
1. INTRODUCTION

The peridynamics (PD) theory was presented in 2000 by
American Professor Silling [1] of Sandia National 
Laboratories. Since its invention, the theory has evoked great 
repercussions in the academic circles, attracting many scholars 
into the research of PD. The past decade has witnessed the 
development of PD from infancy to maturity. Today, the 
theory is particularly mature in terms of the strength analysis 
of brittle materials. 

The PD theory has both advantages and disadvantages. On 
the one hand, PD analysis and calculation can simulate and 
analyze deformation, damage and fracture of the material and 
structure without requiring the object to be continuous or 
uniform, i.e., the object does not have to be composed of the 
same material; on the other hand, as one of the biggest 
obstacles to the application of PD theory [1, 2, 3, 5] , the 
results of PD calculation are greatly affected by the 
calculation efficiency andaccuracy.  

2. CONSTRUCTION OF STRUCTURAL MODEL

According to the numerical calculation method of PD
theory, it is necessary to separate the analytic target into a 
number of cubes known as point units [2, 6]. A 3D model 
should abide by the following separation rules: 

(1) The point units feature cubic structure, equal volume
and simple structure; the cubic structure ensures the isotropy 
in the three directions (x, y, z) and facilitates simulation 
calculation. 

(a) 3D discrete model

(b)Sectional discrete model

Figure 1. Separation of the I-beam structure 

(2) The center of the cube is taken as the material point of
the calculation, which contains physical information like 
performance, volume, location, displacement, acceleration, 
damage, energy, etc. 

(3) The two important modelling parameters, δ (near-field
region radius) and m value (m=δ/Δx), have a direct impact to 
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the calculation accuracy and efficiency. Hence, the values of 
these parameters should be determined properly in light of the 
actual conditions. 

In this paper, the I-beam structure is taken as an example. 
(Figure 1) The parameters required for the constitutive force 
function are obtained by separating the whole I-beam structure 
evenly into same sized cubes, and replacing the physical 
information (performance, volume, location, displacement, 
acceleration, energy, and damage) of the whole cubic lattice 
with solid white dots. 

3. SETTING OF BOUNDARY CONDITIONS

There are two types of boundary conditions: loads (force, 
speed, displacement, etc.) and constraints. In PD theory[7,8,9], 
the boundary conditions are configured easily by setting the 
loads and constraints of the point units of a certain area on the 
structural model[10,11,12]. 

The boundary conditions, such as those for the cross section 
in Figure 2, should be configured according to the following 
principles: 

(1) If the boundary area is divided into 2 or more layers, the
constrained or loaded area must also have at least 2 layers. 

(2) 8 kinds of constraints are provided: x, y, z, xy, yz, xz,
xyz and no constraint; 

(3) Both force loading and displacement loading are
allowed and the loading can be conducted in x, y, z and a 
variety of other directions.  

Loading

Layer 20
Layer 19
Layer 18
Layer 17
Layer 16
Layer 15
Layer 14
Layer 13
Layer 12
Layer 11
Layer 10
Layer 09
Layer 08
Layer 07
Layer 06
Layer 05
Layer 04
Layer 03
Layer 02
Layer 01

Constraints      Loads

Figure 2. Setting of boundary conditions for the I-beam 
structure 

4. THE FLOW OF NUMERICAL CALCULATION

PROGRAM

According to the PD theory, the author firstly configures 
the boundary conditions, and then solves the displacement, 
speed, damage and other factors of each point unit by the 
motion equation [14, 15, 16, 20, 21]. The author also controls 
the number of the iterative steps (i.e. the number of time steps 
in iteration) in light of the actual conditions. The calculation 
results are exported through C language programming. After 
the location of each point unit is expressed in the form of 
coordinates, the author exports the contents required for the 
research selectively, and imports the corresponding 
coordinates into MATLAB for simulation, thus obtaining the 

fracture conditions at different time steps. The flow chart of C 
language programming is shown in Figure 3. 

Figure 3. Flowchart of C language programming 

5. NUMERICAL CALCULATION ERROR ANALYSIS

As two importance parameters of PD numerical calculation, 
δ (near-field region radius) and m value (m=δ/Δx) have a 
direct influence on the calculation accuracy and efficiency. An 
equation can be established between them and the traditional 
Piola-Kirchhoff stress tensor σ[5,17,18,19]: 

),( nxn         (1) 

The surface force density (also known as stress) in PD 
theory equals the stress in the calculation of traditional 
mechanical theory. The equation helps compare the effect of δ 
and m on the efficiency and error of the calculation results. 

