, a combined approach of ResNet50 and Transfer 

Learning algorithms are used to enhance the collected image's 

quality and make it appropriate for the proposed model (i.e., 

data augmentation and normalization). Second, the adaptive 

fractional differential function is utilized to determine the 

optimal fractional order for each pixel. This function is 

constructed by taking into account the characteristics of 

various image areas. Third, the fractional differential mask is 

modified to include an ideal fractional order to process the 

matching image pixel. Finally, a deep learning approach based 

on the Adam optimizer algorithm is utilized to lower the 

learning rate, fasten the convergence, and enhance the model 

accuracy. The rest of this article is arranged thus: An overview 

of the related theories to fractional difference and the 

implementation of fractional differential masks is presented in 

Section 2. Section 3 presents the adopted methodology in the 

present study. In Section 4, an extensive analysis of the 

conducted experiments and subsequent comparisons was 

presented. Finally, the study is concluded in Section 5. 

 

 

2. RELATED THEORIES OF FRACTIONAL 

DIFFERENTIAL  

 

In mathematics, fractional calculus is the study of extending 

standard definitions of integral and derivative operators, just 

as fractional exponents extend the idea of exponents with 

integer values. In recent years, fractional differential equations 

(FDEs) have gained popularity as a strong and well-organized 

mathematical tool for examining a variety of phenomena in the 

scientific and engineering domains. Applications for FDE can 

be found in many different fields and disciplines, such as 

including electric drives, heat transfer, circuit systems, control 

systems, elasticity, fluid mechanics, continuum mechanics, 

quantum mechanics, signal analysis, social systems, 

bioengineering, biomathematics, biomedicine, and many 

others [1, 17, 18]. As of yet, there is no widely accepted 

definition of fractional calculus. Different definitions of 

fractional calculus have emerged from mathematicians' 

extensive investigation of the problem from multiple 

perspectives. The definitions of fractional calculus given by 

"Riemann-Liouville (R-L), Grünwald-Letnikov (G-L), and 

Capotu definitions" [19] are the three primary classical 

definitions. Considering that the G-L formulation only needs 

one coefficient and is simpler than the other definitions, it is 

the most appropriate for medical image processing. L 

‘Hospital’s rule has allowed us to determine the function 𝑓′(𝑟) 

first, second, and third-order derivatives as follows:  

 

𝑓′(𝑟) = 𝑙𝑖𝑚
𝑔→0

𝑓(𝑟 + ℎ) − 𝑓(𝑟)

𝑔
 (1) 

 

𝑓′′(𝑟) = [𝑓′(𝑡)]′ 𝑙𝑖𝑚
𝑔→0

𝑓(𝑟 + 2ℎ) − 2𝑓(𝑟 + ℎ) + 𝑓(𝑟)

𝑔2
 (2) 

 

𝑓′′′(𝑟) = [𝑓′′(𝑟)]′ 𝑙𝑖𝑚
𝑔→0

𝑓(𝑟 + 3ℎ) − 3𝑓(𝑟 + 2ℎ) + 𝑓(𝑟)

𝑔3  (3) 

 

The n-th order derivative (denoted as 𝑛 ∈ 𝑁) of function f(r) 

is obtained using mathematical induction: 

 

𝑓(𝑛)(𝑟) = 𝑙𝑖𝑚
𝑔→0

𝑔−𝑛 ∑(−1)𝑗(𝑗
𝑛

𝑛

𝑗=0

)𝑓(𝑟 − 𝑗𝑔) (4) 

 

The fractional order is generated by the gamma function in 

the range of integer to fraction. The derivative of order (n + 1) 

on the interval [a, b], when function f(r) has (n + 1), is the 

definition of the v-order FD of function f(r) order derivatives: 

 

𝑎𝐷𝑏
𝑣𝑓(𝑟) = lim

𝑔→0
𝑟−𝑣 ∑ (−1)𝑗( )𝑓(𝑟 − ℎ𝑔)𝑗

𝑣

[(𝑏−𝑎)/𝑟]

𝑗=0

 (5) 

 

where, the integer part of 
𝑏−𝑎

𝑟
 is [

𝑏−𝑎

𝑟
]  and ( )𝑗

𝑣 =
𝑣𝑖

𝑓!(𝑣−𝑗)!  is 

binomial coefficient. 

 

 

3. PROPOSED METHODOLOGY  

 

This section explains the methodology based on RN50 

CNN-AFDA, which is used to identify pneumonia infection in 

X-ray images. The methodology involves several steps; first is 

the acquisition of pneumonia images; second, several actions 

were performed during the data preprocessing phase. Third, 

the proposed RN50 CNN-AFDA method was designed and 

created. Fourth, the proposed scheme was evaluated and tested 

to compare its achievements with existing studies. Figure 1 

depicts the flowchart of the suggested work. 
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Figure 1. The flowchart of the suggested scheme 

 

The primary measures taken to execute the proposed 

scheme are depicted in Figure 1. In the proposed model, the 

output from each step is used in the subsequent step as input. 

