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Generative Adversarial Networks (GANs) still face issues such as a lack of diversity in 

generated samples, incomplete encoding techniques, and a simplistic evaluation system. 

Based on this, the paper proposes a "Conditional Generative Adversarial Network based on 

self-attention mechanism and Variational Autoencoder (VAE) Algorithm and Its 

Applications." The proposed algorithm consists of three sub-algorithms. The Variational 

Autoencoder (VAE) algorithm based on a self-attention mechanism adaptively constructs a 

latent space based on training data, thereby enhancing the diversity of generated samples. 

The A self-adaptive encoding method integrating self-attention and conditional vector 

projection. This method combines the self-attention mechanism and projection encoding 

algorithm to capture long-range dependencies in the data, addressing the issue of incomplete 

encoding techniques. Multi-metric Weighted Evaluation Algorithm is developed, which 

comprehensively evaluates the quality and diversity of generated samples, the conditional 

dependencies of the model, and the similarity between the distributions of input and 

generated samples. The evaluation metrics can be controlled adaptively through weight 

𝜆𝑖.The study constructs a financial dataset of higher education institutions containing 1,200

records and trains the proposed conditional GAN on this dataset. The network is then used 

to generate synthetic data for the detection of counterfeit data. Experimental results 

demonstrate that the proposed algorithm is feasible, stable, and shows comparative 

advantages. 
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1. INTRODUCTION

The financial security risk detection model based on 

intelligent big data analysis technology can significantly 

improve the accuracy and reliability of financial security risk 

detection, quickly identify abnormal financial data, and 

prevent potential security risks. Therefore, AI-based 

intelligent analysis and identification methods for financial 

data are an important guarantee for financial data security. 

Among them, the use of Generative Adversarial Networks [1] 

(GANs) in financial data analysis and identification holds 

significant theoretical and practical value. With the rapid 

advancement of research in Generative Adversarial Networks 

(GANs) theory and applications, GANs have provided 

effective theories and methods for signal, text, and image data 

analysis and identification. Innovative research primarily 

focuses on new network architectures, loss functions, and 

training strategies. 

1.1 Network architecture and training process 

reconstruction 

Common algorithms include: Deep Convolutional GAN 

(DCGAN) [2], which solves the training stability issue by 

imposing constraints on the architectural topology; to address 

the issue of insufficient labeled data in adversarial neural 

networks, this algorithm [3] integrates Coevolutionary 

Algorithms with Semi-Supervised GANs (SSL-GANs). By 

leveraging a hybrid training approach that combines limited 

labeled data with unlabeled data, we achieve a high-

performance classifier and high-quality image generator. This 

strategy stacks multiple generators and discriminators, using 

aggregation operators to coordinate the outputs of the multiple 

generators, thereby improving the quality and complexity of 

the generated samples to produce finer and more realistic data 

or images. Typical examples include Stacked GANs [4, 5], 

Ensembles of GANs [6, 7], and AdaGANs [8]. 

1.2 Loss function reconstruction 

When the discriminator of the original GAN reaches its 

optimum, the generator’s loss function has a certain 

relationship with the JS divergence. Therefore, to address the 

issues related to training instability, the original loss function 

is reconstructed (the lower bound of Jensen-Shannon 

divergence). Typical algorithms include: The gradient 
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penalty-based Wasserstein-1 distance [9, 10] loss function, 

which effectively solves problems such as vanishing gradients 

and mode collapse during GAN training; A loss function based 

on quantile regression techniques is proposed to implicitly 

drive the generator to learn the inverse of the cumulative 

distribution function, addressing the issue of variable 

conditional distribution [11]; A loss function based on the chi-

square distance is reconstructed to effectively measure the 

difference between two probability distributions [12]. A 

discriminator and loss function based on the energy function 

are proposed to map low energy values to high data density 

regions, enabling the generator to focus on low-energy regions 

during sampling [13]. 

