
1. INTRODUCTION

New building composite materials with specified thermal 
properties creation for enclosing constructions of buildings 
and structures is an actual problem [1], so as existing 
composite materials thermal properties optimization during 
feedstock composition determining and when choosing 
technological modes of their manufacturing. At the same time, 
it is important to minimize heat loss through the enclosing 
constructions in the entire temperature range of operation. 
Heat losses through the enclosing constructions affect 
substantially on buildings thermal regime, as well as heating 
and air conditioning systems operation. This effect should be 
taken into consideration when calculating the total energy 
consumption and energy losses during buildings exploitation. 

Significant structural difference of building composite 
materials from homogeneous and regular heterogeneous 
media leads to additional mathematical difficulties in 
description of the heat transfer in such media. So the effective 
thermal conductivity of composite materials calculation is an 
object of both practical and scientific interest. That is why 
mathematical modeling methods of heat transfer processes in 
heterogeneous media with different structures including 
composite materials are used widely.  

A common practice in numerical calculations of composite 

systems thermal properties is to use continuum models which 
based on phenomenological ideas about the heat transfer 
process. Mixing rule [2] and the theory of generalized 
conductivity are typical representatives of such models. 

Mixing rule and its variations (the exponential and 
logarithmic mixture rules, Lichtenecker's mixture formula [3] 
for the two-component model mixture) take into account the 
thermal conductivity and volumetric fraction of the composite 
matrix and filler. Application of these models is associated 
with composite materials, the components of which are 
indistinguishable in shape and differ in the degree of 
dispersion and thermal conductivity at least an order of 
magnitude. 

However, in modern thermal insulated composite materials 
the differences between the values of the thermal 
conductivities of the components can be more than two orders 
of magnitude. Therefore, models based on the mixing rule do 
not provide a satisfactory description of such composite 
materials properties. 

In the generalized theory of conductivity researchers study 
the effective coefficient of composite material generalized 
conductivity. Investigation of location and inclusions 
concentration in the composite system matrix influence on 
generalized conductivity coefficient is important in practical 
terms of such materials usage. At the same time to evaluate 
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ABSTRACT 

One of the main measures that enable energy saving in eco-constructions is good thermal insulation of both 
residential and non-residential buildings. In this context usage of composite materials with specified thermal 
properties in exterior components of building will grow in importance. Numerical simulations have been 
widely applied for predicting the effective thermal conductivity of composites. The main focus of this work is 
to study numerically the temperature field and the effective thermal conductivity of binary composites with 
random inclusions arrangement based on two-dimensional heat equation solving by the method of the top 
progressive relaxation. The research suggests consideration both of isolated and non-isolated cases of 
thermal-insulated inclusions within composite matrix. The effective thermal conductivity distribution and its 
moments for various inclusions concentrations are calculated in this article. The influence of inclusions 
concentration on such parameters of effective thermal conductivity distribution as variation coefficient, 
skewness and kurtosis is analyzed. The study proves dependence of distribution moments on thermal-
insulated inclusions isolated status. The results of calculation and analysis show that in the case of isolated 
inclusions the effective thermal conductivity of the composite tends to enhance whereas the scatter value of 
the effective thermal conductivity has reverse effect.  
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the effective thermal conductivity of the composite material 
real chaotic placement of the inclusions in the space is 
replaced by idealized models in which there is a long-range 
order. This replacement is made so that the new system with 
long-range order saves the main features of a chaotic system 
that is studied. Such systems are called adequate ordered 
structures, and transposable elements, which create long-
range order are named the unit cells [4]. 

Under this approach the researchers used several models. 
In particular, the Maxwell model [5] describes a generalized 
conductivity of a binary system which consist of an isotropic 
matrix and non-interacting with spherical shaped inclusions. 

Various forms of the filler particles are taken into account 

in the model Hamilton  Grosser [6]. However, the use of this 
model is usually limited to simple shapes such as spherical, 
cylindrical and lamellar. 

Chaotic system of inclusions in the composite material in 
Odoevsky model [7] is replaced by the two types of adequate 
structures. The first type structure consists of cubic inclusions 
which are disposed in the lattice sites. Inclusions in the 
second type structure have the forms of long parallel prisms 
or cylinders. 

