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The K-means clustering technique securely used to cluster similar data points is 

normally inherent to spherical clusters with a centroid. The methodology proposed in 

this study is the DEAK-means method that incorporates the differential evolution 

algorithm (DEA) and K-means clustering to enhance the accuracy of clustering ignored 

data sets. With the help of DEAK-means, all the search spaces can be explored 

systematically and optimal features for classification can be identified hence clustering 

performance is boosted. The experimental results on 5 datasets indicate that in 

comparison with the commonly used K-means, DEAK-means yield better silhouette 

value and average selected features. This new hybrid of differential evolution and K-

means algorithm proves to be a solution to discover problems that arose with the 

selection of features and clustering of the unlabeled dataset. 
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1. INTRODUCTION

Feature selection is one of the most important steps in the 

preprocessing of data especially in the field of machine 

learning and data mining. It is primarily used to eliminate all 

the undesired features from the data set to improve the 

capability of the predictive model by choosing only those 

features that have a strong impact on the model. Besides 

reducing the amount of computations required by the machine, 

feature selection helps the accuracy and the readability of the 

model [1, 2]. This process helps in dealing with big data in 

particular cases where many features may in fact be unhelpful 

or even damaging to the model. To ensure that feature 

selection is effective, filter methods, wrapper methods as well 

as embedded methods are used. Filter methods use statistical 

measures to assess features’ relevance based on measures of 

association that do not involve the learning algorithm; on the 

other hand, wrapper methods employ the learning algorithm to 

assess feature subsets. Embedded methods select features 

while the model is being trained as a part of the model training 

process. As a result of developing feature selection strategies, 

the overburdened and wasteful models can be avoided easily; 

hence it is an inevitable component of current analysis and 

modeling processes for the researchers [3]. 

Differential evolution (DE) is a type of evolutionary 

algorithm (EA) that utilizes real numbers to represent variable 

values in order to address optimization problems in a 

continuous domain. DE, among the top EA, forms continuous 

optimization problems using variables with actual values, was 

first created by Stom and Price and is well-known for its 

robustness, simplicity, speed, and usability [4]. DE has a 

strong track record of effectively resolving optimization issues 

and has been utilized in various fields such as power control 

systems, chemical engineering, and clustering simultaneous 

transit network design, among others. The algorithm utilizes 

processes of adaptation, emergence, and learning to try to 

improve an option across many generations. DE creates new 

solutions in each iteration by perturbing the current potential 

solutions with a scaled difference between two extra solutions 

randomly selected from the population, compared with other 

EA that recombines solutions within the limits of a 

probabilistic scheme. Differential evolution for feature 

selection in clustering datasets has the advantages of being 

rebuts in noisy environments and being simple to implement, 

potential sluggish convergence, and difficulties handling 

constraints or high- dimensional spaces [5]. 

The training outcomes of a machine learning model can be 

significantly improved and accelerated by carefully selecting 

a subset of high-correlation, non-redundant features from the 

feature set [6]. There are two main categories of feature 

selection algorithms that depend on the evaluation criterion: 

filter feature selection and wrapper feature selection. Filter 

feature selection methods evaluate the value of each 

characteristic before selecting a feature subset. For example, 

the well-known relief algorithm introduced by Kira and 

Rendell measures the degree of feature discrimination by 

computing the distance between similar and different samples. 

On the other hand, wrapper feature selection algorithms, such 

as the genetic algorithm, SVM-RFE, the estimation of 

distribution algorithm, and the differential evolution 

algorithm, combine feature selection and learning algorithms 

to choose a feature subset based on the learning outcome as 

the evaluation criterion [7, 8]. 

Clustering is a powerful data analysis technique that enables 

the categorization of data objects in to groups based on their 

properties and relationships. This technique has diverse 

applications in filed such as data mining, Knowledge 

discovery, pattern recognition, and vector quantization. There 
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are two primary types of clustering algorithms: hierarchical 

