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To address the issues of small lesion omission, misclassification of strongly similar tissues, 

and data imbalance in UNet-based medical image processing, the paper was proposed. The 

algorithm improves the coordinate channel attention mechanism by constructing fused 

attention in three directions-horizontal, vertical, and channel-thereby building a 3D 

dependency of the image and enhancing the attention mechanism's focus on nodules. 

Through sub-attention mechanisms, the coordinate channel attention mechanism was further 

refined to address misclassification in complex backgrounds or regions with similar 

intensity. Additionally, the Tversky loss function was improved to increase the model's 

sensitivity to minority classes. Experiments were performed on the LUNA16 dataset, and a 

comparison with traditional algorithms demonstrated that the proposed algorithm is feasible, 

advantageous, and stable, effectively addressing the aforementioned issues. 
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1. INTRODUCTION

In 2020, there were 2.2 million new cases of lung cancer 

globally, with the mortality rate approaching four-fifths, 

making lung cancer the leading cause of cancer-related deaths 

among all cancers [1]. Only one-fifth of patients are diagnosed 

at the early stage of the pathological process [2, 3], receiving 

effective treatment that extends their lifespan and reduces 

mortality. Among the four stages of lung cancer, stage 1 and 2 

lung cancers have significantly better treatment outcomes 

compared to stage 3 or 4 lung cancers [4]. Therefore, the early 

detection and treatment of asymptomatic lung cancer are 

effective means to increase lifespan and decrease mortality. 

Computed tomography (CT) serves as an advanced non-

invasive imaging technique for precise nodule localization, 

tumor size estimation, morphological assessment, prognosis 

determination, and tumor classification based on various 

attributes and life cycle stages [5, 6]. Evidence from the 

National Lung Cancer Screening Trial (NLST) [7, 8] suggests 

that the implementation of low-dose computed tomography 

(LDCT) screening in high-risk groups can deliver high-fidelity 

pulmonary imaging while minimizing radiation exposure, 

ensuring robust characterization and dynamic tracking of 

pulmonary nodules, which contributes to a 20% reduction in 

lung cancer mortality. However ，The complexity of CT 

image backgrounds, the tiny dimensions of pulmonary 

nodules, and the inherent data imbalance in CT scans 

contribute to the difficulty of current computational algorithms 

in precisely distinguishing between Non-cancerous tissue 

nodules and cancerous tumor nodules [9]. 

Thus, optimizing CT image analysis models and refining or 

developing more precise models for the segmentation, 

classification, and prediction of pulmonary nodules is of 

critical importance. 

Deep learning technology [10, 11], which effectively 

combines convolutional neural networks, has been extensively 

utilized in medical image processing and has resulted in 

remarkable achievements [12, 13]. Radiomics is a cutting-

edge technology that enables the extraction of high-

dimensional, quantitative image features for clinical 

diagnostic evaluation and prognostic forecasting [14]. Texture 

features in medical images [15] are crucial for clinical 

diagnosis and serve as a key foundation for lung cancer 

diagnosis. In the classification, prediction, and malignant risk 

assessment of pulmonary nodules, deep convolutional neural 

networks have achieved notable progress. 

However, in medical image analysis, deep convolutional 

neural networks also have the following problems: 

(1) As the depth increases, the high abstraction of features

leads to the loss of small targets (such as pulmonary nodules). 

(2) Convolutional neural networks can only learn local spatial

features, ignoring global features and long-distance

dependency learning. (3) During the learning process,

convolutional neural networks lack the ability to highlight

task-relevant features, resulting in the suppression or disregard

of unrelated components.

Based on this, the UNet neural network and attention 

mechanism are introduced in medical image analysis to 

address the above issues. The U-Net algorithm [16-18] 

facilitates multi-feature detection in a layer-wise process, 

addressing the challenge of inability to preserve important 

characteristics of small targets. By employing global 

computation methods, it captures the global features of the 

data, Overcoming the restriction of convolutional neural 
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networks that are limited to extracting local features. Attention 

mechanism-based model [19-21] to highlight task-relevant 

objects or parts and ignore irrelevant ones. The fusion of 

multiple attention mechanisms is used to address long-

distance dependencies, enhancing the model's learning 

capability and improving its performance. The effective 

integration of these methods has also Achieved notable 

improvement in the field of medical image processing. 

