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Due to the variety of lighting, postures, and occlusions, symmetry of faces and identification 

in an unrestricted area are difficult. The latest study demonstrates that deep learning 

techniques can do remarkably well on these two challenges. The complex transmitted multi-

task structure the developers provide in this research takes advantage of the natural 

relationship between them to improve efficiency. The suggested Multi-task Cascaded Mask 

Convolutional Network (MTCMCN) has three layers of carefully planned deep convolution 

networks that work together to figure out where faces and landmarks are from a wide range 

of angles. Additionally, they provide a novel, continuous, difficult sample mining approach 

for learning procedures, which may automatically boost efficiency without the manual 

choice of samples. The use of a sizable cross-age image collection containing gender and 

age descriptors advances the creation of Age-Invariant Face Recognition (AIFR) and FAS. 

MTCMCN outperforms existing methods by achieving state-of-the-art accuracy on 

benchmarks like FDDB and WIDER FACE, exceeding 95% accuracy in some cases. It has 

a Central Processing Unit (CPU) speed of 16 frames per second and a GPU speed of 99 

frames per second, ensuring real-time performance. The proposed system achieves this by 

using a special identification conditional block and live hard sample mining, thereby 

improving face recognition regardless of age.  
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1. INTRODUCTION

Numerous investigations, particularly in unregulated 

settings, have focused on automated facial expression 

recognition [1]. Expression research has several significant 

applications, including human-computer interaction, smart 

recording devices, and depressive and pain identification. This 

study describes a unique technique for recognizing facial 

expressions in both natural and lab-controlled photographs [2]. 

Here are a few conventional approaches for extracting visual 

features, which revolve around the use of handcrafted filters 

and the subsequent collection of mathematical data on patterns 

through histogram calculations. Arnable characteristics 

gradually replace the manually created ones, yet the histogram 

significantly influences the representation of statistical data in 

a small feature vector. To be able to recognize emotions [3] on 

someone's face when things aren't under control, you have to 

train a very complicated goal function that can handle big 

changes, like a person's head pose, as well as small changes in 

how they look [4]. Instance-based training provides a suitable 

framework to acquire complex functions illustrated by several 

simpler local approximations. Instead of immediately 

categorizing information, we employ a deep metric learning 

method to identify facial expressions, which teaches the 

network to compare the information. The model can use a new 

distance criterion to classify the vector of features produced by 

the neural network. In traditional facial expression recognition 

systems, every sample used for training consists of a facial 

image and the labeled expression that goes with it. The present 

research combines identical and different facial photos to 

create each training set. This eliminates the impact of an 

unbalanced sample size across classes. Additionally, this 

strategy mitigates the impact of inadequate training 

information, as the set of data contains a greater number of 

these combinations than there is training information. 

Figure 1. Flow of online hard sample mining for face 

recognition 

For MTCMCN, the inclusion of live, difficult sample 

mining is a significant advancement because it greatly 

improves model performance and training. Conventional 
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challenging sample mining techniques identify difficult 

instances before the training process starts, as they operate 

offline. Sometimes this entails hand-picking a collection of 

hardy samples, which takes a lot of time and effort. 

Furthermore, these pre-selected samples never vary during the 

training process, so they might not be able to adjust to evolving 

data ranges. Either way, MTCMCN employs an automated 

and dynamic technique called live difficult sample mining. 

This approach integrates difficult sample selection into the 

training loop, eliminating the need for manual labor and 

offline recognition. During every minibatch run, the network 

determines the loss function for each sample through forward 

propagation. The loss function, like the placement of face 

landmarks, measures how far off the expected output is from 

the true objective values. The "hard samples" are clearly the 

ones having the highest loss values right away. Typically, we 

select 70% of samples with the highest loss values. Then 

model and use these challenging samples, representing the 

harshest cases, for weight adjustments and backpropagation. 

Figure 1 indicates the representation of flow for online hard 

sample mining with face recognition. This continuous and 

adaptable approach has several advantages, including 

efficiency, objectivity, and a customizable nature. 

Emphasizing the most pertinent instances, online difficult 

sample mining improves the model's learning ability. This 

results in improved face recognition and alignment even in 

cases when the photographs are not particularly clear or the 

subjects are in odd stances or low-resolution images. 