The aforementioned literature explores innovations in 

network architecture, loss functions, and training methods in 

Generative Adversarial Networks (GANs), achieving 

significant theoretical and practical results. However, in data 

signal processing, Generative Adversarial Networks (GANs) 

still have the following shortcomings. (1) The problem of 

generating monotonous samples; (2) The issue of imperfect 

coding techniques; (3) The problem of a simplistic evaluation 

system. Based on this, this paper proposes “Conditional 

Generative Adversarial Network (cGAN) Based on self-

attention mechanism and VAE Algorithm and Its 

Applications.” The innovations of this method include the 

following main aspects. 

(1) Rich generated samples 

The Variational Autoencoder (VAE) [14] algorithm based 

on a self-attention mechanism adaptively constructs a latent 

space based on training data, thereby enhancing the diversity 

of generated samples. 

(2) Advanced coding techniques 

A self-adaptive distribution learning method that integrates 

self-attention and condition vector projection. This method 

combines the self-attention mechanism [15] and projection 

encoding algorithm [16] to capture long-range dependencies 

in the data, addressing the issue of incomplete encoding 

techniques. 

(3) Evaluation system based on multi-criteria fusion. A 

weighted evaluation metric is developed, which 

comprehensively evaluates the quality and diversity of 

generated samples, the conditional dependencies of the model, 

and the similarity between the distributions of input and 

generated samples. The evaluation metrics can be controlled 

adaptively through weight 𝜆𝑖. 

(4) The financial dataset of higher education. The study 

constructs a financial dataset of higher education institutions 

containing 7,236 records and trains the proposed conditional 

GAN on this dataset. 

Based on the aforementioned innovations, this paper will 

effectively address the problems of generating monotonous 

samples, imperfect coding techniques, and a simplistic 

evaluation system. 

 

 

2. RELATED WORK 

 

2.1 The current state of research on financial data based 

on GANs 

 

Financial/financial data is a type of data signal with strong 

data attributes. research on financial/financial data generation 

and identification based on GANs is emerging, Innovations 

primarily focused on the application of GANs in this domain 

to address data generation, data identification, and data-

assisted decision-making challenges. The main research areas 

include: 

Takahashi et al. [17] proposed "Modeling financial time-

series with Generative Adversarial Networks" to address the 

statistical mechanisms underlying financial time series 

modeling. This method leverages Generative Adversarial 

Networks (GANs) to learn the data characteristics and 

generate realistic data in a data-driven manner. The time series 

generated by the GAN model can restore the statistical 

properties of financial time series. Experimental results 

confirm the feasibility of this approach. To address the issue 

of financial fraud detection, represented by credit card fraud, 

Zhao et al. [18] proposed a self-attention-based Generative 

Adversarial Network model (SAGANs) in "Advancing 

financial fraud detection: Self-attention Generative 

Adversarial Networks for precise and effective identification." 

To optimize and improve fraud detection algorithms, the 

model extracts key features and patterns from large-scale 

transaction datasets, deepening the mathematical abstraction 

of credit card fraud data and enhancing the accuracy of 

identification. To address the issue of systematic trading 

strategy optimization, Koshiyama et al. [19] proposed 

"Generative Adversarial Networks for financial trading 

strategies fine-tuning and combination" and developed a 

complete methodology based on training and selection of 

cGAN, single-sample strategy calibration, and multi-sample 

generative modeling. Experiments show that the algorithm 

provides a feasible and effective approach to solving the 

problem of systematic trading strategy optimization. In 

"DeepPricing: pricing convertible bonds based on financial 

time-series Generative Adversarial Networks," Tan et al. [20] 