While the deep UNet model, which incorporates attention 

mechanisms, has made substantial strides in medical image 

processing and analysis, there are still some exploreable issues 

in multi-attention fusion, inter-layer relationships of UNet, 

and multi-attention mechanism architecture. Therefore, how to 

effectively integrate attention mechanisms with deep UNet 

neural networks, build a multi-layer deep feature fusion 

computing model, extract the essential features of medical 

images, and realize the learning of global and regional 

characteristics, key and auxiliary non-key features, and deep 

features at different levels has become a hot topic in current 

research. 

 

 

2. RELATED WORK 

 

Xing et al. [22] proposed a U-Net framework that integrates 

multi-attention and multi-scale feature fusion for more 

effective tumor image segmentation. The algorithm integrates 

the U-Net, FPN algorithms, and a fused attention mechanism 

based on channel and pixel-level attention mechanisms, 

addressing the issue of brain tumor 3D image segmentation 

and achieving good performance in 3D image segmentation. 

Li et al. [23]. proposed a novel framework of lung nodule 

segmentation on CT image that incorporates attention 

mechanisms and edge detection. The algorithm introduces an 

information fusion attention module to optimize feature 

recombination and utilization through attention mechanisms 

and dilated convolutions. It also integrates the information 

fusion attention module, edge detection operator, and U-Net 

model to address the issues of edge definition blur and 

insufficient segmentation accuracy in CT images, thereby 

improving segmentation performance. Zhang et al. [24] 

proposed an attention-based network for enhancing the 

segmentation performance and accuracy of the model. He 

proposed the DASGC attention module, which integrates 

multi-scale spatial features and inter-channel information, and 

integrated it with U-Net to construct an improved U-Net 

network (DASGC-U-Net). This approach addresses the issue 

that U-Net cannot effectively utilize limited image information 

for precise segmentation, Achieve higher segmentation 

efficiency in medical image segmentation. Zhong et al. [25] 

presented a Channel Spatial Attention Nested U-Net for the 

detection of small targets in infrared images. They developed 

an innovative architecture, the Channel Spatial Attention 

Nested U-Net (CSAN-UNet), developed to address the 

challenges of detecting and segmenting small infrared targets, 

their research showed outstanding performance. Li et al. [26] 

proposed Dual Multi-Scale Attention makes U-Net stronger 

for medical image segmentation. They constructed a self-

attention-based Dual Multi-Scale Attention (DMSA) and 

integrated it with the U-Net network, presenting the DMSA-

U-Net model. Experimental results show that this algorithm 

outperforms other state-of-the-art methods that do not require 

any pre-trained models. Chen et al. [27] proposed a multi-scale 

channel attention UNet (MSCA-UNet) to improve the 

segmentation accuracy of medical ultrasound images. 

Experiments show that our method outperforms state-of-the-

art (SOTA) methods in accuracy across four medical 

ultrasound image datasets. Al Qurri and Almekkawy [28] 

proposed an improved U-Net with attention for medical image 

segmentation. In the algorithm, a three-level attention 

framework (TLA) is constructed, which incorporates attention 

gates, channel attention, and spatial normalization. It 

integrates the TLA module, TransNorm spatial attention, and 

the U-Net++ network module, Tackling the issue of the 

original algorithm's limitation in capturing long-range 

dependencies. Meng et al. [29] proposed an attention-fused 

full-scale CNN-Transformer U-Net for medical image 

segmentation. The attention-fused full-scale CNN-

Transformer U-Net (AFC-UNet) aims to effectively overcome 

the limitations of traditional U-Net through multi-scale feature 

fusion, attention mechanisms, and a CNN-Transformer hybrid 

module. Experimental results show that the proposed 

algorithm achieves better segmentation performance. To 

address the COVID-19 CT issue, Liu et al. [30] proposed a 

dedicated segmentation network based on an attention 

mechanism. The algorithm integrates spatial and channel 

attention into the U-Net encoder to capture more visual layer 

information, enabling the identification of normal pixels 

between adjacent lesion areas. By utilizing a composite 

function, DTVLoss, which focuses on lesion-area pixels, it 

addresses issues such as boundary blurring and low contrast 

caused by the use of BCE in traditional U-shaped networks. 