Any DL model must first collect a sufficient dataset based on 

the goal that has to be accomplished. Therefore, the most 

appropriate dataset for this study is the 5228 medical X-ray 

dataset, which consists of chest X-ray images that are 

categorized as either pneumonia infection or normal. Once the 

dataset has been acquired, a crucial step is data pre-processing, 

which involves preparing the data for use by the specific 

model. The data is utilized for both training and testing the 

ResNet50 model in this case. Once the model is developed, it 

undergoes a training process before it can be tested on new 

data. The models’ performance is then evaluated based on this 

testing. Model evaluation often involves the use of multiple 

metrics to assess its overall performance efficiency. 
 

3.1 Dataset description 
 

As previously mentioned, it is important to utilize an 

appropriate dataset when attempting pneumonia detection 

from chest X-rays. The pneumonia X-ray dataset is a modest 

in size, it has 3 medical folders (COVID-19 images, 

Pneumonia images and Normal images) these three folders 

containing Chest X-ray (CXR) Images. All images are 

preprocessed and resized to 256×256 PNG format. The used 

dataset has 5228 medical images, 1626 images for COVID-19, 

and 1800 images for Pneumonia and finally 1802 as normal 

images. These images were obtained from the Mendeley Data 

repository [20]. The dataset contains two categories of images: 

pneumonia and normal. The utilized dataset helps the medical 

community and researcher to detect and classify COVID19 

and Pneumonia from Chest X-Ray Images using Deep 

Learning techniques.  

 

 
 

Figure 2. X-ray training images (pneumonia and normal 

categories) 

 
 

Figure 3. Random images from the X-ray dataset and their 

corresponding labels as (pneumonia or normal) [7] 

 

Each image in this dataset is labeled as one of two 

categories. This means that both training images and testing 

images, as well as validation images, contain examples from 

both categories. The distribution of the training images across 

the two groups is detailed in Figure 2. 

Furthermore, each category includes X-ray images for the 

training, testing, and validation processes. In the pneumonia 

category, there are 1590 images for training process and 202 

for the testing phase; there are also 8 images for validation. 

The Normal category has 1568, 226, and 8 images for training, 

testing, and validation purposes, respectively. Figure 3 

displays an example of the dataset images. 

The chosen dataset is quite suitable for the pneumonia 

detection task; it is relatively big and diverse. Furthermore, 

there are actual images labeled and verified to clearly depict 

X-rays of patients with diseases, as well as normal X-rays. 

Also, the dataset includes high-resolution images that help the 

DL model to create improved results for the given project. 

Thus, the availability of this high-quality dataset will enable a 

very accurate method of diagnosing pneumonia in chest X-

rays using the proposed RN50 CNN-AFDA method. 

 

3.2 Data pre-processing 

 

This is an essential step in any ML or DL-based project. 

Preparing the data is also an important stage which includes 

cleaning, transforming and normalization of the data that in 

this case would be most suitable to feed to the ResNet50 CNN 

model selected. This process improves the quality of the data 

which makes it fit for the model to use. It also enhances the 

quality of results obtained, eliminates descriptive errors, and 

prejudice, and reveals useful information about the data. The 

first among the preparatory stages of data pre-processing is to 

read in the data. Images in the dataset are then read from disk 

employing graphical libraries such as OpenCV or PIL in 

Python. Furthermore, all the images are resized to the 

dimension of 224×224 to satisfy the requirements of the 

further proposed RN50 CNN-AFDA approach. The algebraic 

relation expressed below denotes the process of resizing: 
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𝑓: 𝐼−> 𝐼′ (6) 

 

where, I = initial image, I' = resized image. 

The next procedure of pre-processing is data augmentation, 

and it is a method used in enhancing and creating new data 

from the pre-existing dataset. This technique helps to add more 

variations to the image and contribute to the acquisition of the 

given model’s robustness. Augmentation concerns operations 

such as rotation, crop and mirror images to the existing set of 

images. Here is the explanation of the rotation process: 

 

𝑥′ = 𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃 (7) 

 

𝑦′ = 𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 (8) 

 

where, 𝜃 = angle of rotation, x, y = original coordinates of a 

pixel, x’, y’ = post-rotation coordinates of a pixel. 

Conversely, flipping can be applied on the images to flip 

them horizontally, vertically or side wise. The function that 

follows represents the horizontal flipping: 

 

𝑓: (𝑥, 𝑦)−> (𝑊 − 𝑥, 𝑦) (9) 

 

where, W = width of the image. 