An alternative approach for the theoretical consideration of 
adequate systems is mathematical modeling of composite 
materials with the inclusions random placement. In this case a 
scale-significant element in the simulated material is selected. 
This element dimension is much more than the characteristic 
sizes of the randomly distributed inclusions but much less 
than the characteristic size of the composite sample and the 
effective thermal conductivity of the composite should be 
equal to the calculated effective thermal conductivity of the 
element. A detailed algorithm for the numerical calculation of 
the composites thermal characteristics is given in [8]. The 
algorithm is based on the generalized conductivity principle 
and takes into account the structure of the composites. In 
particular, a scheme for calculating a binary composite 
effective thermal conductivity has been developed and 
implemented. The effective thermal conductivity coefficient 
value of the composite was calculated according to filler 
concentration for elongated longitudinally and transversely 
stretched fiber components as well as for randomly positioned 
filler cubic particles in the three-dimensional matrix and for 
two dimensional fractal cluster matrix. It was shown that the 
binary composite thermal conductivity increases with the 
growth of the proportion of filler as exponent. 

The numerical calculations of binary systems heat-
conducting properties in case of inclusions thermal 
conductivity domination over the matrix thermal conductivity 
(when the ratio of these conductivities is 1×102) have been 

carried out in [810]. For many real thermal insulation 
composites it is interesting to observe an inverse relationship 
between these thermal conductivities. 

In numerical calculations of the composite thermal 
properties size of grid cells is chosen frequently equal to the 
inclusion size. This choice can lead to the calculated 
temperature field roughening and unnecessarily different 
temperature streams averaging within a single inclusion, 
which has a microgradient of temperature. The difference in 
inclusion particles sizes and their concentrations influence on 
the thermal characteristics of composites with isolated 
inclusions is insufficiently studied [5, 8]. It is obvious that 
this difference should significantly affect the heat fluxes 
distribution in binary as well as in the multicomponent 
composites and requires a detailed study. The composite 
materials have a large number of generally unstructured 

interfaces between the matrix and the filler with sharp 
difference of their thermal conductivities. Because of this 
difference it is necessary to use in the thermal parameters 
calculations either the dynamically adaptive computational 
grids [11], or grids with small spatial steps. 

One of the methods of composites thermo-physical 
properties analysis is to study the influence of random 
deviations from the ordered structure of the filler particles on 
the effective thermal conductivity of polydisperse 
heterogeneous media. For example, in [9] the effective 
thermal conductivity deviations at different locations 
pseudorandom rods from thermal conductivity for the case of 
rods arranged at regular lattice sites were found. However, 
the number of simulated random rods displacement (about 20) 
is not sufficient for statistically valid conclusions. For such a 
task, it is necessary to investigate the dependence of standard 
deviation of the effective thermal conductivity statistical 
distribution on the concentration and sizes of the inclusion in 
a representative sample. 

Numerical simulation of two-component composite 
materials thermal characteristics was carried out in the 
present work. In particular, using the analysis of 
representative samples, it was planned to determine the 
dependence of average value of effective thermal 
conductivity and such characteristics of its statistical spread 
as coefficient of variation, skewness and kurtosis on the heat-
insulating inclusions concentration. 

2. MATERIALS AND METHODS 

2.1 Heat equation 

Two-component composite material, with binder matrix 

thermal conductivity mx  was investigated as a 

computational model. Square shaped thermal insulation 

inclusions with a thermal conductivity inc << mx  were 

placed randomly in the binder matrix. Inclusions location in 
the material was done using a random number generator built 
into the Delphi compiler and was equiprobable. Two 
algorithms of the random inclusion placement were used in 
the calculations. The first algorithm allowed receiving 
isolated inclusions. Each newly placed inclusion was 
prohibited to contact with existing inclusions. Thus, there was 
a matrix layer around each inclusion, which minimum 
thickness was set as a parameter. The second algorithm 
allowed inclusions to contact with each other. In this case, 
inclusions could contact their faces and can gather in clusters.  

For each realization of the random placement of the 
inclusions (for each test) we solved numerically the internal 
Dirichlet problem in a two-dimensional rectangular area. The 
Dirichlet problem included the stationary heat equation in a 
medium without heat sources and the temperature setting on 
the borders of the region. To minimize errors accumulated in 
iterative cycles, we used non-dimensional variables: relative 

thermal conductivity 
mx


   and relative temperature 

СhT

T
 , where ТСh is a characteristic temperature for the 

problem to be solved. In these dimensionless variables, the 
two-dimensional heat equation can be written as 
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where ),( yx  can take the values 1 or 
mx

inc




. Equation (1) 

was solved by the top progressive relaxation on a uniform 
rectangular grid. As a result of each test, we calculated the 
temperature field within the region and determined the 
effective relative thermal conductivity of the material.  