Experimental results demonstrate that the proposed algorithm 

significantly outperforms SOTA COVID-19 segmentation 

networks. Wang et al. [31] proposed an approach for anterior 

mediastinal nodular lesion segmentation from chest computed 

tomography imaging using a U-Net-based neural network with 

attention mechanisms. The algorithm integrates self-attention 

mechanisms, convolutional block attention modules (CBAM), 

and the U-Net network to address the challenge of detecting 

mediastinal nodular lesions. Experimental results show that 

the proposed algorithm outperforms related methods. Wu et al. 

[32] proposed a Multi-scale Efficient Transformer Attention 

U-Net for fast and high-accuracy polyp segmentation. The 

algorithm introduces a Multi-scale Efficient Transformer 

Attention (META) mechanism for adaptive feature fusion, 

utilizing efficient transformer blocks to generate multi-scale 

element attention within the renowned U-shaped encoder-

decoder architecture. The method demonstrates strong 

capability in polyp segmentation. Chen et al. [33] proposed a 

full-scale connected attention-aware U-Net for CT image 

segmentation of the liver. They developed the Attention 

UNet3+ algorithm, which outperforms other improved U-Net 

liver image segmentation algorithms by at least 2.9% in 

intersection over union (IoU) and at least 1.1% in Dice 

coefficient. 

In summary, the combination of attention mechanisms and 

deep U-Net networks has gained considerable attention in the 

field of medicinal image analysis and processing, showing 

strong progress in theory, technology, and real-world 

applications. However, the following shortcomings still exist: 

(1) The problem of insufficient segmentation of small 

targets in UNet: The downsampling operation in UNet may 

lead to the loss of feature information for small targets (such 

as micro lesions or fine anatomical structures), affecting the 

segmentation performance. 

(2) In medical image segmentation with complex 

backgrounds or regions of similar intensity (such as 
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neighboring tissues with similar intensity), UNet may suffer 

from incorrect segmentation. 

(3) In medical images, the lesion area is usually small, and 

the data imbalance can cause the model to be more inclined to 

predict the background region. 

Based on this, this study is proposed. The algorithm mainly 

achieves the following innovations: 

(1) Addressing the Deficiency of U-Net in Small Object 

Segmentation, this paper improves the coordinate-channel 

attention mechanism, forming a new channel-coordinate 

fusion attention mechanism to address attention fusion in three 

directions: horizontal, vertical, and channel. It constructs the 

spatial dependencies of the image, enhancing the attention 

mechanism's focus on the nodules. 

(2) U-Net May Encounter Mis-segmentation Issues in 

Complex Backgrounds or Regions with Similar Intensity. 

Based on this, a fusion method of self-attention mechanism 

and channel-coordinate attention mechanism is used to address 

this issue. 

(3) Addressing the Issue of Data Imbalance in Medical 

Imaging, based on this, the project introduces an improved 

Tversky loss to enhance the model's sensitivity to the minority 

class. 

 

 

3. ALGORITHM DESIGN 

 

3.1 Channel-coordinate attention fusion algorithm 

 

To address the issue of incomplete feature data dependency, 

this paper proposes a Coordinate-Channel Fusion Attention 

Mechanism, aiming to construct feature data dependency in a 

three-dimensional space and enhance the algorithm's focus on 

the target task. The algorithm begins by calculating the 

horizontal and vertical spatial projections of the feature data 

and applying self-attention mechanisms to these projections to 

determine the data correlations in the two coordinate-based 

spaces. Subsequently, a linear extension of the horizontal 

projection is computed to construct a correlation matrix for 

feature images in the horizontal and vertical spaces. 