Lastly, data normalization is done on the dataset to help 

quicken the models’ convergence during training; it also 

reduces the possibility of local optima entrapment. Data 

normalization is often performed to rescale data to a common 

scale, usually between 0 and 1 or -1 and 1, without distorting 

the differences in the ranges of the data. This is typically done 

by subtracting the mean μ and dividing by the standard 

deviation σ of the pixel values in the dataset: 

 

𝑝′ = (𝑝 − 𝜇)/𝜎 (10) 

 

Such that p is the original pixel value, and p’ is the 

normalized pixel value.  

Overall, all these pre-processing steps contribute to 

preparing the dataset for RN50 CNN-AFDA training, and to 

the effectiveness of the training process. 

 
3.3 The proposed scheme 

 
Three main methods were used in the proposed scheme; 

these are the ResNet50 CNN method, the transfer learning 

method, and the AFDA algorithm. The combination of 

ResNet50's deep architecture and transfer learning makes it a 

robust solution for pneumonia detection, improving accuracy 

while reducing the need for large datasets or extensive 

computational resources. There are several advantages for 

combining ResNet50's deep architecture and transfer learning, 

these are:  

Efficiency: Training deep models from scratch on medical 

datasets, which are often small, is time-consuming and prone 

to overfitting. Transfer learning helps in leveraging the general 

patterns learned from large-scale datasets, speeding up the 

process. 

Generalization: ResNet50, with transfer learning, can 

generalize better to pneumonia detection by adapting pre-

learned knowledge to the specific characteristics of medical 

images. 

Resource saving: A pre-trained model requires 

significantly fewer computational resources compared to 

training a deep model from scratch, making it ideal for tasks 

like pneumonia detection in resource-constrained settings. 
 

3.3.1 ResNet50 CNN 

ResNet50 was developed by He et al. [21] for addressing 

the issue of gradient disappearance and explosion encountered 

during model training. ResNet50 CNN offers a more 

straightforward training process that eliminates the possibility 

of network degeneration. The significance of the ResNet50 

algorithm with 152 layers is demonstrated on the on the 

ImageNet dataset where it achieved only 3.57% error. In the 

traditional ResNet50 model, the convolutional layers of 

VGG's model serve as the basis, where there are two similar 

1×1 convolution layers in each residual block. After these 

convolution layers comes the batch normalization layer, 

followed by the rectified linear unit (ReLU) activation 

function. The Softmax function is then used to guarantee 

normalization. An overview of the typical ResNet50 

architecture is presented in Table 1. 

 

Table 1. The ResNet50 network parameters 

 
Layer Name Output Size 50-Layer 

Conv1 112×112 7×7, 64, stride 2 

Conv2.x 56×56 
3×3 max pool, stride 2 

1×1643×3641×1256×3 

Conv3.x 28×28 1×11283×31281×1512×4 

Conv4.x 14×14 1×12563×32561×11024×6 

Conv5.x 

7×7 1×15123×35121×12048×3 

1×1 
Average pool, 1000-d fc, 

Softmax 

FLOPs 3.8×109 

 

3.3.2 Transfer learning 

The practice of using knowledge obtained from one or more 

sources to help extract features from a target domain is known 

as transfer learning (TL). This is especially helpful if there 

aren't many data samples available. This study requires “a TL-

ResNet50 model that has already being trained on the 

ImageNet dataset. The TensorFlow framework was utilized to 

load the model. While the other layers of the model remained 

frozen, the output feature parameters were adjusted. The TL-

ResNet50 model was trained on the ILSVRC 2012 dataset that 

contains more than a million 224×224-pixel images of natural 

scenes. ReLU is a nonlinear activation function that is widely 

used in the deep learning sector. The ReLU activation function 

is highly popular due to its ability to provide a straightforward 

non-linear transformation, effectively addressing the issue of 

gradient disappearance. The ReLU function is defined [22]. 

 

𝑅𝑒𝐿𝑈(𝑋) = 𝑚𝑎𝑥(𝑥, 0) (11) 

 

3.3.3 Adaptive estimation 

The conventional method of updating weights as used in 

machine learning often referred to as the random gradients 

assigns the same Alpha throughout the training session to all 

weights. However, this technique may not be very efficient 

especially due to the fact that the learning rate normally needs 

to be adjusted at various instances to ensure optimal 

convergence. Whereas Adam algorithm [4] produces the 

adaptable learning rates for required parameters in the 

procedure, the Adam algorithm is well known to be easy to 

implement, to be numerical efficient, and to use little 

memories. Thus, the performance of the Adam method is 

higher than the RMSProp algorithm, and it is defined as: 
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𝑣𝑡 ← (1 − 𝛽2) ∑ 𝛽2
𝑡−𝑖

𝑡

𝑖=1

∙ 𝑔𝑖
2 (12) 

 

where, 𝑣𝑡 is updated as a weighted sum of past squared 

gradients. 𝛽2 is a hyperparameter that controls the decay rate 

of the past squared gradients (usually close to 1, like 0.999). 