proposed a novel data-driven convertible bond pricing model, 

DeepPricing, which effectively addresses the pricing problem 

of convertible bonds. The algorithm introduces a new type of 

financial time-series Generative Adversarial Network 

(FinGAN) to generate risk-neutral stock return processes that 

preserve the original statistical properties. This allows the 

model to capture the dynamic changes of the underlying stock 

return process while retaining the rich characteristics of the 

convertible bond market. Experimental results show that the 

proposed algorithm outperforms traditional methods in 

convertible bond pricing. Lin et al. [21] proposed an efficient 

credit default swap (CDS) prediction model based on 

Generative Adversarial Networks in "Credit default swap 

prediction based on Generative Adversarial Networks" to 

enhance the intelligence of credit risk management and 

provide investors with more accurate risk management and 

trading strategy support. In their paper Fin-GAN: Forecasting 

and Classifying Financial Time Series via Generative 

Adversarial Networks, Vuletić et al. [22] proposed a 

specialized adversarial neural network with an improved loss 

function to explore the application of Generative Adversarial 

Networks (GANs) in financial time series probabilistic 

forecasting. This network effectively solves the challenges 

associated with applying GANs in this context. Experimental 

results demonstrate that the model surpasses traditional 

supervised learning models in terms of the Sharpe ratio. To 

explore the similarity between synthetic data sequences 

generated by Wasserstein GAN and real data sequences, Allen 

et al. [23] employed various metrics, including regression 

analysis, the application of moments and characteristic 

functions, and random forest analysis, in their paper GANs and 

Synthetic Financial Data: Calculating VaR. They also 
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evaluated and applied the data by calculating the Value at Risk 

(VaR). To solve the problems of insufficient prior knowledge 

and high time complexity in urban master plan rendering, in 

response to the challenges of employing stochastic processes 

in financial time series modeling, Wiese et al. [24] introduced 

a data-driven Quant GANs model in their paper “Quant GANs: 

Deep Generation of Financial Time Series”. The model's 

generator ensures that the generated stochastic processes 

transition effectively to their risk-neutral distribution. 

Numerical experiments indicate that the distribution 

characteristics of the generated data closely align with those of 

real data. In exploring the applicability of deep generative 

models in the financial domain, Park et al. [25] propose a stock 

feature-based deep generative diffusion model in their paper 

Modeling Asset Price Process: An Approach for Imaging 

Price Chart with Generative Diffusion Models. This model 

effectively avoids prior assumptions about stock price 

movements, enabling a more accurate representation and 

generation of financial data. Experimental results demonstrate 

that the algorithm can successfully replicate well-known asset 

price processes, providing a novel approach for financial 

decision-making. Reinforcement learning models used in 

portfolio management have certain drawbacks, leading to 

suboptimal generalization results. In this regard, Kuo et al. [26] 

introduced an interactive generative adversarial model based 

on a limit order book to simulate financial markets in their 

paper Improving Generalization in Reinforcement Learning-

Based Trading by Using a Generative Adversarial Market 

Model. The experimental results demonstrate that the 

framework improves out-of-sample portfolio performance by 

4%, outperforming other generalization techniques. 

 

2.2 Basis of Method Innovation 

 

2.2.1 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a deep 

learning model consisting of a generator 𝐺(𝑧, 𝛩𝐺)  and a 

discriminator 𝐷(𝑥∗, 𝛩𝐷), which follow the principles of zero-

sum game theory, optimization theory, and Nash equilibrium. 

The generator 𝐺(𝑧, 𝛩𝐺)  is a neural network that generates 

synthetic samples 𝑥̅ from noise z based on a prior distribution 

𝑝𝑧(𝑧), aiming to make 𝑥̅  as similar as possible to real data 

samples xx. The discriminator 𝐷(𝑥∗, 𝛩𝐷) is a neural network 

designed to distinguish whether an input sample 𝑥∗ originates 

from the real data distribution xx or is a synthetic sample 𝑥̅ 

generated by the generator. Here, 𝛩𝐺  and 𝛩𝐷  represent the 

parameters of the generator and discriminator, respectively. 

The value function is denoted as 𝑉(𝐺, 𝐷) . Therefore, the 

Generative Adversarial Network can be formulated as follows: 

 

𝐺(𝑧, 𝛩𝐺) ∶ z → x̅ (1) 

 

𝐷(𝑥∗, 𝛩𝐷) ∶ 𝑥∗ → [0,1] (2) 

 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑋~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)]

+ 𝐸𝑧~𝑃𝑧(𝑧)
[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] 

(3) 

 

Eqs. (1)-(3) describe the Generative Adversarial Network 

(GAN) model and outline the improvement paths for the 

network. 