Additionally, a channel-wise maximum pooling method is 

employed to create a channel-wise maximum feature plane 

(matrix), and a sub-attention relationship matrix is calculated 

for the maximum feature plane to establish a data correlation 

matrix in the channel dimension. The channel-wise data 

correlation matrix is then combined with the feature image 

correlation matrix in the horizontal and vertical spaces through 

matrix multiplication, performed coordinate by coordinate 

across channels. This process calculates the data dependency 

of the feature matrix in the horizontal, vertical, and channel 

dimensions, thereby addressing the issue of incomplete data 

dependency and enhancing the algorithm's focus on the target 

task. 

The specific implementation process is expressed as: 

 

𝑀𝑎𝑝(𝑜𝑢𝑡) = (𝑆𝐴𝑀(𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑚𝑎𝑝(𝑖𝑛), 𝑥))
× 𝑆𝐴𝑀(𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑚𝑎𝑝(𝑖𝑛), 𝑦)))
⋅ (𝑆𝐴𝑀(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑚𝑎𝑝(𝑖𝑛, 𝑐)))
⋅ 𝑀𝑎𝑝(𝑖𝑛) 

(1) 

 

Based on the above design concept and inspired by the 

parallel processing model of visual information in primates, 

the channel-coordinate attention fusion algorithm adopts two 

parallel attention-based information processing modes. 

Therefore, its basic flowchart is as follows. 

In Figure 1, the operator ⨂ represents vector multiplication, 

the operator ⊚ denotes element-wise multiplication between 

a matrix and a sequence, and the operator ⊛ signifies element-

wise multiplication between matrices within two sequences. 

Therefore, the pseudo code for this algorithm is as follows.

 

 
 

Figure 1. Flowchart of the channel-coordinate attention fusion algorithm 

 

Therefore, the coordinate attention based on the self-

attention mechanism can construct the long-range 

dependencies of feature data elements in the two-dimensional 

space of the horizontal and vertical spaces; the channel 

attention mechanism based on the self-attention mechanism 

constructs the long-range dependencies in the channel 

dimension of the feature data set; and the fusion of both 

constructs the long-range dependencies of feature data 

elements in the three-dimensional space of the horizontal, 

vertical, and channel dimensions. As a result, this addresses 

the issue of incomplete feature dependency and subsequently 

resolves the problem of small lesion target loss in medical 

images with complex backgrounds. The pseudo code of 

channel-coordinate attention fusion algorithm is shown in 
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Algorithm 1. 
 

Algorithm 1. The pseudo code of channel-coordinate 

attention fusion algorithm 
 

Input: Map(in) 

Produce: 

(1) Feature Data Gray Projection. 

Using Eqs. (6) and (7), calculate the gray scale projections 

of the feature data Map(in)Map(in) in the horizontal and 

vertical directions. The projection is implemented using 

the gray scale histogram algorithm. 

 

outx = Project(map(in), x) (2) 

 

outy = Project(map(in), y) (3) 

 

(2) Horizontal and Vertical Dependency Fusion 

Calculate the horizontal and vertical dependencies of the 

projection data using Eqs. (8) and (9), and perform 

horizontal and vertical dependency fusion. 

 

outx_dependency = SAM(outx) (4) 

 

outy_dependency = SAM(outy) (5) 

 

(3) Channel Attention Calculation 

Calculate the maximum projection matrix using Equation 

(10), and compute the self-attention mechanism of the 

maximum projection matrix to construct the dependency 

in the channel space. 
 

𝑜𝑢𝑡𝑐_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =
𝑆𝐴𝑀(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑚𝑎𝑝(𝑖𝑛, 𝑐))) 

(6) 

 

(4) Channel-Coordinate Attention Fusion 

 

Map(out) = ((𝑜𝑢𝑡𝑥_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦
× 𝑜𝑢𝑡𝑦_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦)
⊙ 𝑜𝑢𝑡𝑐_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦)
⊛ 𝑀𝑎𝑝(𝑖𝑛) 

(7) 

  
 

Output: Map(out) 

 

3.2 Pixel-wise Tversky-dice loss function 

 