 

 

2. LITERATURE SURVEY  
 

The deep neural networks have recently demonstrated 

higher capabilities in areas such as facial expression 

identification. Various studies [5] use Convolutional Neural 

Network (CNN) histogram analysis. This study sets itself apart 

from previous works by aiming to teach a histogram-based 

CNN using histogram-friendly chi-squared criteria [6]. The 

model modified a chi-squared separation by defining a 

learnable matrix as the fully connected layer [7]. The amended 

formula then trains the neural network, which generates an 

additional activation function using a histogram-based loss 

function [8]. 

A lack of adequate training information is one of the issues 

with deep learning for facial expression identification that 

leads to overfitting on training information [9]. Researchers 

have come up with two main ways to solve this problem: using 

3D face modeling to improve the data and transfer machine 

learning to set up the convolutional parts of the proposed 

network [10]. Convolutional neural networks use the 

synthesized information as a technique to expand their dataset 

for learning. This study synthesizes new faces with different 

head positions and lighting, utilizing 3D modeling for each 

facial representation to instruct the neural network. The system 

creates the suggested neural network model based on 

histograms from 2D images [11]. Therefore, this method of 

incorporating 3D data generates fresh 2D facial images, 

potentially enhancing the effectiveness of the suggested neural 

network in managing these alterations when they aren't under 

control. The system may use previously trained deep neural 

networks for facial expression recognition. Although these 

networks offer a wealth of accessible variables, their 

development stemmed from distinct objectives [12]. Neural 

variables make it challenging to effectively train neural 

networks, as does the dearth of instructional content for facial 

emotion detection. This research [13] selects a large neural 

network with extensive face recognition datasets and uses it to 

train a smaller neural network on facial expression data. To 

increase the detector's capabilities while learning, rigorous 

sample mining is required.  

On the other hand, traditionally difficult sample mining 

frequently takes place offline, which greatly increases the 

amount of physical work [14]. The model aims to develop an 

online computational sample mining approach for face 

alignment and recognition that can seamlessly integrate with 

the existing training method. In this research, the system 

proposes a novel framework that enables simultaneous 

learning of these two tasks using integrated cascaded CNNs 

[15]. The system has divided the suggested CNNs into three 

stages. In the first stage, a shallow CNN quickly generates 

candidate windows. Next, a more complex [16] refines the 

windows to eliminate a significant proportion of non-faced 

windows. Utilizing a stronger CNN, it then refines the findings 

and outputs the locations of the facial landmarks. This multi-

tasking learning approach allows for a significant 

improvement in algorithmic efficiency. In this field of study, 

the MTCNN method is one of the most popular FD techniques. 

This method is a more detailed version of the CNN cascade-

based FD algorithm, which works at different decision points, 

quickly gets rid of background noise in low-resolution stages, 

and carefully chooses candidates for the high-quality stage in 

the last step [17]. R-Net, P-Net, and O-Net are the three 

different phases of the MTCNN approach for performing face 

identification and landmark placement [18]. As per SOTA face 

database WIDER FACE, this method's FD reliability is 

85.10% [19]. The SCRFD FD method discovered two 

essential components of ideal FD systems like the random 

sampling of training information and the distribution of 

computation. Based on these conclusions, the model proposes 

two strategies [20]. One method, known as "Sample 

Redistribution," expands the initial training data for the crucial 

stages using data from the conventional database [21].  

A different method, known as computational redistribution, 

redistributes three key FD model parameters—the head, 

backbone, and neck—for calculation on the basis of a precise 

search approach [22]. This method claims to have the highest 

FD reliability to date, with a score of 96.06% on the WIDER 

FACE dataset. Formation and evaluation are the two key 

phases in traditional FR systems. In the learning step, the 

system first processes the input information before using 

methods for feature extraction to identify facial traits. The 

system then uses an attribute theme to store the characteristics 

[23]. The testing phase preprocesses the input facial 

information and obtains characteristics in a manner similar to 

that of the training phase. Researchers compare the extracted 

features from the testing information with the previously 

stored characteristics in the characteristic templates [24]. Early 

studies on face recognition primarily focused on algorithms 

that compared fundamental aspects of facial feature 

architecture through photographic processing methods [25]. 