To enhance the model's accuracy and convergence, this 

work combined the Adam optimizer with a decreasing 

learning rate. A better learning rate was achieved during the 

initial training phase by halving the models’ learning rate after 

10 training cycles; this process also improved the network 

convergence. The later stage of the training used a lower 

learning rate to enhance convergence towards optimal 

solutions. 

 

3.3.4 Cross-entropy loss function (CELF) 

The CELF is a widely used approach [23] for improving the 

models’ prediction accuracy; it examines the variations 

between the predicted and actual probability distributions. The 

CELF approach mostly focuses on the probability of a result 

occurring; and as long as the result is significant, the outcome 

of the prediction is taken as precise. The accuracy and training 

speed of the model is improved significantly because the 

CELF technique can rapidly alter the weight (W) and deviation 

(B). The CELF is defined as seen below: 

 

𝐿(𝑦(𝑖), 𝑦ℎ𝑎𝑡(𝑖)) = − ∑ 𝑦𝑗
(𝑖)

𝑞

𝑗=1

log 𝑦ℎ𝑎𝑡𝑗
(𝑖)

 (13) 

 

where, 𝑦𝑗
(𝑖)

vector = element of the 𝑦(𝑖)vector that is not 0 or 1; 

𝑦(𝑖) = discrete value of the sample 𝑖 category. 

 

3.3.5 TL-ResNet50 CNN model 

The TL-ResNet50 CNN model consists of 5 convolutional 

kernels and 50 neural network layers. Fundamental 

convolutional operations like convolution (CONV), batch 

normalization (BN), and rectified linear unit (ReLU) are used 

in each layer of the model. The training set is simply handled 

in a single computation for the stage 0 convolutional layer. The 

bottleneck structure used in Stages 1 through 4 is made up of 

numerous similar residual components. In stage 1, residual 

blocks are included to improve the effectiveness of feature 

extraction while addressing gradient disappearance and 

explosion issues. The model starts to increasingly extract more 

sophisticated and abstract features at stages 2, 3, and 4. Target 

categorization tasks are completed at stage 4 of the process. 

 

 
 

Figure 4. The TL-ResNet50 CNN model network structure [21] 

 

Figure 4 illustrates the design of the proposed TL-ResNet50 

model. A 1×1 convolutional layer is part of the ResNet50 core 

component, which is shown as the "Bottleneck basic residual 

module (BTNK1 and BTNK2)" on the right side of the image. 

This basic module was included with the intention of 

supporting deeper networks. Assuming there are 256 channels 

in the input, the number of channels will be decreased to 64 by 

the 1×1 convolutional layer. A 3×3 convolutional layer is then 

used to boost the number of channels to 256. Reducing the 

amount of network parameters by using a 1×1 convolutional 

layer eases the computational burden on deeper networks. 

In general, CNNs consist of various components and one of 
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the most popular CNN networks is ResNet. In ResNet, the 

basic block is made up of two parts: a convolutional layer and 

a shortcut connection, also known as an identity connection. 

The accuracy of the model increases directly with the number 

of modules in the network. Throughout the years, various 

modifications and improvements have been made to the 

ResNet networks. This section introduces the basic network, 

the original ResNet, and ResNet with BN. Matrix 

multiplication can be used in the case of ResNet since its 

convolution operation is linear. The matrix multiplication can 

be described as follows: If the input vector is 𝑥 ∈ ℝ𝑛2
, the 

weight matrix is 𝑊 ∈ ℝ𝑛2×𝑛2
, and the characteristic output 

obtained after the convolution operation is 𝑦 ∈ ℝ𝑛2
; the 

convolution process can be written as 𝑦 = 𝑊𝑇𝑥. 

 

 
 

Figure 5. A general diagram of the basic blocks within 

ResNet, and with BN [24] 

 

(1) Basic block 

Figure 5(a) presents the basic block, which serves as the 

backbone of the convolution network. In this block, the input 

data undergoes convolution to extract features. To 

differentiate between them, the same basic block is introduced 

to the ResNet basic network (b) as well. The only distinction 

between the basic block (a) and the ResNet block (b) is the 

presence of a shortcut connection in (b). In the figure, 𝑥𝑙  is the 

input feature of the 𝑙-th module. 𝑓: 𝑥𝑙 → 𝑥𝑙+1 is the mapping 

of the input vector 𝑥𝑙  to the output vector 𝑥𝑙+1  in the basic 

network. Consequently, the output of this layer is: 

 

𝑥𝑙+1 = 𝑓 (𝑥𝑙 , {𝑊𝑙
(𝑖)

}) = 𝑊𝑙
(2)

𝜎 (𝐵𝑁 (𝑊𝑙
(1)

𝜎(𝐵𝑁(𝑥𝑙)))) (14) 

 

Such that 𝑊𝑙
(𝑖)

 is the 𝑖-th weight in the 𝑙-th module, and 𝑖 =

1,2. 𝜎 is the activation function (ReLU). 