The Tversky loss function is designed to address the class 

imbalance issue in medical image segmentation. It is based on 

the Tversky Index and allows flexible control over the 

preference of segmentation algorithms for the foreground and 

background by adjusting the weights of False Positive (FP) 

and False Negative (FN). Its mathematical description is: 

 

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦(𝛼, 𝛽) = 1 −
|𝐴⋂𝐵|

|𝐴⋂𝐵|+𝛼|𝐴−𝐵|+𝛽|𝐵−𝐴|
  (8) 

 

It has shown good application results in medical image 

segmentation. However, once the hyperparameters are 

determined, the Tversky loss function controlled by the 

hyperparameters α and β has the problem of statically 

adjusting the penalties for false positives and false negatives. 

To address the difficulty of segmenting small targets like 

pulmonary nodules in medical image processing, and 

considering the high intensity characteristics of small targets 

such as pulmonary nodules in medical imaging, a better weight 

is assigned to these pixel points. By adjusting the loss function 

according to the importance of the pixels, the problem of data 

imbalance is solved. 

This paper proposes a new pixel-wise Tversky-Dice loss 

function (abbreviated as TDLF) by weighted fusion of the 

pixel-wise Tversky loss function and the pixel-wise Dice loss 

function, which enhances the evaluation of segmentation 

accuracy. The mathematical model for this improvement is 

described as follows: 

 

𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝛾 ⋅ 𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 − (1 − 𝛾) ⋅ 𝐿𝐷𝑖𝑐𝑒  (9) 
 

𝐿𝑇𝑣𝑒𝑟𝑠𝑖𝑘𝑦 = 1 −
∑ 𝑤𝑖⋅𝑇𝑣𝑒𝑟𝑠𝑖𝑘𝑦(𝑝𝑖,𝑔𝑖)𝑖

𝑁
  (10) 

 

𝑤𝑖 = {
𝑤𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑    𝑖𝑓 𝑔𝑖 = 1

𝑤𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑    𝑖𝑓  𝑔𝑖 = 0
  (11) 

 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2⋅𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛+𝜀

𝑈𝑛𝑖𝑜𝑛+𝜀
  (12) 

 

The hyperparameters include: α, β and γ , where  α + β =
1 .Therefore, the weighted fusion of both will effectively 

address the issues of data imbalance and small target loss, 

while improving the quality of the classification algorithm. 

 

3.3 Adaptive method for setting hyper parameters of the 

loss function 
 

The DSC measures the overlap between the segmentation 

result and the ground truth, with a value closer to 1 indicating 

a more accurate segmentation result. IoU is more stringent 

than Dice as it penalizes excessively large predicted regions. 

Therefore, this paper sets the adaptive hyperparameter γ as: 
 

𝛾 =
𝑚𝐼𝑜𝑈

𝐷𝑖𝑐𝑒
=

1

2−𝑚𝐼𝑜𝑈
  (13) 

 

Here, the hyperparameter γ focuses on the overlap between 

the segmentation results and the ground truth while better 

penalizing excessively large predicted regions. Therefore, this 

parameter enables the adaptive configuration of the Pixel-wise 

Tversky-Dice Loss Function, ensuring the adaptability of the 

loss function. 

Here, the Tversky index describes the intersection-over-

union of task-related feature regions, effectively addressing 

the problem of small target segmentation under data imbalance 

conditions. Dice measures the overlap between the 

segmentation results and the ground truth labels. Therefore, 

the hyperparameter γ is introduced to represent both the 

constraint on false positives and false negatives, as well as the 

similarity between the prediction set and the annotation set. 

 

3.4 Improved UNet neural network based on channel 

coordinate attention fusion algorithm 

 

The UNet network framework consists of two core 

modules: an encoder and a decoder. By integrating the 

aforementioned Channel Coordinate Attention (CCA) 

innovation with these two core modules, three network 

structures are proposed: 𝐶𝐶𝐴_𝐸𝑛𝑐𝑜𝑑𝑒_𝑈𝑁𝑒𝑡 , 

𝐶𝐶𝐴_𝐷𝑒𝑐𝑜𝑑𝑒_𝑈𝑁𝑒𝑡 , and 𝐶𝐶𝐴_𝐸𝑛𝑐𝑜𝑑𝑒_𝐷𝑒𝑐𝑜𝑑𝑒_𝑈𝑁𝑒𝑡 . 