By employing specialized contour detectors and borders, the 

researchers attempted to locate face features and assess their 

distances and locations between them [26]. In FR methods, 

researchers thoroughly investigated the possibility of using 

facial landmarks and their arrangement. Once 3D landmarks 

provide depth data, geometry-based techniques become more 

effective in 3D FR methods.  

In subsequent studies using what the model refers to as 
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holistic FR approaches, experts used the entire facial region as 

input for FR methods. Instead, the researchers employed 

characteristics that could describe the image textures at 

different points as a result of advancements in methods for 

computer vision [27]. This feature-based method matches the 

local characteristics of photos for FR purposes. Researchers 

refer to the combined or hybrid method for FR structures, 

which combines feature-based and holistic strategies to 

increase efficiency [28]. Up until the advent of DL-based 

approaches, these were the usual techniques primarily 

employed in FR devices. Over the past several years, the 

application of deep learning and CNN for facial recognition 

techniques has had significant effects on performance 

improvement [29]. With the development of highly 

sophisticated architectures and discriminating approaches to 

learning, the performance of FR methods had reached an 

astonishing level. DL approaches, when trained on significant 

volumes of data, can create FR systems that are resilient to 

various training information [30]. Convolution layers, data 

pooling layers, and completely connected layers make up the 

majority of a CNN structure. A convolutional layer attempts 

to identify facial traits based on the provided information.  

The convolutional layer employs nonlinear transmission 

operations and a filter kernel to carry out the convolution 

process [31] by combining the outcomes for one layer's neuron 

groups into the specific neuron in the following layer, the 

pooling layers' goal is to reduce the size of the map of features. 

Implementing this CNN-based representation of feature 

algorithms in FR systems has significantly increased their 

effectiveness. The DL-based techniques also incorporate the 

two steps found in conventional [32]. During the training stage, 

we process the input information beforehand to adjust the 

input tensor for the neural network architecture, generating a 

unified include map. This includes adjusting the total number 

of images, height, width, and various other variables. The 

model may also resize or change the position of the input data 

[33]. 

New deep learning methods, especially the utilization of 

Multi-Task Cascaded Mask Convolutional Networks 

(MTCMCN), have recently enabled significant advances in 

face recognition. The author [34] claim that these networks 

help one to recognize persons while also handling other issues 

such as occlusions and light fluctuations. MTCMCN has made 

significant strides with its online mining approach. This 

approach, according to researcher [35], uses harsh sample 

mining to enhance learning and thereby helps the model to 

function without human intervention. Research indicated up to 

2024 that these techniques not only improve face recognition 

accuracy but also AIFR performance [36]. These methods 

have improved by using entire cross-age databases listing both 

gender and age, ensuring reliable findings on common datasets 

such as FDDB and AFLW [37]. These developments have led 

to a significant demand for more accurate and flexible 

identification systems. As a result, MTCMCN is a leading 

framework in current face identification technologies. 

 

 

3. PROPOSED METHODOLOGY  
 

Figure 2 shows our method's complete pipeline. 

Researchers first resize an image to different scales to generate 

an image pyramid, which serves as the input for the following 

three-phase cascaded framework: 

• To get the prospective windows and associated boundary-

box regression vectors, the model implements an entirely 

convolutional network dubbed the suggestion network. The 

proposed system calibrates the choices using the calculated 

regression bounding box matrices. After that, the model 

utilizes non-maximum suppression to combine options with 

significant overlaps. 

• The system sends each applicant to the Refine Network, a 

separate CNN that calibrates using bounding box regression, 

combines NMS candidates, and gets rid of even more wrong 

members. 

• This stage focuses on providing a more detailed 

description of the face, similar to the subsequent stage. The 

network will specifically output the locations of five face 

features. 

 

 
 

Figure 2. The proposed MTCMCN framework's pipeline 

 

3.1 Proposed MTCMCN architecture 

 

In several CNNs, face recognition has been implemented. 