and partitional clustering. Hierarchical clustering is a method 

that divides the data into a series of partitions, ranging from a 

single cluster that contains all objects to n clusters, each 

containing only one object. That hierarchy is depicted by a 

dendrogram, which is a tree-like diagram that depicts the 

relationships between groups at various levels. In contrast, 

partitional clustering algorithms divide data into a 

predetermined number of clusters, which are frequently 

provided by the user. Partitional clustering methods include 

fuzzy c-means and k-means. Both hierarchical and partitional 

clustering algorithms have benefits and drawbacks, and the 

methodology chosen is decided by the data is specific qualities 

and the desired analysis results [9]. One the other hand, 

partitional clustering algorithms divide the collection of data 

objects into non-overlapping clusters, placing each object in 

exactly one cluster. The K-means technique is a widely used 

partitional clustering algorithm, but it has some drawbacks 

such as convergence to local optima depending on how the 

initial cluster centroids are chosen [10]. In this paper, the 

objective is to improve the precision of unlabeled data 

gathering, such as gene analysis, by actively exploring 

research domains. To improve clustering results, the suggested 

strategy focuses on identifying the best classification 

characteristics. The study's findings demonstrate that the 

suggested method outperforms existing methods in terms of 

average feature selection and data similarity within clusters, as 

evidenced by experimentation and comparison on 5 datasets. 

The rest of the essay is divided into the following sections. 

In Section 2, the original K-means clustering's structure is 

described. Introduced in Section 3 is the differential evolution 

algorithm. Our proposed strategy is presented in Section 4. On 

various data sets, Section 5 displays the experimental findings. 

Conclusions are provided in Section 6 at the end. 

 

 

2. K-MEANS CLUSTERING 

 

The K-means algorithm divides a dataset into K unique 

subgroups or clusters, which is a highly successful 

unsupervised clustering technique. Reducing the sum of the 

squared distances between data points and cluster centroids is 

the main goal of K-means [11]. This method keeps a 

considerable spacing between clusters while making sure that 

each cluster's data points are as comparable as possible. By 

calculating the average value of all data points in a cluster, K-

means identifies the centroid, which represents that cluster. 

The algorithm continues to iterate until the centroids are 

stable, and the final result is a set of K clusters that optimize 

the homogeneity (similarity) of data points within each cluster. 

K-means is widely used in fields such as machine learning, 

image processing, and data mining because it can efficiently 

group large datasets based on their inherent patterns and 

structures [12, 13]: 

 

𝐷(𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ (𝑥𝑛 − 𝑦𝑛)𝑛 (1) 

 

The K-means algorithm works as shown below: 

 

Algorithm: K-Means Algorithm 

1. K, the number of clusters, should be indicated. 

2. 

After shuffling the dataset initially, initialize the 

centroids by selecting K data points at random for the 

centroids. 

3. 

Continue iterating unit the centroids stop changing. In 

other words, the grouping of data points remains 

constant.  

4. 
The summation of the squared lengths between each 

centroid and data point is carried out. 

5. 
Place each data point in the most nearby cluster 

(centroid). 

6. 
By averaging the data points in each cluster, calculate 

its centroids. 

 

 

3. DIFFERENTIAL EVOLUTION ALGORITHM  

 

Differential evolution (DE) is a widely used optimization 

algorithm that is particularly effective for solving continuous 

optimization problems. DE has proven to be more resilient and 

less biased when compared to another evolutionary algorithm 

(EA) like genetic algorithm (GA) and Particle Swarm 

Optimization (PSO). For optimal results, it is essential to 

carefully adjust the three key parameters of DE optimization: 

population size, crossover rate, and scaling factor [PS]. Over 

the past few decades, a lot of research has been conducted to 

assess the impact of these factors on DE performance and to 

find the optimal values for them. At the start of the 

optimization process, DE produces a population of persons at 

random with a uniform distribution across the decision space 

(N). The algorithm then employs each of the three main 

evolutionary operators-mutation, crossover, and selection-

iteratively to enhance each member (𝑥𝑖
→) in the population, 

ultimately producing results that are close to ideal [14]. 

The conventional DE method, developed by Stom and 

Price, has three main operators, each of which is described in 

depth in the subsections that follow factors utilized in the 

standard DE algorithm, as originally formulated by Stom and 

Price [5, 15]. 

 

3.1 Mutation operator 

 

A mutation results in a putative progeny (or mutant vector) 

as follows: 

 

�⃗�𝑖,𝑔+1 = �⃗�𝑟1,𝑔 + 𝐹(�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔), 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 (2) 

 

where, the scale factor F controls how much the disparity in 

variation between the two vectors is amplified. �⃗�𝑟2,𝑔  and 

�⃗�𝑟3,𝑔(�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔), to determine how distant the produced 

offspring should be from the point �⃗�𝑟1,𝑔. Whereas �⃗�𝑟1,𝑔; �⃗�𝑟2,𝑔 

and �⃗�𝑟3,𝑔 are three mutually unique people chosen at random 

from the population who are not equal to one another, F 

normally falls within the range [0,1] [16]. 