These structures embed the CCA module into the encoder, 

decoder, and both encoder and decoder of UNet, respectively. 

The embedding location is set at the final layer of the encoder 

and decoder to enable long-range dependency computation in 
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3D space. 

Each algorithm incorporates the 𝑇𝐷𝐿𝐹  module to address 

the issue of data imbalance effectively. Subsequent structure 

ablation experiments demonstrate that 𝐶𝐶𝐴_𝐸𝑛𝑐𝑜𝑑𝑒_𝑈𝑁𝑒𝑡 

exhibits superior performance. Therefore, this study adopts 

this network model, with the specific structure shown in the 

Figure 2. 
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Figure 2. Improved UNet network architecture diagram 

 

 

4. EXPERIMENTS AND ANALYSIS OF THEIR 

RESULTS 

 
4.1 Introduction to LUNA16 

 

As a subset of LIDC-IDRI, the LUNA16 dataset [34] (Lung 

Nodule Analysis 2016) is used in this study. It has high 

academic value and practical application potential. The 

LUNA16 dataset, which adopts the DICOM data format, does 

not contain valid lung nodule detection objects in all CT image 

slices. Therefore, to accelerate the experimental process and 

ensure the performance of the experiment, preprocessing steps 

such as image selection and format conversion are necessary. 

Image selection refers to optimizing and filtering the 

LUNA16 dataset according to the following criteria. (1)Slice 

thickness: 0.6 𝑚𝑚 ≤  𝑠𝑙𝑖𝑐𝑒_𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 <  2.5 𝑚𝑚 ; (2) 

Spatial resolution of slice images:  0.46 𝑚𝑚 ≤
 𝑠𝑙𝑖𝑐𝑒_𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ≤  0.98 𝑚𝑚 ; (3) Nodule size: 

𝑁𝑜𝑑𝑢𝑙𝑒_𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ~ 8 𝑚𝑚. Based on these constraints, 888 

valid CT images were selected to form the experimental 

dataset, which contains a total of 1186 positive nodules 

annotated by four independent radiologists. The images of the 

dataset contain three dimensions: X, Y, and Z (sequence), 

which present the complete structure and texture features of 

the lung nodules from the perspective of sequence space. 

Image format conversion refers to transforming the DICOM 

data format into an RGB space format representation. After 

preprocessing, 888 valid CT images is divided into a test 

dataset with 950 images and a training dataset with 2850 

images, totaling 3800 lung nodule image slices. 

Therefore, the LUNA16 dataset samples used in this 

experiment are shown in Figure 3. 

 

 
(a) Original dataset 

 

 
(b) Results of each stage of preprocessing algorithm [35] 

 

Figure 3. The sample of LUNA16 
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4.2 Innovation of evaluation metrics 

 

To effectively evaluate the performance of the proposed 

algorithm, five evaluation metrics are introduced: Dice 

coefficient, IoU, Precision, Recall, and ASD. The specific 

descriptions are as follows: 

Dice Similarity Coefficient 

 

𝐷𝑆𝐶 =
2×|𝐴∩𝐵|

|𝐴|+|𝐵|
  (14) 

 

Here, A represents the segmentation result, and B represents 

the ground truth label. The Dice Similarity Coefficient (DSC) 

measures the degree of overlap between the segmentation 

result and the ground truth. The closer the value is to 1, the 

more accurate the segmentation result. In medical 

segmentation, the Dice coefficient is the most commonly used 

metric. 

IoU (Intersection over Union, Jaccard Index) 

 

𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
  (15) 

 

Here, IoU represents the intersection-over-union of the 

predicted region and the ground truth region. Compared to 

Dice, IoU is more stringent as it penalizes excessively large 

predicted regions. 

Precision 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (16) 

 

Precision reflects the proportion of pixels predicted as the 

target that actually belong to the target. 