However, we observed that the following details might restrict 

its performance: Certain filters might be unable to provide 

discriminatory descriptions because their weights are not 

diverse enough. Identifying faces is a difficult binary 

classification problem; therefore, it may require fewer filters 

but a greater number of them than other multi-class objection 

recognition and categorization tasks. To do this, we cut down 

on the number of filters and switch from a 55 filter to a 33 filter 

for simpler computing while boosting efficiency. Compared to 

the prior construction, these advancements allow for improved 

performance with shorter runtimes, as demonstrated in Table 

1.  
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Table 1. Comparison of speed and validation accuracy of the 

proposed MTCMCN and existing system 

Group MTCMCN 300 Times Forward Accuracy (%) 
Group1 12-Net [19] 0.041 sec 95.1 
Group1 P-Net 0.033 sec 94.8 
Group2 24-Net [19] 0.745 sec 95.3 
Group2 R-Net 0.512 sec 95.6 
Group3 48-Net [19] 3.602 sec 94.2 
Group3 O-Net 1.352 sec 95.6 

Figure 3. MTCMCN architecture 

Figure 3 indicates the complete CNN architecture for the 

proposed system. The MTCMCN's cascaded design facilitates 

learning hierarchical characteristics and increases efficiency. 

Multi-task learning produces new knowledge and shared 

representations. Several drawbacks, including overfitting and 

the expense of computational capability, might be considered. 

But by concentrating on difficult instances, online hard sample 

mining increases dependability. More theoretical analysis—

including ablation studies and links to significant 

frameworks—would strengthen the assertion made in the 

study about MTCMCN working. Researchers use 3 tasks—

non-face/face categorization, bounding box regression 

analysis, localization of facial landmarks—to train our 

MTCMCN detectors. The goal of the lesson is presented as a 

two-class categorization issue. We employ the cross-entropy 

loss for every sample 𝑝𝑥:

𝐿𝑥
𝑑𝑒𝑡 = −(𝑗𝑥

𝑑𝑒𝑡 log(𝑝𝑥) + (1 − 𝑗𝑥
𝑑𝑒𝑡)(1 − log(𝑝𝑥))) (1) 

where, x is the chance that an example is a face, as determined 

through the network. The ground-truth label is indicated by the 

notation 𝑗𝑥
𝑑𝑒𝑡. We forecast the offset between every potential

window and the closest reality for every window. Everyone 

uses the Euclidean loss for every sample Xi and frame to 

achieve the learning objective as the following issue: 

𝐿𝑥
𝑏𝑜𝑥 = |𝑗�̂�

𝑏𝑜𝑥 − 𝑗𝑥
𝑏𝑜𝑥|2

2 (2) 

where, 𝑗�̂�
𝑏𝑜𝑥  is the ground-truth coordinates and 𝑗𝑥

𝑏𝑜𝑥 is the

regression goal that was derived from the network. There are 

4 coordinates—left top, width, height, &𝑗�̂�
𝑏𝑜𝑥—and as a result,

𝑗𝑥
𝑏𝑜𝑥R.

Facial landmark identification is formulated as a regression 

issue, much like the bounding box regress assignment, and we 

want to minimize the Euclidean loss: 

𝐿𝑥
𝐿𝑀 = |𝑗�̂�

𝐿𝑀 − 𝑗𝑥
𝐿𝑀|2

2 (3) 

where, 𝑗�̂�
𝐿𝑀the ground truth is coordinate &𝑗𝑥

𝐿𝑀 is the network

coordinator for the facial landmark. There are five facial 

landmarks: the right eye, the left eye, the left corner of the 

mouth, the nose, and the right corner of the mouth 𝑗𝑥
𝐿𝑀R.

Training management uses various types of training images, 

including non-face, face, and partially aligned face images, as 

each CNN performs a distinct function. This scenario does not 

utilize all the loss functions. For example, the developers 

simply compute the background region sample and leave the 

other two losses at 0. You can use an example-type indication 

to accomplish this immediate task. The overall learning goal 

can then be stated as 

min ∑ ∑ 𝑦 ∈ {𝑑𝑒𝑡, 𝑏𝑜𝑥, 𝐿𝑀}𝛼𝑦𝛽𝑥
𝑦

𝐿𝑥
𝑦

𝑁

𝑥=1

(4) 

where, N is the total of training samples. aj denotes the task's 

importance. Researcher use 𝛼𝑦 in P-Net &𝐿𝑥
𝑦

 in R-Net, while

in O-Net of more accurate facial landmarks localization. 𝛽𝑥
𝑦

 is

the sample type indicator. It makes sense in this situation to 

develop the CNNs using random gradient descent. 