For a large number of tests, we built statistical distribution 
of the probability р that the effective relative thermal 
conductivity was in a certain range of values. The probability 

was estimated as 


m
mр  , where νm is the number of tests for 

which the relative thermal conductivity was into a range of 
values [κm – ξ; κm + ξ), m is integer index, which enumerated 
the range of relative thermal conductivity values, ν is the total 
number of tests, ξ is the half-width the range of values. Next, 
we determined the following characteristics of the above-

mentioned distribution: average value  , standard deviation 

σ, the coefficient of variation 



  , skewness α3 
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and kurtosis α4 
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2.2 Calculation problem configuration 

For solving the Equation (1) we used the computational 
grid with the size: M×N nodes. In this case, for nodes indexes 

along y axis ];1[ Mi  , and along x axis ];1[ Nj  . The 

following values were selected for simulation M = 322, N = 
162. According to the above-mentioned algorithms for the 
inclusions placing a random pattern filling (scale-significant 

element) was formed. The pattern size was КК  grid cells, 
where К could take the values 32 or 160. The typical size of 

inclusions was determined as 
K

k
k  , where k is the number 

of grid nods on one side of a square-shaped inclusion, and 

inclusions concentration 2
kk n  , where n is the number of 

inclusions, which fell into a pattern; k varied from 1 to 16; k  

varied from 0 to 0,45 for isolated inclusions and up to 0,7 for 
non-isolated inclusions. Completed patterns were transposed 
the entire region, starting with the cell coordinates i = 2, j = 2. 
Thus, the nodes located on the boundaries of the region did 
not have inclusions. For all nodes, located on the borders of 
the region, the thermal conductivity was equal to the matrix 

thermal conductivity  1 . For isolated inclusions, 

minimum layer thickness of the matrix surrounding each 
inclusion was equal to one step of computational grid. 

Temperature gradient was set along the x axis (to the N 
nodes computational grid direction) from the left side with a 

constant temperature l  to the right side with a constant 

temperature r . For the upper side temperature t  and for 

the lower side temperature b  a variation with linear law 

along x axis was set 
 

 1
1

)()( 



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N
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lbt
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            (4) 

 
where j is the node number. 

It was necessary to eliminate the influence of the boundary 
condition on the top and the boundary condition at the bottom 
on the results of the effective thermal conductivity calculation. 
For this purpose, the central part of the computational domain 

was used:     ]4/231  ;4/21[  MMi  (see Figure 1). 

Due to the translational symmetry of the region filling by 

templates the heat fluxes between the rows   4/2 Mi  and 

  4/21  Mi  were exactly equal to the heat fluxes 

between the rows   4/231  Mi  and   4/232  Mi . 

Therefore, to estimate the effective thermal conductivity it 
was sufficient to calculate only fluxes in the aforementioned 
central part between the columns j = 1 and j = 2 or between 
the columns j = N – 1 and j = N. 

 

 
 

Figure 1. The calculation problem configuration 
 
A special calculation program was developed for the 

simulation of heat transfer. This calculation program tested 
the effective thermal conductivity for each specified 
insulating inclusion concentration. The tests included the 
calculations of the temperature field and heat fluxes with 
different random fillings of computational domain. The 
calculation was considered to be completed when the 
following two conditions were fulfilled: 1) when relative 
temperature difference at each grid node in two consecutive 
iterations was less than 1  10-6; 2) when the relative 
difference between incoming and outgoing cross-border heat 
fluxes became less than 1 10-5. In addition, after each test 
we saved images of generated arrangements inclusions and 
the balance between incoming and outgoing cross-border heat 
fluxes. 

2.3 Grid step 

The important point is the choice of the computational grid 
step which is related to the inclusion minimum size. To select 
the grid step limits a special series of calculations was carried 
out. Effective thermal conductivity calculations for regions 
with the same inclusions arrangement were made using 
various computational grids. Grids differed from each other 

N columns 

M
 r

o
w

s 

Temperature  
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The region where  
the effective thermal 

conductivity was 
calculated 

The boundary 
condition θ = θr 

The boundary 
condition θ = θt(j) 
according to Eq(4) 

The boundary 
condition θ = θb(j) 
according to Eq(4) 

366



 

by nodes number k, which were positioned on one side of the 
square shaped inclusion. Here and below, we chose ratio 

0484,0
mx

inc




, which approximately corresponded to the 

ratio of expanded polystyrene and cement-sand mixture 
thermal conductivities and temperature difference from θl = 1 
to θr = 0,867, that approximately corresponded to temperature 
reduction from 300 to 260K. Figure 2 illustrates typical 
results of such calculation series. Figure 2 shows that when 

]31[ k  the calculation results vary with grid step 

decreasing and these differences reach 5% at various 
inclusions predetermined concentrations. Value k should be at 
least 5 to ensure the calculation accuracy better than 1%. For 
k > 10 the calculations slightly (less than 0.5%) depend on the 
number of grid nodes on one side of the square-shaped 
inclusion. 