Eq. (2), often known as the DE/rand/1 scheme, represents 

the most basic sort of mutation. 

As an alternative, the DE/best/1 technique can be used to 

create a mutant vector by including the population member 

with the highest fitness value of that generation: 

 

�⃗�𝑖,𝑔+1 = �⃗�𝑏𝑒𝑠𝑡 ,𝑔 + 𝐹 × (�⃗�𝑟1,𝑔 − �⃗�𝑟2,𝑔) (3) 

 

where, x is the generation g is top-performing individual 

vector 𝑥 𝑏𝑒𝑠𝑡,𝑔
→ . 

The following DE mutation variations have been reported 

in the literature. 
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𝐷𝐸/𝑐𝑢𝑟 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1 

�⃗�𝑖,𝑔+1 = �⃗�𝑟1,𝑔 + 𝐹 × (�⃗�𝑏𝑒𝑠𝑡 ,𝑔 − �⃗�𝑟1,𝑔) + 𝐹 ×

(�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔),  

𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 

(4) 

 

𝐷𝐸/𝑟𝑎𝑛𝑑/2 

�⃗�𝑖,𝑔+1 = �⃗�𝑟1,𝑔 + 𝐹 × (�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔)

+ 𝐹 × (�⃗�𝑟4,𝑔 − �⃗�𝑟5,𝑔), 

𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑟5 ≠ 𝑖 

(5) 

 

𝐷𝐸/𝑏𝑒𝑠𝑡/2 

�⃗�𝑖,𝑔+1 = �⃗�𝑏𝑒𝑠𝑡 ,𝑔 + 𝐹 × (�⃗�𝑟1,𝑔 − �⃗�𝑟2,𝑔) + 𝐹 ×

(�⃗�𝑟3,𝑔 − �⃗�𝑟4,𝑔),  

𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑖 

(6) 

 

𝐷𝐸/𝑟𝑎𝑛𝑑 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/2 

�⃗�𝑖,𝑔+1 = �⃗�𝑟1,𝑔 + 𝐹 × (�⃗�𝑏𝑒𝑠𝑡 ,𝑔 − �⃗�𝑖,𝑔)

+ 𝐹 × (�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔)

+ 𝐹 × (�⃗�𝑟4,𝑔 − �⃗�𝑟5,𝑔), 

𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑟5 ≠ 𝑖 

(7) 

 

3.2 Crossover operator 

 

The recombination or crossover operator in Differential 

evolution (DE) is a key mechanism that enables the algorithm 

to explore the search space and generate new and ideal 

solutions [4]. The method can generate trial vectors that are 

compared to parent vectors by merging people from the 

previous generation with newly developed mutants at a 

predefined crossover rate. The better solutions are then 

selected to advance to the next generation, while the inferior 

once is discarded. This iterative process continues until the 

termination condition is met, resulting in a population of 

individuals that offer optimal solutions. The efficacy of the 

crossover operator is influenced by various factors such as 

selection strategies, mutation, and population size. The 

crossover operator is widely used in optimization problems 

due to its ability to enhance the diversity and quality of the 

population. Overall, the DE algorithm with its efficient 

recombination or crossover operator has proven to be a 

powerful and effective approach for solving complex 

optimization problems. The two most common crossover 

types in DE are exponential and binomial, both of which 

employ a random number generator and the crossover rate to 

obtain continuous results. The binomial crossover selects a 

single element from the mutant vector with a probability of cr, 

while the exponential crossover operates on the entire vector 

and replaces the elements with probabilities that exponentially 

decrease with distance from the selected element. By enabling 

the exchange of information between individuals in the 

population, the crossover operator enhances the diversity of 

the population and helps to prevent premature convergence to 

suboptimal solutions, ultimately leading to better overall 

performance of the DE algorithm. 

Eq. (4) describes the process of binomial vectors in 

Differential evolution (DE). With a probability of cr for some 

components from the mutant vector and a likelihood of 1-cr 

for others from the current target vector, this method generates 

trial vectors. The condition J=aj ensures that at least one 

component is selected from the mutant vector. This process 

can effectively combine the information from both the mutant 

and target vectors, leading to better solutions. However, the 

choice of crossover rate cr can greatly impact the performance 

of the algorithm. A high cr value can increase the diversity of 

the population, but it may also cause a premature convergence 

rate. But it may also decrease the diversity. Therefore, the 

optimal value of cr should be carefully selected based on the 

problem at hand [17]. 