Recall, Sensitivity 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (17) 

 

Recall measures the model's ability to detect target regions. 

Average Surface Distance, ASD 

 

𝐴𝑆𝐷 =
1

|𝑆|
∑ 𝑑(𝑠, 𝑇)𝑠∈𝑆   (18) 

 

Here, SS is the predicted surface point set, T is the ground 

truth surface point set, and d(s, T) represents the distance from 

point ss to the surface T. ASD measures the average distance 

between the predicted surface and the ground truth surface. 

These five metrics construct a more comprehensive 

evaluation system for medical image segmentation algorithms, 

evaluating the segmentation performance from various 

aspects: the overlap between the segmentation result and the 

ground truth, the intersection-over-union between the 

predicted and ground truth regions, the proportion of pixels 

predicted as the target that truly belong to the target, the 

model's ability to detect the target region, and the average 

distance between the predicted surface point set and the 

ground truth surface point set. Therefore, they are used to 

evaluate the algorithm proposed in this paper. 

 

4.3 Pixel-wise weighted fusion evaluation metrics 

 

To focus on small target regions such as pulmonary nodules, 

the pixels in the small nodule regions in DICOM imaging 

typically have higher brightness values. Therefore, brightness 

segmentation is performed, and different weight values are 

assigned to regions based on their brightness. The higher the 

brightness, the higher the pixel weight for that region. Thus, 

an adaptive weight calculation method is defined as follows: 

 

𝐷𝑆𝐶𝑤𝑖𝑠𝑒𝑝𝑖𝑥𝑒𝑙𝑠 =
2×|𝐴∩𝐵|×𝑃𝑜𝑤𝑒𝑟𝐴

|𝐴|×𝑃𝑜𝑤𝑒𝑟𝐴+|𝐵|×𝑃𝑜𝑤𝑒𝑟𝐵
  (19) 

 

𝐼𝑜𝑈𝑤𝑖𝑠𝑒𝑝𝑖𝑥𝑒𝑙𝑠 =
|𝐴∩𝐵|

|𝐴∪𝐵|
× 𝑃𝑜𝑤𝑒𝑟𝐴  (20) 

 

Therefore, the comprehensive evaluation function is 

defined as: 

 

𝑖𝑛𝑑𝑒𝑥 = 𝜆1𝐴𝑆𝐷𝑤𝑖𝑠𝑒𝑝𝑖𝑥𝑒𝑙 + 𝜆2𝐼𝑜𝑈𝑤𝑖𝑠𝑒𝑝𝑖𝑥𝑒𝑙𝑠 (21) 

 

The DSC measures the overlap between the segmentation 

result and the ground truth, with a value closer to 1 indicating 

a more accurate segmentation result. mIoU is more stringent 

than Dice as it penalizes excessively large predicted regions. 

Therefore, the comprehensive evaluation metric 𝑖𝑛𝑑𝑒𝑥(𝑒) , 

which integrates DSC and mIoU can assess both the overlap 

between the segmentation result and the ground truth, as well 

as the average distance between the predicted and true surfaces. 

At the same time, it penalizes excessively large predicted 

regions. Additionally, it adjusts the segmentation ability of 

different datasets and algorithms through weighted 

adjustments. 

 

4.4 Experiments and experimental results analysis 

 

4.4.1 Ablation experiment 

Ablation of the attention module: To validate the 

performance of the channel-coordinate fusion attention, a 

comparative experiment is conducted based on the UNet 

network structure using the LUNA16 database. The 

experiment compares the performance of the UNet algorithm, 

the coordinate attention-based UNet algorithm, the channel 

attention-based UNet algorithm, and the channel-coordinate 

fusion attention-based UNet algorithm. The experimental 

results of the algorithm comparison are shown in the Figure 4. 