 

 
 

Figure 2. Calculated dependence  k  for different 

inclusions concentration η 

3. RESULTS AND DISCUSSION 

3.1 Effective thermal conductivity distribution 

Inclusions random arrangement in the matrix leads to 
scatter in the heat flux values and therefore to scatter in the 
values of effective thermal conductivity. Typical probability 
distribution of the relative effective thermal conductivity 
values is shown in Figures 3.1 – 3.3. When constructing these 
histograms, the range of the relative effective thermal 
conductivity variation in each test series was divided into 28 
equal intervals. 

From Figure 3.1 it is seen that for a given ratio of thermal 
conductivities of the matrix and the inclusions obtained 
distributions at low concentration of isolated inclusions have 
negative skewnesses (distributions left wings are more 
extended) and positive kurtosis (distributions maxima are 
more sharp than normal distribution maximum). While 
increasing the inclusions concentration the skewnesses and 
kurtosis distributions approach zero. Consequently, the 
distribution becomes more similar to a normal distribution 
(see Figure 3.2). Then, while further inclusions concentration 
increasing skewness becomes positive (the distribution 
extends to the right) and the distribution maximum becomes 
more blurred (see Figure 3.3). 

 
 

Figure 3.1. The probability distribution of the composite 
relative effective thermal conductivity values in the case of 
isolated inclusions filling; the inclusions concentration η2 = 

0,0625; 8000 tests 
 

 
 

Figure 3.2. The probability distribution of the composite 
relative effective thermal conductivity values in the case of 
isolated inclusions filling; the inclusions concentration η2 = 

0,3125; 8000 tests 
 

 
 

Figure 3.3. The probability distribution of the composite 
relative effective thermal conductivity values in the case of 
isolated inclusions filling; the inclusions concentration η5 = 

0,4395; 9000 tests. 
 
In case of non-isolated inclusions, the distribution scatter 

increases and distributions left wing is more extended (see 
Figure 4). In Figure 4 the same distribution as in Figure 3.3 
for isolated inclusions (but with a different partition into 
intervals) is shown to compare them. In Figure 4 partition 
into intervals is changed to compare with the distribution for 
non-isolated inclusions more conveniently. 
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Figure 4. Comparison of probability distributions of 
composite relative effective thermal conductivity when filling 
isolated and non-isolated inclusions η5 = 0,4395; 9000 tests 
 
Typical dependences of distribution skewness α3 and 

kurtosis α4 of the effective thermal conductivity on inclusions 

concentration 5  are shown in Figure 5.1 and Figure 5.2 for 

non-isolated inclusions and isolated inclusions with 
characteristic size β5 = 5/32; each point on the graph is 
obtained by at least 4000 tests. 

 

 
 

Figure 5.1. The dependence of distribution skewness of the 

effective thermal conductivity on inclusions concentration 5  

for non-isolated inclusions and isolated inclusions 
 

 
 

Figure 5.2. The dependence of distribution kurtosis of the 
effective thermal conductivity on the inclusions concentration 

5  for non-isolated inclusions and isolated inclusions 

 
The above graphs show that growth of distribution 

skewness α3 for increasing concentration 5  can be 

approximated by a linear dependence. In this case for isolated 

inclusions ; 575,0758,1 53    for non-isolated 

inclusions 085,1755,1 53   . It is interesting that growth 

rates of the skewness for non-isolated and isolated inclusions 
are almost equal, but for non-isolated inclusions α3 is on 
average two times less than for isolated ones. This is true for 
skewnesses for other characteristic dimensions of inclusions. 
Kurtosis distribution (see Figure 5.2) varies approximately 
inversely proportional to the concentration of inclusions. 

However, in order to reliably establish the kurtosis 
dependence on concentration and non-contacted inclusions 
presence, it is necessary not less than 20000 tests. 
Unfortunately, we did not have such possibility. 

3.2 Effective thermal conductivity concentration 

dependences 

According to the models [57], the effective thermal 
conductivity of the two-phase composite depends only on the 
phase concentration and density [12] and does not depend on 
the inclusions placement peculiarities. The calculations show 
that this statement is true only in the first approximation. 

Average effective thermal conductivity   for non-isolated 

inclusions is slightly less (up to 5%) than   for isolated 
inclusions when their concentrations are equal.  Dependencies 

  on isolated and non-isolated inclusions concentration with 
characteristic size β5 = 5/32 are shown in Figure 6. Each point 
on the graph is obtained by at least 4000 tests. 