Once the initial classifiers have been trained to adapt to the 

learning procedure, the system performs online difficult 

sample extraction in the face categorization job, instead of 

traditional hard sample mining. Everyone specifically sorts the 

loss computed in the propagation forward stage from all 

samples from every mini-batch and chooses the top 70 percent 

of them as difficult samples. At that point, we just compute the 

gradient from the difficult samples in the backward 

transmission stage. This means that during training, we 

overlook the simple data that are less useful in improving the 

detector. The results of experiments demonstrate that this 

approach performs better without manual sample selection. 

3.2 AIFR 

Figure 4 illustrates the architecture of the proposed 

MTCMCN. The major issue with AIFR was that age 

variability typically introduces widening intra-class gaps 

because faces vary dramatically over time. Due to the strong 

entanglement of unrelated data, such as modifications to facial 

shape and appearance, a significant separation between the 

two faces of the same person makes it challenging to 

distinguish them. Formally, their linear factorization module: 

Given a feature vector i𝒊𝒊𝒅derived from an input image I R

3XHXW. 

𝑖 = 𝑖𝑎𝑔𝑒 + 𝑖𝑖𝑑 (5) 

where, 𝑖𝑎𝑔𝑒  and 𝑖𝑖𝑑  denote the age and identity-related

components, respectively.  

Instead, researchers suggest using attention-based feature 

decomposition, also known as AFD, to break down the mixed 

feature maps at the high-level semantics level to overcome 

these shortcomings. Aging/rejuvenation impacts, including 

146



 

beards and wrinkles, appear within the semantic component 

space but disappear in the one-dimensional characteristics; 

operating on feature vectors is more challenging than on 

feature mappings. Formally, researchers utilize a ResNet-like 

backbone as encoder 𝜎 to extract mixed feature maps X ∈ R 

C×H0×W0 from an input image I, i.e. X = 𝜎(𝐼), the AFD 

could be defined as follows: 
 

𝐼 = (𝐼 ∘ 𝜎(𝐼)𝐼𝑎𝑔𝑒) + (𝐼 ∘ (1 − 𝜎(𝐼))𝐼𝑎𝑔𝑒) (6) 
 

The symbol I represents the attention modules and denotes 

the division of elements. In this process, an age estimate 

assignment controls the focusing module, which removes age-

related data from the feature maps. A face identification 

challenge guides the remaining portion, believed to contain 

identity-related data. 

As a result, the attention mechanism constrains the 

decomposition modules, enhancing their effectiveness in 

identifying age-related characteristics in semantic maps of 

features. Skipping interconnections between the decoder and 

the encoder maintains the remaining data, which is crucial for 

FAS. Note that the two relevant tasks only expect X to include 

the age and identification data.  

 

 
 

Figure 4. Architecture of proposed AIFR 

 

3.3 Conditional module 

 

The mainstream face-aging research typically divides the 

ages into many non-overlapping age groups due to the subtle 

changes in appearance over time with tiny age gaps. As shown 

in Figure 5(a), these techniques commonly utilize one-hot 

encoding to identify an age group of interest to regulate the 

rejuvenation/aging processes. The application of the one-hot 

age circumstance teaches every age category the group-level 

rejuvenation/aging pattern, including individuals who start 

growing beards at 30 years old. The model proposes the 

Identity Conditional Block (ICB) to achieve an identity-level 

rejuvenation/aging pattern, which addresses the issues caused 

by one-hot encoding. Additionally, it incorporates the weight-

sharing technique to improve the smoothness of the ageing of 

synthesized faces. To learn an identity-level 

rejuvenation/aging pattern, the proposed ICB uses the identity-

related characteristic from AFD as inputs. Then, as illustrated 

in Figure 5(b), we propose the weights-sharing technique, 

which enhances the age-synthesized faces' smoothness by 

sharing some convolution filters between adjacent age groups. 