 
2.2.2 Conditional Generative Adversarial Network 

Conditional Generative Adversarial Network (cGAN) is a 

variant of Generative Adversarial Networks (GAN) that 

incorporates implicit conditions. By introducing a condition 𝑐 

into both the generator 𝐺(𝑧|𝑐, 𝛩𝐺)  and the discriminator 

𝐷(𝑥∗|𝑐, 𝛩𝐷), cGAN achieves two key improvements: (1) The 

generator 𝐺(𝑧|𝑐, 𝛩𝐺) produces samples 𝑥̅ that not only retain 

stochastic properties but also incorporate conditional attributes, 

enabling the generation of samples with specified features 

based on given conditions; (2) The discriminator 𝐷(𝑥∗|𝑐, 𝛩𝐷) 

performs authenticity verification of the sample 𝑥∗ based on 

the condition 𝑐 , allowing for condition-dependent 

discrimination. The cGAN framework is described as follows: 

 

𝐺(𝑧|𝑐, 𝛩𝐺): 𝑧, 𝑐 → 𝑥̅ (4) 

 

𝐷(𝑥∗|𝑐, 𝛩𝐷): 𝑥∗, 𝑐 → [0,1] (5) 

 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑋~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥 |𝑐)]

+ 𝐸𝑧~𝑃𝑧(𝑧)
[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧|𝑐)))] 

(6) 

 

𝐸𝑋~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥 |𝑐)] represents the discriminator's loss 

on real samples, indicating its ability to determine whether a 

real sample 𝑥  belongs to the true data distribution. 

𝐸𝑧~𝑃𝑧(𝑧)
[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧|𝑐)))]  represents the discriminator's 

loss on generated samples, reflecting its ability to identify 

whether the generated sample 𝑥̅  is fake. Therefore, the 

Conditional Generative Adversarial Network (cGAN) 

achieves optimal performance when the first term is 

maximized, and the second term is minimized. 

 

2.2.3 Variational Autoencoder 

A Variational Autoencoder (VAE) is a generative model 

based on probabilistic modeling in the latent space. The 

encoder 𝑞(𝑧|𝑥) maps the input data 𝑥  to the latent space 𝑧, 

while the decoder 𝑝(𝑥|𝑧)  reconstructs the data 𝑥̅  from the 

latent space 𝑧. 

The VAE algorithm is described as follows: 

 

𝑝(𝑥, 𝑧) = 𝑝(𝑥|𝑧)𝑝(𝑧) (7) 

 

𝐿(𝜃, 𝜙; 𝑥) = 𝐸𝑞(𝑧∣𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿((𝑧 ∣ 𝑥)

∥ 𝑝𝜑(𝑧)) 
(8) 

 

Here, the data 𝑥 is generated through the latent variable 𝑧, 

where 𝑝(𝑥|𝑧)  represents the decoder, and 𝑝(𝑧)  is the prior 

probability of the latent variable. The posterior distribution is 

denoted as 𝑝(𝑧|𝑥), and the approximate distribution is 𝑞(𝑧|𝑥). 

The term 𝐸𝑞(𝑧∣𝑥)[log 𝑝𝜃(𝑥|𝑧)]  represents the reconstruction 

loss, which quantifies the error in reconstructing data x from 

the latent variable z. The term 𝐾𝐿((𝑧 ∣ 𝑥) ∥ 𝑝𝜑(𝑧)) is the KL 

divergence, which measures the difference between the 

variational distribution 𝑞(𝑧|𝑥) and the prior distribution 𝑝(𝑧). 

Here, 𝜃  represents the decoder parameters, while 𝜙  denotes 

the encoder parameters. 
 

2.2.4 Conditional vector projection 

In the 2018 paper "Spectral Normalization for Generative 

Adversarial Networks", Miyato et al. proposed conditional 

vector projection (CVP), a technique for Conditional 

Generative Adversarial Networks (cGANs). This method is 

primarily applied to the discriminator 𝐷(𝑥∗|𝑐, 𝛩𝐷) to 

effectively incorporate conditional information, thereby 

improving the model’s discriminative capability and training 
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stability. Conditional vector projection description: 

 

𝑓(𝑥) = 𝐷𝑓𝑒𝑎𝑡(𝑥) (9) 

 