Analysis of the effect of δ value on calculation error: 
Suppose the elastic modulus of the material E = 72 GPa, 

and the Poisson’s ratio is 0.25,  and let the strain be: 
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Obtain the theoretical stress value (MPa) by the traditional 
theory: 
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Therefore, the stress in each direction is respectively 

σx=120MPa, σy=100MPa and σz=150MPa. Taking the 
m=δ/Δx =3 as an example, the surface force density τ(x, n) of 
point x along the direction of n: 

 

   ˆ ˆ ˆ, ,
L R
dl dV

 
     x

τ x n f u u x x                                     (5) 

 
The surface force density is calculated by PD theory for 

different parameter conditions. The following groups of 
parameter conditions are selected, and the corresponding 
stress densities (stress value) are obtained. 
(1) Parameter condition 1: m=3, Δx=6mm, δ=18mm 
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(2) Parameter condition 2: m=3, Δx=3mm, δ=9mm 
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(3) Parameter condition 3: m=3, Δx=1mm, δ=3mm 
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(4) Parameter condition 4: m=3, Δx=0.1mm, δ=0.3mm 
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(5) Parameter condition 5: m=3, Δx=0.05mm, δ=0.15mm 
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The comparison between the results of surface force density 

in PD theory and the results obtained by traditional 
mechanical theory (Figure 4) show that: when m is given a 

fixed value, the PD theory results are almost invariant to the 
changes in the side length of point unit and near-field region, 
but there exists some differences between the results and the 
results of the traditional theory, the calculation efficiency, 
however, remains the same because the number of point units 
is unchanged.  
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(b) σy 
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(c) σz 

 

Figure 4. Comparison between the stress in each of the three 
directions obtained by PD theory and those obtained by the 
traditional theory at different parameter conditions (m=3) 
 
In similar manner, the effect of m value on calculation error 

is analyzed. Suppose the elastic modulus of the material E = 
72 GPa, and the Poisson’s ratio is 0.25, and let the strain be: 
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Obtain the theoretical stress value (MPa) by the traditional 

theory: 
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Therefore, the stress in each direction is respectively 
σx=120MPa, σy=100MPa and σz=150MPa. Let δ be 3mm, and 
calculate the surface force density by PD theory at different m 
values. The following groups of m values are selected, and the 
corresponding stress densities (stress value) are obtained. 

 
(1) Parameter condition 1: m=2, Δx=1.5mm, δ=3mm 
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(2) Parameter condition 2: m=3, Δx=1mm, δ=3mm 
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(3) Parameter condition 3: m=4, Δx=0.75mm, δ=3mm 
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(4) Parameter condition 4: m=6, Δx=0.5mm, δ=3mm 
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(5) Parameter condition 5: m=10, Δx=0.3mm, δ=3mm 
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(6) Parameter condition 6: m=15, Δx=0.2mm, δ=3mm 
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(7) Parameter condition 7: m=60, Δx=0.05mm, δ=3mm 
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It is demonstrated by the comparison between the results of 

surface force density in PD theory and the results obtained by 
traditional mechanical theory (Figure 5) that: when δ is given 
a fixed value, the stress will increase and move closer to the 
results of the traditional theory as the m value increases, i.e. 
the number of point units in the near-field region rises. Thus, 
the calculation accuracy grows with the m value; In contrast, 
the calculation efficiency declines because the number of 

point units in the near-field region of each point unit increases 
while the total number of point units remain the same. 
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Figure 5. Comparison between the stress in each of the three 
directions obtained by PD theory and those obtained by the 

traditional theory at different m values (δ=3mm) 
 

Through the above analysis, the result of m=δ/△x influence 
on calculation accuracy, the ‘m’value, the greater  accuracy is 
higher, but the computation efficiency is reduced, in order to 
ensure the efficiency and precision of ‘m’ value between 3-5 
is good. 

 
 

6. CONCLUSIONS 

This paper introduces the modeling method for the object, 
that is, to construct an analysis model based on a unified cubic 
lattice, analyzes how to set up the initial PD conditions under 
fixed load and impact load, explains C language numerical 
calculation and simulation, and draws the flowchart of 
simulation calculation. The optimal range of modeling 
parameters are offered through analysis of the influence of 
near-field region radius δ and m value over error and 
efficiency, especially their impacts to the results of numerical 
simulation. It is discovered that, when δ is given a fixed value 
during the modelling process, the calculation accuracy will 
increase with the m value, but the calculation efficiency will 
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change in the opposite trend, thus affecting the path and 
direction of crack propagation; when m is given a fixed value 
and δ is allowed to change, the number of point units in the 
near-field region and the calculation accuracy will not change, 
but will still affect the path and direction of crack propagation. 
As a result, special attention should be paid to materials 
containing defects (cracks, pores) by taking reasonable m 
values and δ values in light of the actual conditions of the 
material (defect size, material performance, and material 
composition); For materials with no defect, neither m value 
nor δ value has significant impact to the path and direction of 
crack propagation. In this case, small m value and large δ 
value should be adopted to improve calculation efficiency. 
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