The argument supports this theory, stating that faces gradually 

alter as we age, and that similar filtering can pinpoint shared 

aging and rejuvenation patterns among individuals of similar 

ages living in close proximity. 

The following is a definition of the loss function to optimize 

age estimation: 

 

𝑙𝐴𝐸(𝐼𝑎𝑔𝑒) = 𝐸𝑋 [𝑙𝑀𝑆𝐸 (𝐷𝐸𝑋 (𝐴(𝐼𝑎𝑔𝑒)) 𝑗𝑎𝑔𝑒)

+ 𝑙𝐶𝐸 (𝐴 (𝑊(𝐼𝑎𝑔𝑒)) 𝐶𝑎𝑔𝑒)] 
(7) 

 

AIFR's overall loss is expressed as follows: where 𝐼𝑎𝑔𝑒was 

the identification label, and λ ∗ regulates the balance of various 

loss phrases and first phrase was the Cos Face loss, the second 

term is the aged assessment loss, and the last phrase is the 

domain adaptation loss. Remaining two terms, which contain 

various inputs and have been taught separately, employ the 

same network topology. 

 

𝐿𝐴𝐼𝐹𝑅 = 𝑙𝐶𝑂𝑆𝐹𝐴𝐶𝐸 ((𝐴(𝐼𝑎𝑔𝑒)) , 𝑗𝑎𝑔𝑒)

+⋋𝑎𝑔𝑒
𝐴𝐼𝐹𝑅 𝑙𝐴𝐸(𝐼𝑎𝑔𝑒)

+⋋𝑖𝑑
𝐴𝐼𝐹𝑅 𝑙𝐴𝐸 (𝐺𝑅𝐿(𝐼𝑎𝑔𝑒)) 

(8) 

 

For simplicity, the batch normalization and activation 

functions were disregarded, and our face identification model 

was generated purely according to the settings (apart from the 

AFD). Applying the identity conditional module (ICM) with 

the string for ICBs allows for the precise derivation of the 
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individual level age requirement from the prejudiced facial 

information Xi. 

(a) One-hot encoding

(b) Identity conditional block

Figure 5. Comparison of ICB and one-hot encoding 

3.4 Optimization and inference 

Face can improve the model's comprehension of AIFR 

because it teaches discriminating facial descriptions and age 

estimates, whereas the FAS generates visual outputs. 

Therefore, by optimizing these two jobs in a manner akin to a 

GAN, we can jointly complete both tasks, as they mutually 

benefit from each other. In other words, FAS can assist in 

gathering identification-related characteristics and enhance 

the model interpretation ability of AIFR, while AIFR 

encourages FAS to render faces to safeguard its own identity. 

As a result, researchers train these two jobs alternatively using 

a single, multi-task, point-to-point structure. 

4. RESULTS AND OBSERVATIONS

First, the model measures how well the proposed difficult 

sample mining approach works. Then, using modern 

techniques from the face detection dataset and benchmark, 

wider faces, and marked facial landmarks in the wild 

benchmark, it evaluates the face detectors in addition to 

alignments. The experiments were conducted on two well-

known standard datasets for face recognition, FDDB and 

WIDER FACE. The FDDB collection contains 5,171 labeled 

face images across 2,845 pictures. WIDER FACE is the harder 

dataset. The dataset consists of 32,203 shots and 393,703 

labeled face-bounding boxes. We randomly split each dataset 

into three sets: training, validation, and testing. For each set, 

the splits were 80:10:10. The proposed approach used bilinear 

interpolation to resize the pictures to the same dimension of 

224×224 pixels. We used random cropping, horizontal shifting, 

and color disturbance to make the model more resistant to 

changes in lighting and direction. The proposed system used 

the test set to improve the MTCMCN hyper parameters. The 

model found the Adam algorithm to be the best, with a 

learning rate of 0.001 and a batch size of 32. There was a total 

of 100 epochs of training for the model. 