 

𝑢𝑖,𝑔+1
𝑗

= {
𝑣𝑖,𝑔+1

𝑗
𝑟𝑎𝑛𝑑 (𝑗) ≤ 𝑐𝑟𝑜𝑟𝑗 = 𝑎𝑗

𝑥𝑖,𝑔
𝑗            otherwise

 (8) 

 

in which i=1, 2, 3, …, and j=1, 2, 3, ..., N. The jth assessment 

of a uniform random number generator within [0,1] is denoted 

by PS and rand (j). The likelihood of a spanning between [0,1]. 

is represented by PS; cr. To guarantee that at least one member 

of ui,g+1 is taken from the mutant vector, aj is defined as a 

randomly selected element. 

Similar to a two-point crossover, an exponential crossover 

replicates L subsequent components (counted cyclically) from 

the mutant vector after a cut point is selected at random from 

[2, N-1]. The likelihood of changing the Kth element in the 

sequence {1, 2, 3, …., N} (L≤N) decreases exponentially with 

growing K. Algorithm 1 illustrates the pseudo-code required 

to generate an exponential crossover [18]. 

Algorithm 1 exponential crossover pseudo-code ui,g←xi,g,j 

randomly taken from [1, N]: 

1. L=1; 

2. while rand [0,1]<cr and L<N do 

3. 𝑢𝑖,𝑔
𝑗

= 𝑣𝑖,𝑔
𝑗

 

4. j=(j+1) 𝑚𝑜𝑑𝑢𝑙𝑒 𝑁  
5. L=L+1; 

6. end while 

 

3.3 Selection operator 

 

Differential evolution (DE) algorithms “one-to-one 

spawning” selection method is a simple yet effective technique 

for selecting individuals for the next generation. This approach 

is comparable to the selection process employed in other 

swarm intelligence systems, like the PSO method, or particle 

swarm optimization. In order to determine which individual 

would survive and go on to the following generation (g-1), 

each individual in the trial vector is compared with the 

corresponding individual in the previous generation vector 

(g+1). The comparison is based on the fitness or profit value 

of the individuals, with the one having. The person with the 

highest fitness value is selected and the other is removed. One-

to-one-spawning ensures that the best individuals are selected 

for the next generation, improving the overall quality of the 

population and convergence to optimal solutions The most 

commonly used formula for this selection process is the greed 

selection method, which selects the individual with the higher 

fitness value for survival. This selection process allows for the 

retention of the fittest individuals in the population and ensures 

that their desirable traits are carried forward into the next 

generation. The one-to-one-spawning selection method, 

combined with other DE operators like mutation and 

crossover, enables DE to explore a wide range of solution 

spaces and converge to optimal solutions more efficiently [18]. 

 

�⃗�𝑖,𝑔+1 = {
�⃗⃗�𝑖,𝑔+1, 𝑓(�⃗⃗�𝑖,𝑔+1) < 𝑓(�⃗�𝑖,𝑔)

�⃗�𝑖,𝑔,                   otherwise
 (9) 

 

The DE algorithm keeps running until one of two thresholds 
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is reached: the time allotted or the number of generations. The 

maximum permissible evaluations of the fitness (objective) 

function can also be used to predict when the function will 

stop. The algorithm representation is shown in Figure 1. 

 

 
 

Figure 1. Detailed steps of differential evolution algorithm 

 

3.4 BEST-matched value (BMV) 

 

DE is a powerful optimization algorithm that can handle 

continuous variables. However, for discrete optimization 

problems, DE requires a mapping method that converts 

continuous variables into their corresponding binary values to 

calculate fitness values [19]. The recommended method for 

mapping continuous variables to binary values in DE is the 

BMV (best-mutant-vector) method, which is designed 

specifically for discrete optimization problems. In this 

method, each continuous variable is mapped to a binary 

variable using a threshold value that is determined based on 

the range of the variable. The BMV method is effective in 

improving the convergence speed. The DEA confirms a high 

efficiency of calculations in connection with a discrete 

optimization problem. This technique facilitates the ability of 

DEA in optimization tasks when dealing with discrete 

variables because it turns the continuous values of each person 

into discrete ones. Further, the BMV technique augments 

DEA’s efficiency by directing the new individuals towards 

optimality by including features of the current generation’s 

optimum solution. Hence, it allows DEA to make a deeper 

investigation of the search space to determine more efficient 

solutions. When integrating the BMV mapping approach with 

DEA’s operators such as mutation, crossover, and selection, 

the system becomes greatly optimized. One amazing thing 

about this form of synergy is that the algorithm of one problem 

can be transported to another field of application successfully 

and efficiently. Applying the strengths of BMV technique and 

DEA together in the research resolves problems of 

optimization with greater accuracy and speed [18, 20]. 