 

(2) Basic ResNet block  

The ResNet module includes a basic block in addition to the 

identity mapping. If the input vector of ResNet in the l-th 

module is denoted as x_l, as illustrated in Figure 5(b), and the 

output vector of the l-th module is represented as x_(l+1) 

(which serves as the input for the next module), the output 

vector of the ResNet is consequently obtained.  

The module is 𝑥𝑙+1 = 𝜎 [𝑓 (𝑥𝑙 , {𝑊𝑙
(𝑖)

})] + 𝑥𝑙, where, 

 

𝑓 (𝑥𝑙 , {𝑊𝑙
(𝑖)

} = (𝑊𝑙
(2)

)
𝑇

𝜎 ((𝑊𝑙
(1)

)
𝑇

𝑥𝑙) (15) 

 

(3) Basic ResNet block added BN 

The 𝑙-th module with BN in ResNet is shown in Figure 5(c) 

and can be further described. The input feature of the 𝑙 -th 

module is 𝑥𝑙 , and the output of this layer is 𝑥𝑙+1 =

𝑓 (𝑥𝑙 , {𝑊𝑙
(𝑖)

}) + 𝑥𝑙 . In this case, 

 

𝑓 (𝑥𝑙 , {𝑊𝑙
(𝑖)

})

= (𝑊𝑙
(2)

)
𝑇

𝜎 (𝐵𝑁 ((𝑊𝑙
(1)

)
𝑇

𝜎(𝐵𝑁(𝑥𝑙)))) 
(16) 

 

where, BN is the batch normalization operation. 

 

(4) Stability analysis of ResNet 

The condition number 

Lemma 1: 𝑊𝑙
(1)

, 𝑊𝑙
(2)

∈ ℝ𝑛2×𝑛2
 are the two weight 

matrices of 𝑙 -th module of ResNet. 𝐼 ∈  ℝ𝑛2×𝑛2
 is the unit 

matrix, and 𝑥𝑙 ∈ ℝ𝑛2
 is the input vector of l-th module. In this 

condition, the corresponding weight matrix of the whole 

module is 𝑊𝑙
(1)

𝑊𝑙
(2)

+ 𝐼 , which satisfies the following 

inequality: 

 

(𝑚𝑙
(1)

𝑚𝑙
(2)

+ 1)∥∥𝑥𝑙∥∥2
≤ ∥∥

∥(𝑊𝑙
(1)

𝑊𝑙
(2)

+ 𝐼)
𝑇

𝑥𝑙∥∥
∥

2
 

                                ≤ (𝑀𝑙
(1)

𝑀𝑙
(2)

+ 1)∥∥𝑥𝑙∥∥2
 

(17) 

 

Such that 𝑀𝑙
(1)

, 𝑚𝑙
(1)

 are the maximum singular value and 

the minimum singular value of 𝑊𝑙
(1)

, respectively, and 

𝑀𝑙
(2)

, 𝑚𝑙
(2)

 are the maximum singular value and the minimum 

singular value of 𝑊𝑙
(1)

, respectively. 

Remark 1: According to inequality (1), the condition 

number of 𝑊𝑙
(1)

𝑊𝑙
(2)

+ 𝐼 can be defined as: 

 

𝜅𝑙,𝑅(𝑊𝑙
(1)

𝑊𝑙
(2)

+ 𝐼) =
𝑀𝑙

(1)
𝑀𝑙

(2)
+ 1

𝑚𝑙
(1)

𝑚𝑙
(2)

+ 1
 (18) 

 

Remark 2: In this case, the weight matrix is always 

invertible. If the matrix is not full, the minimum singular value 

of the matrix becomes zero, and the condition number tends to 

infinity. Thus, opposing the actual classification network, the 

network diverges. Consequently, the matrix is full rank, and 

the singular values are non-negative. 

Then, stability analysis of the ResNet block: 

Based on the assumptions of Eq. (2), the condition number 

of 𝑙-th module of the base Network: 

 

𝜅𝑙,𝐵(𝑊𝑙
(1)

𝑊𝑙
(2)

) =
𝑀𝑙

(1)
𝑀𝑙

(2)

𝑚𝑙
(1)

𝑚𝑙
(2)

 (19) 

 

Seemingly 
 

𝜅𝑙,𝑅(𝑊𝑙
(1)

𝑊𝑙
(2)

+ 𝐼) − 𝜅𝑙,𝐵(𝑊𝑙
(1)

𝑊𝑙
(2)

) < 0 (20) 

 

The statement above implies that the ResNet network has a 

lower condition number compared to the normal network 

assuming they have the same input features and convolutional 

kernel. As a result, the forward propagation convergent 

learning process is faster in ResNet compared to networks that 

are solely based on convolution. The evolutional property of 
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ResNet can also be discussed when taking 𝑙-th module as an 

example. Let (𝑊𝑙 + 𝐼)𝑇(𝑥𝑙 + Δ𝑥𝑙) = 𝑎𝑙 + Δ𝑎𝑙 , where, Δ𝑥𝑙  is 

the absolute error of the input vector of the 𝑙-th module, 𝑎𝑙 

designates the output vector of the 𝑙-th module operation, Δ𝑎𝑙 

is the absolute error of the output vector after training. Then 

the perturbation estimates of the output data of 𝑙-th module can 

be represented in the following Lemma. 