𝑝(𝑦|𝑥) = 𝑓(𝑥)⊤𝑣𝑦  (10) 

 

𝐷(𝑥, 𝑦) = 𝑓(𝑥)⊤𝑣𝑦 + 𝑏 (11) 

 

where, 𝐷𝑓𝑒𝑎𝑡(𝑥) represents the feature extraction module of 

the discriminator. 𝑓(𝑥)  is the feature representation of the 

input sample, 𝑣𝑦  is the learnable embedding vector 

corresponding to class y, 𝑝(𝑦|𝑥) introduces class information 

into the discriminator’s decision function via inner product 

operation. b is a learnable bias term. 

 

2.5 Self-attention mechanism 
 

The self-attention mechanism is a window-size-

independent method for learning long-range dependencies. It 

is widely used in Natural Language Processing (NLP) and 

Computer Vision (CV) tasks. Given an input sequence 𝑋 ∈
𝑅𝑛×𝑑 ,  where n is the sequence length and d is the feature 

dimension, the self-attention mechanism computes weighted 

relationships among Query (𝑄), Key (𝐾), and Value (𝑉) to 

generate new feature representations, enabling the learning of 

long-range dependencies. 

 

 

3. ALGORITHM INNOVATION 

 

Based on the theoretical research and applied innovations, 

this paper proposes the Variational Autoencoder (VAE) 

algorithm based on a self-attention mechanism adaptively 

(VAE based on SAM), a self-adaptive encoding method 

integrating self-attention and conditional vector projection 

(self-adaptive EM), and the Multi-metric Weighted Evaluation 

Algorithm (mmWVEA). These algorithms address the 

problems of generating monotonous samples, imperfect 

coding techniques, and a simplistic evaluation system in 

traditional generative adversarial neural networks. 
 

3.1 Variational Autoencoder (VAE) algorithm based on a 

self-attention mechanism adaptively (VAE based on SAM) 
 

Integrating the self-attention mechanism into the encoding-

decoding module of the VAE algorithm enables the improved 

VAE to learn long-range dependencies of objects. The 

flowchart of the VAE based on SAM algorithm is shown in 

Figure 1. 

 

 
 

Figure 1. Flowchart of the VAE based on SAM algorithm 

 
3.2 The self-adaptive encoding method integrating self-

attention and conditional vector projection (self-adaptive 

EM) 

 

 
 

Figure 2. The flowchart of self-adaptive EM 

To address the issues of singular conditions and weak 

constraint capability in conditional GAN (cGAN) networks, 

"The self-adaptive encoding method integrating self-attention 

and conditional vector projection" is proposed. This method 

incorporates the projection of class-conditional information 

into the discriminator’s decision function, thereby enhancing 

its ability to differentiate between generated and real samples 

and effectively improving the resolution and class consistency 

of the generated images. Furthermore, the self-attention 

mechanism learns the long-range dependencies between the 

condition set CCC and the input data, establishing a 

dependency between the generated data and the condition set. 

The flowchart of self-adaptive EM is shown in Figure 2. 

In here, ASM Learn long-range dependencies feature in data 

through self-attention mechanism (ASM); Multilayer 

Perceptron (MLP) built the data-dependent distribution p(x); 

Establishing the association between conditional information 

and sample data through projection operation. Through the 

above three steps, the adaptive encoding algorithm learns the 

dependency distribution patterns of the input data and achieves 

adaptive encoding. 
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The algorithm pseudocode is represented in Table 1. 

 

Table 1. The algorithm pseudocode 

 

Input: Training sample dataset X 

Processing procedure: 

1.Long-range dependencies 𝑃𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒(𝑥)  Learn in 

training sample dataset X through self-attention mechanism 

(ASM) 

 

𝑃𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒(𝑥) = 𝐴𝑆𝑀(𝑋)+X 

 

2.The data-dependent distribution  𝑝(𝑥)  is built by the 

Multilayer Perceptron (MLP). 