 

 

4. THE PROPOSED APPROACH 

 

The proposed approach DEAK-means involves the 

enhancement of K-Means Clustering in high-dimensional 

dataset using the DEA. This method combines two existing 

optimization techniques, namely the K-means algorithm and 

the DEA. It works by adjusting the parameters of DEA and 

selecting the best features to find the optimal solution. The 

DEAK-means approach has been tested on five datasets from 

the UCI repository in order to evaluate its effectiveness in 

comparison to original algorithms. The results have shown that 

it can effectively improve the intra-cluster distances and 

Silhouette value. Figure 2 shows the depiction of the solution. 

 

 
 

Figure 2. Representation of the features in DEAK-means 

 

The DEAK-means algorithm utilizes the silhouette value as 

a measure of the quality of the clustering solution. Samples are 

assigned a value of 1 if they possess relevant features and 0 

otherwise. The silhouette value for each sample is calculated 

by measuring the difference between the average distance to 

other samples in its own cluster and the average distance to 

samples in the nearest cluster. This provides a means of 

determining how well a sample is assigned to its own cluster 

compared to other clusters. Higher silhouette values indicate 

better matches to their own cluster and poorer matches to other 

clusters. The algorithm involves a series of steps that are 

tailored to optimize clustering performance. 

 

Step:1 
There are N populations, and T is the maximum 

number of iterations. 

Step:2 

The K number of clusters is produced at random 

from the K~U(0,10) uniform distribution. The 

feature-representing rest positions are created as 

U(0, 10) [21]. 

Step:3 
Use the total within-cluster variance is used to 

define the fitness function. 

Step:4 

The positions are changed using Eq. (6). The 

selection of features is handled using binary 

DEA. The representation for each member in 

this case is a p-bit binary string. A binary space 

frequently updates the position using the 

transfer function. A transfer function can be 

used to create this binary vector. However, the 

result can only include binary values. 

𝑥𝑡+1 = 𝑓(𝑥) = {
1  𝑖𝑓   𝑇(∆𝑥𝑡+1) > 𝑟𝑎𝑛𝑑
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (10) 

where, 𝑟𝑎𝑛𝑑 ∈ [0,1]  is a random number, 

T(x)=(1/1+exp exp (-x)) is the sigmoid transfer 

function 

Step:5 
Steps 4 and 5 must be repeated in order to reach 

T. 
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5. RESULTS AND DISCUSSION 

 

The ability of a DEAK-means algorithm to cluster samples 

was studied on five different public data with different 

characteristics that are accessible online. As a way of 

supporting its claim to higher potency than the obsolete K-

means algorithm, the differential evolution algorithm (DEA) 

was used. Through the DEA method, it was possible to carry 

out the optimization of the Silhouette evaluation and the 

establishment of the most appropriate number of features for 

each dataset. Afterward, the DEAK-means proposed here were 

compared with the basic K-means algorithm about 

performance. Thus, the goal of this comparative analysis was 

to show that DEAK-means is capable of achieving better 

clustering results and more efficient feature selection in order 

to support the further study of the given method as the 

advanced approach to data clustering and analysis in a wide 

range of disciplines. 

Five real-world datasets were used for the experiments and 

these came from the UCI Machine Learning Repository. These 

datasets are different in terms of size, number of attributes or 

features, and the actual number of clusters as shown in Table 

1. On the same note, the approach ensures that the algorithm 

undergoes a diversified assessment depending on the datasets 

available in the given domain. Therefore, the results obtained 

on different data sets would give a clear indication of the 

applicability and the performance of the proposed method in 

different clustering and feature selection problems. 

 

Table 1. Description of the datasets 

 
Dataset Name Number of Samples Number of Features 

Data 1 (Biodeg) 1055 41 

Data 2 (Cmc) 1473 9 

Data 3 (Glass) 214 9 

Data 4 (Ionosphere) 315 34 

Data 5 (Raisin) 900 7 

 

To measure the performance of the applied algorithms, the 

Silhouette score is employed as the criterion. The Silhouette 

score is an external index that checks whether it is erroneous 

to partition the data set by increasing the distance between 

clusters as well as reducing the distance in constitution with 

the same cluster. This measurement evaluates the circle 

circumradius of the clusters and its next distance. It is 

determined by dividing the mean distance of a sample with all 

the points in its own cluster and then subtracting the average 

of the distance with the points in the nearest neighbor cluster. 