 

Lemma 2: The perturbation of the output data after the l-th 

module operation satisfies the following inequality: 

 
1

𝜅𝑙,𝑅(𝑊𝑙 + 𝐼)
⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
≤

∥∥Δ𝑎𝑙∥∥

∥∥𝑎𝑙∥∥
≤ 𝜅𝑙,𝑅(𝑊𝑙 + 𝐼) ⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
 (21) 

 

When the same idea provided in Lemma 2 is followed, the 

perturbation bounds about the basic block can be provided. Let 

𝑊𝑙
𝑇(𝑥𝑙 + Δ𝑥𝑙) = 𝑏𝑙 + Δ𝑏𝑙 . 𝑥𝑙 , Δ𝑥𝑙 , which is the same as the 

case in ResNet. 𝑏𝑙 , Δ𝑏𝑙 are the output vector and perturbation 

of the output, respectively. Thus, the relative error of the input 

data is limited to: 

 
1

𝜅𝑙,𝐵(𝑊𝑙)
⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
≤

∥∥Δ𝑏𝑙∥∥

∥∥𝑏𝑙∥∥
≤ 𝜅𝑙,𝐵(𝑊𝑙) ⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
 (22) 

 

Meanwhile 𝜅𝑙,𝑅(𝑊𝑙
(1)

𝑊𝑙
(2)

+ 𝐼) − 𝜅𝑙,𝐵(𝑊𝑙
(1)

𝑊𝑙
(2)

) < 0 , 

then the following can be deduced: 

 
1

𝜅𝑙,𝐵(𝑊𝑙)
⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
≤

1

𝜅𝑙,𝐵(𝑊𝑙 + I)
⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
 (23) 

 

𝜅𝑙,𝐵(𝑊𝑙) ⋅
∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
≥ 𝜅𝑙,𝑅(𝑊𝑙 + 𝐼) ⋅

∥∥Δ𝑥𝑙∥∥

∥∥𝑥𝑙∥∥
 (24) 

 

In other words, from inequality (23) and inequality (24), it 

can be concluded that the upper limit of relative error of the 

output data will be smaller and the lower limit will be larger in 

ResNet CNN. The following Lemma can be used as evidence 

of the fact that ResNet with BN has better outcomes compared 

to the base network in divergence, such that ResNet with BN 

has a more stable learning process since it has a smaller 

perturbation range than the base network. 

Let 𝑥𝑙+1 be the actual output of the 𝑙-th module, whereas 

𝑦𝑙+1 is the actual output vector of the 𝑙-th module with BN. 

The loss function is 𝐸 =
1

2
(𝑡𝑙+1 − 𝑥𝑙+1)2, 𝐸𝐵𝑁 =

1

2
(𝑡𝑙+1 −

𝑦𝑙+1)2 . 𝜎 designates the ReLU activation function, and 𝑡𝑙+1 

designate the expected output vector of the 𝑙-th module. 

 

Lemma 3: The output vectors of the ResNet module with 

BN and without BN can be written as 𝑥𝑙+1 = (𝑊𝑙)
𝑇𝜎(𝑥𝑙) +

𝑥𝑙 , 𝑦𝑙+1 = (𝑊𝑙)
𝑇𝜎(𝐵𝑁(𝑥𝑙)) + 𝑥𝑙 , respectively. The following 

equality can be achieved: 

 
∥∥Δ𝐵𝑁(𝑥𝑙)∥∥

∥∥𝐵𝑁(𝑥𝑙)∥∥
≤

∥∥Δ𝑥𝑙∥∥

∥ 𝑥𝑙 ∥
 (25) 

 

Table 2. Model training parameters 

 
Parameter Value Description 

Batch size 16 Number of images in each training 

Learning rate 0.001 Initial learning rate 

Epoch 80 Training iteration times 

CUDA Enable Comp 

3.4 Model training 

 

A total of 80 model iterations was carried out using a batch 

size of 16 and an initial learning rate of 0.001, all within a 

Colab environment. Table 2 provides a detailed breakdown of 

the training parameters. 