4.1 Training data 

Here, researchers utilize four distinct kinds of information 

annotation in the learning procedure because recognizing faces 

and aligning are tasks that we execute together: Negative areas 

include those where any ground-truth face had an intersection-

over-union ratio that was less than 0.3; positives include IoU 

above 0.65 to the ground-truth face, IoU between 0.4 and 0.65 

to the part face, and faces labeled with locations of five 

landmarks. The system employs both negatives and positives 

for face tasks like classification, uses positives and partial 

faces for bounding box regression, and uses landmark faces 

for localizing facial landmarks. In three stages, the model 

describes the learning information for each network. The first 

step, P-Net, gathers positives, negatives, and partial faces by 

randomly cropping several patches from the WIDER FACE. 

After that, we cut out CelebA's landmark faces. The second 

part, known as R-Net, involves researchers recognizing 

landmark parts from Celebi and using our system's first step to 

identify faces from WIDER FACE, thereby collecting positive 

tests, negative results, and partial faces. O-Net, the final stage, 

gathers data in a manner akin to R-Net, but employs our 

structure's first two steps to identify faces. 

4.2 Online hard sample mining 

(a) 

(b) 

Figure 6. (a) O-Net validation losses with and without heavy 

sampling extraction (b) "JA" stands to represent joint face 

alignment 
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The model trains two O-Nets and contrasts their loss curves 

to assess the impact of the proposed online hard sample mining 

technique. To make comparisons more accurate, researchers 

exclusively train the O-Nets for the face categorization task. 

These two O-Nets have identical learning variables, except for 

the network startup. To make comparisons simpler, everyone 

employs an established rate of learning. Figure 6(a) displays 

the loss curves from two separate training techniques. Hard 

sample extraction is advantageous for boosting efficiency. 

Researchers compare the FDDB performance of two distinct 

O-Nets to assess the impact of joint identification and aligning. 

In these two O-Nets, the framework also contrasts the results 

of the bounding box regression method. According to Figure 

6(b), joint landmarks in localization assignment training are 

advantageous for both face classification and bounding box 

regression assignments. 

 

4.3 Evaluation 
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Figure 7. A FDDB assessment 

 

The model compares it to both the modern techniques in 

FDDB and the cutting-edge techniques in wider face to 

evaluate how well our algorithm performs in detecting faces. 

Our strategy consistently beats all previous methods by a 

significant margin in both benchmarks, as shown by Figure 7 

(a-d). The system also tests our strategy on a few challenging 

images. 

Figure 7(a) presents an assessment of FDDB, while Figure 

7(b-d) evaluates three subsets of WIDER FACE. The next 

number represents the technique's average precision. (e) An 

AFLW assessment for facial alignment. 

 

4.4 Runtime efficiency 

 

The proposed approach can detect and align joint faces very 

quickly because of the cascade architecture. It requires 16 

frames per second on a 2.60GHz CPU and 99 frames per 

second on a GPU. The current implementation relies on un-

optimized MATLAB code. 

 

4.5 Evaluation on AIFR 

 

For fair assessments, researchers assess AgeDB 

performance using the models developed on SCAF. Table 2 

compares the verification reliability of the models we 

developed to existing state-of-the-art AIFR methods, 

showcasing the proposed technique's higher accuracy. 

Similar to the LFW, the model applies the same technique, 

with 600 positive and negative pairs in each fold. The system 

uses LCAF to train the framework on this set of data, and 

Table 3 displays the results. Specifically, our approach 

outperforms the most advanced AIFR approaches currently in 

use, setting a new standard on the CALFW dataset. The cross-

age celebrity dataset, which functions as a public age dataset 

for AIFR, encompasses 163446 expression photos of 2000 
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celebrities, captured in a remote setting with varying lighting, 

position, age, and other characteristics. Data collection by 

search engines clutters CACD with duplicated and incorrectly 

labeled photos. The proposed approach creates a thoroughly 

documented version known as CACD-VS, or CACD 

validation subset, to enable fair assessments. This version also 

adheres to Table 4, which compares the proposed approach to 

further modernization in CADCD-VS.  