 

𝑝(𝑥) = 𝑀𝐿𝑃(𝑃_𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒(𝑥)) 

 

3.Establishing the association between conditional 

information and sample data through projection encode 

operation 

 

𝑠 = ⟨ℎ(𝑥), 𝑐𝑒𝑚𝑏𝑒𝑑⟩ = ⟨𝑋(𝑖), 𝑝(𝑥)⟩ 
 

Output: Output encoded data 

 

3.3 The Multi-metric Weighted Evaluation Algorithm 

(mmWVEA) 

 

In generative adversarial neural network methods, 

commonly used evaluation metrics include Fréchet Inception 

Distance (FID), CCS, and Kullback-Leibler Divergence 

(DKLD_{KL}). FID measures the quality and diversity of 

generated samples by computing the distribution discrepancy 

between generated and real data in a high-dimensional feature 

space. CCS evaluates whether the generated samples are 

consistent with the input conditions. It focuses on the model’s 

conditional dependency, ensuring that the generated output 

accurately reflects the input conditions. KLD quantifies the 

similarity between a distribution P(x) and another distribution 

Q(x). Since each evaluation metric only focuses on a specific 

aspect of performance, to comprehensively assess the 

effectiveness of the proposed algorithm, we construct the 

Multi-metric Weighted Evaluation Algorithm (mmWVEA), 

which is mathematically described as follows: 

 

𝑖𝑛𝑑𝑒𝑥(𝑒) = 𝜆1𝐹𝐼𝐷 + 𝜆2𝐶𝐶𝑆 + 𝜆3𝐷𝐾𝐿 (12) 

 

𝐹𝐼𝐷 =∣∣ 𝜇𝑟 − 𝜇𝑔 ∣∣2+ 𝑇𝑟(𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)1/2) (13) 

 

𝐶𝐶𝑆 =
1

𝑁
∑ ∏(𝑐̂𝑖 = 𝑐𝑖)

𝑖=𝑁

𝑖=1

 (14) 

 

DKL(P ∣∣ Q) = ∑ P(x)log 
P(x)

Q(x)
x

 (15) 

 

λ1 + λ2 + λ3 = 1 (16) 

 

𝜆𝑖 =
𝑉𝑎𝑙(𝑖)

(𝐹𝐼𝐷 + 𝐶𝐶𝑆 + 𝐷𝐾𝐿(𝑃 ∣∣ 𝑄))
 (17) 

 

In here, 𝑉𝑎𝑙(𝑖) ∈ {𝐹𝐼𝐷, 𝐶𝐶𝑆, 𝐷𝐾𝐿}. 

 

Therefore, the pseudocode implementation of the Multi-

metric Weighted Evaluation Algorithm is shown in Table 2. 

 

Table 2. Pseudo-code of the evaluation function 

 

Input: Training sample dataset X 

Processing procedure: 

1. The mean and covariance matrix of the real data feature 

distribution (μr, Σr)  and the mean and covariance 

matrix of the generated data feature distribution 

(μg, Σg)  are computed. The Fréchet Distance (i.e., 

Wasserstein-2 Distance) between these two 

distributions is then calculated. 

 

𝐹𝐼𝐷 =∣∣ 𝜇𝑟 − 𝜇𝑔 ∣∣2+ 𝑇𝑟(𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)1/2) 

 
2. The generator 𝐺 receives the condition cc and random 

noise 𝑧, generating a sample x =  G(z|c). Meanwhile, 

a conditional discriminator C is assumed to exist, 

which outputs the predicted condition 𝑐̂ . The CCS 

value is then computed. 

 

𝐶𝐶𝑆 =
1

𝑁
∑ ∏(𝑐̂𝑖 = 𝑐𝑖)

𝑖=𝑁

𝑖=1

 

 
3. Compute the probability distributions of the generator 

P(x) and the discriminator Q(x), then calculate their 

Kullback-Leibler (KL) divergence. 