 

 

4. RESULTS AND DISCUSSION  

 

4.1 Evaluation metrics 

 

Various metrics are commonly employed to assess the 

performance of deep learning models depending on the model 

type and the specific task at hand. In classification models, 

such as the ResNet50 model that is being proposed, five 

commonly used metrics are precision, recall, AUC, accuracy, 

and F1 score [24, 25]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (26) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (27) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (28) 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (29) 

 

One widely used statistic for analyzing a model's 

performance in binary classification tasks is the ‘Area Under 

the Curve (AUC)’ which calculates the area under the ROC 

curve. This curve is developed by plotting a graph of the true 

positive rate (TPR) against the false positive rate (FPR) at 

different classification levels. All these metrics rely on True 

positive (TP), False positive (FP), True negative (TN), and 

False negative (FN).  
 

4.2 Training and validation results 
 

The following results reflect the RN50 CNN-AFDA 

scheme’s performance in detecting pneumonia in chest X-ray 

images based on recall, F1 score, the accuracy, loss, and 

precision during the training and validation processes. Starting 

with accuracy, the model during both the training and 

validation phases was able to reach high values as depicted in 

Figure 6.  

The figure shows that after approximately 5 epochs (on the 

x-axis), the model achieved high accuracies, reaching 0.98 for 

training, which is higher than that of validation (0.96). During 

the first 6 epochs, the training accuracy increased significantly 

whereas the validation accuracy increased slightly. Both 

values kept increasing till 30 epochs are reached, upon which 

the training accuracy reached its maximum of 0.98. 

Figure 7 depicts the loss-epochs number relationship. The 

line plot clearly showed that the loss decreases during the first 

five epochs for both the training and validation losses. 

However, it is worth noting that the decrease is more 

pronounced in the training data. Following that, there is a 

gradual decrease in loss in both the datasets (training & 

validation sets); the training loss plateaued after 35 epochs to 

around 0.10. On the other hand, the validation loss initially 

increased after 30 epochs but then decreased at 35 epochs.  
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Figure 6. Accuracy of the proposed model (training and 

validation) 

 

 
 

Figure 7. The proposed models’ training & validation loss 

 

 
 

Figure 8. Training and validation precision of the proposed 

model 

 

The precision value achieved in training and validation can 

be visualized in Figure 8. The line plot illustrates how the 

precision value changes over different epochs. In the first 5 

epochs, the training precision showed a significant increase 

while the validation precision only showed a slight increase. 

The training and validation precision gradually increased after 

the first 5 epochs, eventually reaching a maximum of 0.98 for 

training precision at 35 epochs. However, it is worth noting 

that the validation precision experienced a significant decline 

after 30 epochs, only to recover and reach a value of 0.96 by 

the 35th epoch.  

The recall values for both the training and validation phases 

are displayed in Figure 9. During the initial 30 epochs in the 

validation phase, recall showed a gradual and slight increase; 

however, after surpassing 30 epochs, there was a sharp drop in 

recall. Subsequently, it started to increase until it reached its 

final value of 0.96. On the other hand, during the training 

phase, there was a noticeable surge in the recall value within 

the initial 5 epochs. The value steadily increased until it 

reached 0.98 after 35 epochs. It is important to note that the 

recall value for training was consistently higher than the recall 

value for validation. 

 

 
 

Figure 9. Training and validation recall of the proposed 

model 

 

 
 

Figure 10. Training and validation F1 score of the proposed 

mode 

 

The F1 score of the model during training and validation is 

visualized in Figure 10. The F1 score for the training 

consistently surpassed the F1 score for validation. In the first 

five epochs, there was a significant increase in the training F1 

score, while the validation F1 score only showed a slight 

increase. After that, the training and validation values 
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gradually increased until they reached 30 epochs. After 30 

epochs, the training F1 score reached its maximum value of 

0.98, while the validation F1 score fluctuated before 

eventually reaching a value of 0.96.  

 

4.3 Testing results 

 

There are various types of pneumonia, including aspiration, 

bacterial, and viral pneumonia, which can all manifest 

differently on radiography. An incorrect diagnosis could result 

from a model that is poorly trained to recognize one kind (e.g., 

bacterial) not generalizing to other types (e.g., viral). 

Specifically, models trained on datasets including more 

common neumonia cases may not identify the distinct 

characteristics that COVID-19 pneumonia exhibits. 

Furthermore, certain models may overfit the training set, 

which results in good performance on the training dataset but 

poor performance on new, untested data. The inability of the 

model to generalize to more individuals is made worse by 

small or homogeneous datasets. In this paper, after training 

and validating the model, it was tested on new images from the 

testing dataset to assess its performance on previously unseen 

images. 

 

Table 3. Performance evaluation on testing dataset 

 
 Accuracy F1 Score Recall Precision 

Test set 0.9578 0.9719 0.9844 0.9596 

 

According to Table 3, the model demonstrated a high level 

of accuracy, achieving a value of 0.957 on the testing dataset. 