Table 2. Test outcomes on AgeDB-30 

Method Accuracy (%) 
[10] 55.3

[12] 89.93

[13] 94.12

[14] 91.72

[15] 95.6

[16] 95.20

[17] 95.35

MTCMCN 96.44

Table 3. Test outcomes on CALFW 

Method Accuracy (%) 
[18] 86.7

[19] 85.3

[21] 84.44

[22] 97.2

MTCMCN 95.66

Table 4. Test outcomes on CACD-VS 

Method Accuracy (%) 
[10] 85.11

[12] 87.72

[13] 96.12

[14] 97.52

[15] 98.61

[16] 99.25

[17] 99.40

MTCMCN 99.58

Table 5. Test outcomes on FG_NET (Leave one out) 

Method Accuracy (%) 
[10] 37.51

[12] 47.62

[13] 70.00

[14] 76.22

[15] 86.55

[16] 88.22

[17] 93.21

[21] 94.48

MTCMCN 94.83

Table 6. Test outcomes on FG-NET (MF1) 

Method Accuracy (%) 
[36] FUDAN-CS-SDS 25.58 

[26] SphereFace 47.61 

[33] TNVP 47.75 

[23] OE CNN 52.78 

[22] DALL 57.99 
MTCMCN 57.28 

The proposed MTCMCN significantly outperforms the 

further advanced approach, resulting in a 0.15 increase over 

the most recent one. Table 5 shows the rank-one recognition 

rate. The research methodology significantly outperforms 

previous research. On the other hand, the MF1 encompasses 

roughly 1 million images from 690,000 distinct individuals, 

serving as distractions in the image set. The big and medium 

learning methodologies. Less than 0.5 million photos are 

required for the tiny protocol's set of training images. The 

model correctly follows the minimal method for assessing our 

newly developed model on FG-NET. Table 6 reports the 

experimental findings. Due to the enormous number of 

incorrectly labeled probes and collection face images in the 

MF1 distractors, our approach outperforms competing 

methods. 

Figure 8. Qualitative results with proposed MTCMCN 

Figure 9. Qualitative evaluations of previous FGNET 

research 

Figure 8 displays sample outcomes from the outside 

datasets LCAF, MORPH, and FG-NET. With high visual 

realism, our approach can imitate a face-age synthesis process 

among age groups. Despite changes in gender, expression, 

race, and occlusion, the synthesized faces remained 

photorealistic, retaining natural information in the muscle 

tissue, skin, and wrinkles, and reliably maintaining personal 

personalities. Figure 9 demonstrates the generalizability of the 

proposed approach. Researchers compare our findings 

qualitatively to earlier research, including CAAE and AIM on 

MORPH and FGNET. While our MTCMCN uses the same 

age condition to synthesize faces based on the multi-level 

characteristics derived from the encoder, AIM and CAAE both 

produce over smoothed faces as a result of their image 

reconstruction, as shown in Figure 8. Note that we directly cite 

rivals' results from their papers to ensure a fair comparison. 

The FAS literature extensively employs this practice to 

prevent bias or inaccuracy resulting from self-implementation. 
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Check out the appendix for more information on identity-

conditioned module ablation research and how it compares to 

CAAE and IPCGAN in terms of two evaluation standards: age 

accuracy and identity protection. 

 

 

5. CONCLUSION  

 

In this research, researchers present a framework for joint 

face detection and alignment based on MTCMCN. Trial 

outcomes show that, while maintaining real-time efficiency, 

our methods regularly outperform the latest techniques across 

a range of difficult benchmarks. To further boost efficiency, 

we will be making use of the natural link between face 

detection and other face analysis activities. The model uses 

ICM for identity-level face age synthesis and AFD for 

segmenting the features into identity-related and age-related 

characteristics. Extensive facial recognition trials on 

benchmark and cross-age data sets demonstrate the 

effectiveness of our suggested approach. The future stage of 

study will concentrate on integrating multimodal data to 

increase robustness, refining feature segmentation, boosting 

flexibility via adaptive learning, and improving real-time 

processing on peripheral devices. The main future work is to 

investigate how 3D facial analysis can improve alignment and 

depth precision, as well as inclusion and equity across many 

groups. The system focuses on increasing accuracy, recall, and 

F1 scores through advanced algorithms and datasets. Efforts 

will include boosting adaptability, fairness across diverse 

groups, and exploring 3D face analysis for better alignment 

accuracy. 
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