 

DKL(P ∣∣ Q) = ∑ P(x)log 
P(x)

Q(x)
x

 

 

4. Adaptive Weight Calculation (𝜆𝑖) 

 

𝜆𝑖 =
𝑉𝑎𝑙(𝑖)

(𝐹𝐼𝐷 + 𝐶𝐶𝑆 + 𝐷𝐾𝐿(𝑃 ∣∣ 𝑄))
 

 

5. Integrated Evaluation Metric Calculation. Calculate the 

integrated evaluation metric based on FID, CCS, 

and 𝐷𝐾𝐿  

 

𝑖𝑛𝑑𝑒𝑥(𝑒) = 𝜆1𝐹𝐼𝐷 + 𝜆2𝐶𝐶𝑆 + 𝜆3𝐷𝐾𝐿  

 

Output: Output index(e) 

 
3.4 Conditional Generative Adversarial Network based on 

self-attention mechanism and VAE algorithm (adaptive 

cGAM-SAN-VAE) 

 

To address the problems of generating monotonous samples, 

imperfect coding techniques, and a simplistic evaluation 

system in traditional generative adversarial neural networks. 

“Conditional Generative Adversarial Network Based on self-

attention mechanism and VAE Algorithm (self-adaptive EM)” 

is proposed, this algorithm integrates the Variational 

Autoencoder (VAE) algorithm based on a self-attention 

mechanism adaptively (VAE based on SAM), a self-adaptive 

encoding method integrating self-attention and conditional 

vector projection (self-adaptive EM), and the Multi-metric 

Weighted Evaluation Algorithm (mmWVEA). The flowchart 

of adaptive cGAM-SAN-VAE is shown Figure 3. 
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Figure 3. The flowchart of self-adaptive EM 

 

 

4. EXPERIMENTS AND EXPERIMENTAL RESULTS 

ANALYSIS 

 

4.1 Dataset introduction 

 

The custom dataset self-DataSet in this paper has the 

following attributes. (1) It contains financial data from a 

university with typical time-series characteristics. (2) The 

continuous data collection period is 

t[2015.01.01,2024.12.30]. (3) The dataset consists of 7,236 

entries. (4) The Conditional Label Dataset includes 21 labels 

related to university financial attributes, some of which are 

classified. All experiments in this paper were conducted on 

this dataset. 

 

4.2 Algorithm ablation experiment 

 

4.2.1 Ablation experiment macro features 

The proposed algorithm is an integration of three innovative 

algorithms. Therefore, the algorithm ablation experiment 

fundamentally validates the effectiveness and advantages of 

this integration. On self-DataSet, ablation experiments based 

on the three innovative algorithms are conducted, and the 

effectiveness and advantages of the proposed algorithm are 

evaluated using Precision, Recall, and Index (e) as evaluation 

metrics. 

 

Table 3. Algorithm ablation experiment results table 

 

Ablation 
Algorithm Evaluation Metrics 

GAN cGAN ASM-PE ASM-AVE Precision (%) Recall (%) Normalized Index (e) 

1 √    82.37 78.73 0.16 

2  √   84.25 83.62 0.35 

3  √ √  91.47 87.35 0.57 

4  √  √ 93.84 90.78 0.64 

5  √ √ √ 97.37 92.93 0.78 

 

Experimental Results Analysis: As shown in the Table 3, as 

the ablation experiment progresses, the integration of 

algorithms in the proposed method increases, leading to a 

gradual improvement in algorithm performance. The Precision 

metric steadily improves, indicating an enhancement in the 

quality and diversity of generated samples. Meanwhile, the 

Recall metric also increases, suggesting a reduced probability 

of mode collapse. Therefore, the ablation experiment 

demonstrates that the proposed algorithm is effective and 

exhibits superior performance. 
 

4.2.2 Performance comparison of ablation experiment in 

microscopic data generation 

The previous analysis has validated the macroscopic effects 

of the ablation experiment, confirming the effectiveness and 

performance advantages of the proposed algorithm. To further 

investigate the relationship between the ablation experiment 

and microscopic data generation, ablation experiments based 

on the three innovative algorithms are conducted on the self-

DataSet. The effectiveness and advantages of the proposed 

algorithm in microscopic data generation are evaluated using 

the following metrics: Mean ratio 𝛾1 =
𝜇1

𝜇2
, Variance ratio 

𝛾2 =
𝛿1

𝛿2
, Skewness ratio 𝛾3 =

𝑠1

𝑠2
 and Kurtosis ratio 𝛾4 =

𝑘1

𝑘2
. 