Furthermore, the values of the recall (0.98), precision (0.95), 

and F1 score (0.97) were all high. The results demonstrated 

that the model has a high accuracy in identifying the presence 

of pneumonia in chest X-rays, as well as classifying normal 

chest X-rays.  

 

 
 

Figure 11. Random selection of predictions in testing dataset 
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Figure 12. ROC curve for testing 

 

Figure 11 is an example of the predictions that were 

performed by the model to classify chest X-ray images into 

pneumonia or normal. 

Furthermore, the model was evaluated according to AUC 

(shown in Figure 12), where the AUC value was 0.99. This 

high AUC score demonstrates the models’ capability in 

discriminating between negative and positive cases with high 

FP and TP rates. 

 

4.4 Comparison with other models 

 

The use of the proposed RN50 CNN-AFDA model gave 

promising results with a high value of ROC curve of 0.99; this 

ascertains its high accuracy in discriminating between the two 

classes, namely the positive and negative ones. In addition, the 

proposed method had better performance in the classification 

of pneumonia with accuracy of 0.957 and average F1 score of 

0.97. The results for the proposed TL-ResNet50-CNN model 

are favorable compared to the study conducted by Singh et al. 

[26] since the proposed model showed better accuracy (0.957) 

compared to the accuracy of 0.9375 identified in the study by 

Singh et al. [26]. In addition, the ROC curve results were 0.99 

for the proposed model compared to 0.96 obtained by Singh et 

al. [26]. Therefore, the proposed TL-ResNet50 model was 

compared to other recently published models in terms of 

performance and observed to outperform the other related 

methods by achieving a higher accuracy and F1 score as 

depicted in Table 4. 
 

Table 4. Comparison of the performance of the proposed model with existing DL models 
 

S/No. Architecture Accuracy F1 Score Recall Precision 

- Proposed Model 0.957 0.97 0.9844 0.9596 

[3] Fuzzy Expected Value 44.6 92.7 84.1 96.7 

[26] 

VGG16 92.14 0.9234 -- -- 

VGG19 90.22 0.8999 -- -- 

ResNet50 82.37 0.8281 -- -- 

ResNet101 75.96 0.7593 -- -- 

ResNet152 87.179 0.8734 -- -- 

ResNet50V2 89.26 0.8937 -- -- 

ResNet101V2 92.62 0.925 -- -- 

ResNet152V2 92.94 0.9312 -- -- 

InceptionV3 89.42 0.8937 -- -- 

InceptionResNetV2 90.7 0.8989 -- -- 

DenseNet121 91.82 0.9171 -- -- 

DenseNet169 88.78 0.8874 -- -- 

DenseNet201 91.83 0.9171 -- -- 

NASNetLarge 88.14 0.8812 -- -- 

Quaternion Residual Network 93.75 0.9405 -- -- 
 
 

5. CONCLUSIONS 

 

A novel RN50 CNN-AFDA scheme for the classification of 

chest X-ray images into Pneumonia and Normal classes was 

designed and implemented in this study based on the Adaptive 

Fractional Differential Algorithm; the evaluation was done 

using pneumonia X-ray dataset sourced from the Mendeley 

data repository. The dataset was first pre-processed before the 

training and testing phases. From the evaluations, the proposed 

scheme made the following contributions: 

High accuracy: The proposed model achieved high 

accuracy of 95% following the evaluations with an F1 score of 

0.97, proving the effectiveness of the proposed ResNet50 in 

the detection of pneumonia. 

Applicability on large datasets: Another disadvantage of 

other models which are oriented on pneumonia detection is 

that those models are trained and tested with small sets of data. 

On the other hand, the proposed RN50 CNN-AFDA scheme 

used in this paper was trained and tested on a larger image 

database of 5856 images. This way, the model acquires better 

generalization capacity and the possibility to be less 

susceptible to over-fitting. 

Superiority to other models: The proposed RN50 CNN-

AFDA scheme performs higher accuracy of the test cases with 

a better F1 score than other related works that focused on the 

application of ML and DL methods to pneumonia detection. 

Time efficiency: The proposed RN50 CNN-AFDA scheme 

provides a fast method of producing much faster outcomes 

based on the chest X-rays; this is in contrast to slow and time-

consuming method of analysis by specialized physicians 

handling the films. Hence, the proposed method could hasten 

early identification and possibly early intervention of cases of 

pneumonia. 

Generalized applicability in the health sector: The 

presented RN50 CNN-AFDA showed excellent performance 

in the detection process of the images of the X-rays. In general, 

the procedure of obtaining such a model does not depend on 

the specific purpose of using it in the medical field; hence, the 

proposed model can also be applied in other medical fields for 

spotting other diseases based on images. 
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The suggested scheme demonstrates promise for 

generalization when tested on various data sets. The future 

scope of the proposed study is predicted to yield better 

outcomes if the suggested architecture is combined with the 

expert radiologists' projections. 
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