 

 
 

Figure 6. The dependence of average relative effective 
thermal conductivity on the concentrations for isolated and 

non-isolated inclusions with characteristic size β5 = 5/32 
 
As can be seen, the dependencies shown in Figure 6 are 

nonlinear. They are quite well approximated by functions 
 

 31

1






b

a



             (5) 

 
where η is inclusions concentration; a and b are fitting 
coefficients. Fitting coefficients for isolated inclusions with 
characteristic size β5 = 5/32 are a ≈ 1,676 and b ≈ 1,115 and 
for non-isolated inclusions of the same characteristic size are 
a ≈ 1,679 and b ≈ 0,797. Fitting coefficient a with high 
accuracy is the same for both types of inclusion. 

Investigation of inclusions placement images showed that 
average effective thermal conductivity in the case of non-
isolated inclusions is less than in case of isolated inclusions. 
This reduction is associated with the proportion of non-
isolated inclusions which contact with each other and with 
minimum layer thickness of the matrix material around the 
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isolated inclusions. The average effective thermal 
conductivity reduction in the case of non-isolated inclusions 
can be explained by increasing of the heat flux effective 
length through the heat-conducting matrix. 

As a measure of the effective thermal conductivity 
dispersion obtained during different tests, we used the 

distribution variation coefficient  . Dependence of 

distribution variation coefficient   on inclusions 

concentration with characteristic size β5 = 5/32 is shown in 
Figure 7. 

 

 
 

Figure 7. Dependences distribution variation coefficient  
on inclusions concentration for isolated and non-isolated 

inclusions with a characteristic size β5 = 5/32 
 

The linear dependence  5   allows to describe the 

distributions broadening of effective relative thermal 
conductivity with inclusion concentration increasing by 

parameter 
5




d

d
 . For isolated inclusions value of   ( isl ) 

is 0,11 and for non-isolated inclusions value of   ( noisl ) is 

0,17. Estimates show that the average numbers of inclusions 
placements in the region bounded by the nearest neighbors 
for a pattern with concentration   isolated and non-isolated 

inclusions are equal respectively: 

 
2

12
















 kd

kK

kK
Wisl


, 

2

















 k

kK

kK
Wnoisl


, 

where d is the minimum distance between the isolated 
inclusions. The number of available placements for isolated 

inclusions is less than for non-isolated: noislisl WW  . 

Accordingly, the distribution variation of the effective 
relative thermal conductivity for heat-isolated inclusions less 

than for non-isolated inclusions: noislisl   . 

4. CONCLUSIONS 

1. The paper presents the concentration dependences of the 
mean value, coefficient of variation, skewness and kurtosis of 
the effective relative thermal conductivity distribution in the 
cases of isolated and non-isolated inclusions. 

2. It is shown that in the case of non-isolated inclusions the 
effective thermal conductivity of the material is reduced and 
the values scatter of the effective thermal conductivity 
increases. This fact is meaningful to consider in the 
composite materials manufacturing technology development. 

3. It has been found that non-isolated inclusions increase 
the probability of obtaining a composite material with better 
heat-insulating properties. 
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NOMENCLATURE 

K square pattern size, grid cells 
M computational grid size along  

y-coordinate, grid cells 
N computational grid size along  

x-coordinate, grid cells 
T absolute temperature, K 
W average numbers of inclusions 

placements in the region bounded by the 
nearest neighbors 

a dimensionless fitting coefficient 
b dimensionless fitting coefficient 
d minimum distance between the isolated 

inclusions, grid cells 
i computational grid cell number along 

y-coordinate 
j computational grid cell number along 

x-coordinate 
k square inclusion size, grid cells 
n number of inclusions, which fell into  

a pattern 
p probability 
x coordinate 

y coordinate 
 

Greek symbols 
 

 

3 distribution skewness 
α4 distribution kurtosis 
β dimensionless inclusion size  
η dimensionless inclusions concentration 
θ dimensionless temperature 
κ dimensionless thermal conductivity  
λ thermal conductivity, W.m-1. K-1 
ν number of tests 
ξ half-width the range of values. 
σ distribution standard deviation  
υ dimensionless parameter of the 

concentration dependence of the thermal 
conductivity distribution variation  

ϑ distribution variation coefficient 

Subscripts 

 

b bottom 
Ch characteristic 
inc inclusion 
isl isolated 
l left 
m index, which enumerated the range of 

relative thermal conductivity values  
mx matrix 
noisl non-isolated 
r right 
t top 
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