For consistency in comparison, 𝛾1  is computed as follows: 

𝛾1 = {

𝜇1

𝜇2
  𝜇1 ≤ 𝜇2 

𝜇1

𝜇2
  𝜇1 ≥ 𝜇2

 . And similarly, 𝛾2 , 𝛾3 , and 𝛾4  are 

calculated using the same approach. 
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Table 4. Ablation experiment microscopic effect table 

 

Ablation 
Algorithm Evaluation Metric 

GAN cGAN SAM-PE ASM-AVE γ1 γ2 γ3 γ4 

1 √    ≤0.56 ≤0.32 ≤0.41 ≤0.24 

2  √   ≤0.63 ≤0.45 ≤0.47 ≤0.35 

3  √ √  ≤0.75 ≤0.57 ≤0.62 ≤0.59 

4  √  √ ≤0.66 ≤0.63 ≤0.86 ≤0.79 

5  √ √ √ ≤0.96 ≤0.89 ≤0.88 ≤0.92 

 

Experimental Results Analysis: As shown in Table 4, with 

the continuous integration of algorithms, all four evaluation 

metrics gradually increase and approach 1. This linear trend 

indicates that the proposed algorithm progressively generates 

samples that approximate real samples in the process of 

microscopic data generation. Consequently, the results 

demonstrate that the proposed algorithm is more effective in 

generating microscopic data, directly proving its effectiveness 

and comparative advantage. 

 

4.3 Algorithm performance comparison 

 

To verify the advantages of the proposed algorithm, a 

comparative experiment was conducted under the same 

experimental conditions between the proposed algorithm and 

GAN, cGAN, AM-cGAN, and Encode-cGAN methods. The 

experimental results are shown in Table 5. 

Experimental Results Analysis: The experimental data in 

Table 5 indicate that, under the same experimental conditions, 

the proposed algorithm achieves better comparative 

performance advantages compared to the listed algorithms. 

This is because the proposed algorithm effectively addresses 

the following three issues present in the current cGAN through 

its three sub-algorithms: (1) The problem of generating 

monotonous samples. (2) The issue of imperfect coding 

techniques. (3) The problem of a simplistic evaluation system. 

 

Table 5. Algorithm performance comparison 

 

Algorithm 
Signal Attribute Comparison and Analysis 

γ1 γ2 γ3 γ4 

GAN ≤0.56 ≤0.32 ≤0.41 ≤0.24 

cGAN ≤0.63 ≤0.45 ≤0.47 ≤0.35 

AM-cGAN 

Dot-Product Attention [27] ≤0.59 ≤0.47  ≤0.52 ≤0.46 

Positional Encoding [28] ≤0.63 ≤0.45  ≤0.56 ≤0.48 

SAM ≤0.75 ≤0.57  ≤0.62 ≤0.59 

Encode-cGAN 

Encode 1 [29] ≤0.69 ≤0.62 ≤0.78 ≤0.66 

Encode 2 [30] ≤0.73 ≤0.72 ≤0.72 ≤0.71 

cGAN +SAM-PE ≤0.75 ≤0.57 ≤0.62 ≤0.59 

The proposed ≤0.96 ≤0.89 ≤0.88 ≤0.92 

 

 

5. CONCLUSION AND OUTLOOK 

 

To address the following three issues present in the current 

cGAN: (1) Generating monotonous samples; (2) Imperfect 

coding techniques; (3) Simplistic evaluation system, this paper 

proposes the "Conditional Generative Adversarial Network 

Based on self-attention mechanism and VAE Algorithm and 

Its Applications". This algorithm integrates three customized 

sub-algorithms, effectively solving the above problems. The 

proposed algorithm is validated on a self-defined university 

financial dataset, and the experimental results demonstrate its 

feasibility and comparative advantages. 

Future Research Directions 

1. Data Expansion: Utilize a larger dataset to further 

investigate and validate the feasibility and comparative 

advantages of the proposed algorithm. 

2. Attention Mechanism Optimization: Explore attention 

mechanisms tailored to the characteristics of the dataset to 

enhance algorithm performance. 
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