If a Silhouette score is higher for a specific sample, it means 

that this sample belongs to its own cluster and might contribute 

to the clustering quality. On the other hand, a low or negative 

Silhouette score would mean that the sample is possibly 

inappropriately clustered and that the configuration probably 

has more than what it should or less than what it actually 

should have of clusters. Therefore, the Silhouette score is an 

ideal measure for evaluating the clustering efficiency by 

addressing the factors of cohesion within the clusters and the 

separation of clusters from each other. The silhouette score 

ranges from -1 to +1. When the bulk of the items have high 

values, the layout of the clusters [6, 7] For point i, the 

silhouette widths i is defined: 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑏(𝑖), 𝑎(𝑖)}
 (11) 

 

where, a(i) is the average distance between i and all other data 

points in the same cluster Ci, and b(i) is the average distance 

between i and all other data points in the other cluster Ci. 

 

b(i) = min
𝐼≠𝐽

1

|𝐶𝐽|
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐽

 (12) 

 

where, d(i, j) represents the distance between i and j. 

The Silhouette value presented in Table 2 proves the fact 

that, compared to K-means, DEAK-means yields higher 

clustering accuracy for all referred datasets. These raise the 

performance level and imply that DEAK-means is a better 

algorithm for feature selection in clustering problems 

concerning the normal K-means algorithm. Moreover, it is 

shown that the DEAK-means concept is beneficial when 

dealing with the high-dimensional dataset, making it stable for 

using in several applications of cluster analysis. DEAK-means 

is the extension of K-means where a differential evolution 

algorithm is incorporated into K-means; this integration 

benefits from the advantages of both algorithms which leads 

to better clustering results and attributes selection (Figure 3). 

Table 3 shows the comparative analysis of different 

methods and proves that the DEAK-means algorithm is better 

in feature selection on all the datasets. This means that on 

average and in response to the test employed regarding the 

formation of clusters, DEAK-means has the capacity of 

coming up with ideal clusters as expected. Moreover, the 

results show that DEAK-means proves to be superior to K-

means not only in terms of clustering which we can observe 

through clustering quality measurement but also in terms of 

time complexity. This double benefit puts DEAK-means in a 

very good position for doing feature selection and clustering 

when working with big and/or high-dimensional data. Thus, 

DEAK-means enhances the differential evolution and K-

means advantages improving the producing clustering 

accuracy and reducing the necessary computational time 

(Figure 4). 

 

Table 2. The Silhouette value results for DEAK-means and 

K-means clustering accuracy 

 
Dataset Name Number of Samples Number of Features 

Data 1 (Biodeg) 0.3164 0.2325 

Data 2 (Cmc) 0.5279 0.3480 

Data 3 (Glass) 0.4914 0.4511 

Data 4 (Ionosphere) 0.2888 0.2609 

Data 5 (Raisin) 0.5625 0.5608 

 

 
 

Figure 3. Comparison between DEAK-means and K-means 

in Silhouette value results 
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Table 3. Demonstrates a feature selection comparison 

between the DEAK-means and K-means algorithms 

 
Dataset Name Number of Samples Number of Features 

Data 1 (Biodeg) 22.4 41 

Data 2 (Cmc) 3.8 9 

Data 3 (Glass) 5 9 

Data 4 (Ionosphere) 22 34 

Data 5 (Raisin) 2.6 7 

 

 
 

Figure 4. Comparison between DEAK-means and K-means 

in average feature selection 

 

 

6. CONCLUSIONS 

 

This work introduces the differential evolution algorithm 

(DEA) as a new method to improve K-means clustering. 

Therefore, the performance of the proposed DEAK-means 

algorithm was examined on five datasets where the primary 

metrics were intra-cluster distance and the average quantity of 

the selected features. Based on the results demonstrated in 

Tables 2-3 and Figures 3-4, it is concluded that the DEAK-

means algorithm is more effective than the traditional K-

means for the feature subset selection and silhouette values. 

Another study could therefore explore more validation and 

enhancement of the DEAK-means algorithm with a particular 

focus on the datasets from the different domains or on the 

alteration of the key concepts of the said algorithm. In practical 

terms, these findings hold important implications in areas such 

as bioinformatics and data analytics, providing enhanced 

efficiency and accuracy in assembly, which may lead to better 

data insights and decision-making processes in real-world 

applications. 
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