 

 
 

Figure 4. Results of channel and spatial coordinate attention 

mechanism ablation experiment 

 

Under the same experimental conditions, the experimental 

results show that the comprehensive segmentation 

performance of the proposed algorithm is superior to that of 
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the UNet algorithm that contains only coordinate or channel 

attention. The comprehensive segmentation performance of 

the UNet algorithm with either coordinate or channel attention 

is better than that of the UNet algorithm without any attention 

mechanism. The reason for this is that both coordinate 

attention and channel attention can separately learn the long-

range dependencies of pixels, enabling focus on small targets 

like pulmonary nodules in medical images. The fusion of both 

creates long-range dependencies in 3D space, addressing the 

issue of insufficient dependencies. Therefore, the 

segmentation performance of the proposed algorithm is 

superior to the other three algorithms. 

 

4.4.2 Loss function ablation experiment 

To validate the impact of the Tversky-Dice loss function on 

algorithm performance and confirm the advantages of the 

proposed improved loss function, a comparative experiment is 

conducted based on the UNet network structure using the 

LUNA16 database. The experiment compares the 

performance of the UNet algorithm with the conventional loss 

function, the UNet algorithm with the Tversky loss function, 

the UNet algorithm with the Dice loss function, and the UNet 

algorithm with the pixel-wise Tversky-Dice loss function. The 

experimental results of the algorithm comparison are shown in 

the Figure 5. 

 

 
 

Figure 5. Results of loss function ablation experiment 

 

The experimental results show that the proposed pixel-wise 

Tversky-Dice algorithm effectively addresses the data 

imbalance problem in medical image segmentation and 

enhances the segmentation performance of task-related 

features. In medical images, small targets such as pulmonary 

nodules often have higher brightness values, and the algorithm 

assigns higher weights to these features, highlighting the task-

related regions. By adjusting the loss function based on the 

importance of pixel points, the data imbalance problem is 

addressed. Additionally, the Tversky-Dice algorithm resolves 

the static adjustment issue of false positive and false negative 

penalties in the Tversky loss function. Therefore, the pixel-

wise Tversky-Dice algorithm demonstrates better loss 

computation and data balancing capabilities. 

 

4.4.3 Structural improvement ablation experiment 

The CCA  module, the pixel-wise Tversky − Dice 

algorithm, and the two core modules of UNet are fused into 

three network structures: CCA_Encode_UNet_TD , 

CCA_Decode_UNet_TD , and 

CCA_Encode_Decode_UNet_TD. To validate the performance 

of the three UNet network structures and confirm the 

advantages of the proposed algorithm, a comparative 

experiment is conducted on the LUNA16 database. The 

experimental results of the three algorithm comparisons are 

shown in the Figure 6. 

The experimental results show that under the same 

experimental conditions, the image segmentation performance 

of the three networks CCA_Encode_UNet_TD , 

CCA_Decode_UNet_TD, and CCA_Encode_Decode_UNet_TD 

is all good. The segmentation performance of 

CCA_Encode_UNet_TD  is close to that 

of  CCA_Encode_Decode_UNet_TD , and better than that of 

CCA_Decode_UNet_TD . However, the time and space 

complexity of CCA_Encode_Decode_UNet_TD is higher than 

that of CCA_Encode_UNet_TD . Therefore, the 

CCA_Encode_UNet_TD network is adopted in this paper. 

 

 
 

Figure 6. Results of ablation experiment on structural 

improvement based on CCA method 

 

4.4.4 UNet network layer ablation experiment 

The segmentation performance of the UNet network is 

strongly correlated with the number of layers in the network. 

As the number of layers increases, the feature learning ability 

of the UNet algorithm gradually improves, and the 

segmentation performance of the algorithm increases. 

However, the time-space complexity of the algorithm rises 

rapidly, and small target tasks may be lost, leading to a 

potential decline in algorithm performance. Therefore, the 

relationship between the number of layers and performance 

can be determined through an ablation experiment. The results 

of the ablation experiment are shown in the Figure 7. 

On the same experimental conditions, the results of 

experiments indicate that as the number of layers of the UNet 

network increases, the algorithm's performance gradually 

improves and then stabilizes. However, the size of parameters 

and inference time of the algorithm gradually increase. 

Therefore, when the performance is similar, the time-space 

complexity differences of the algorithm become significant. In 

conclusion, this paper chooses a 5-layer UNet network 

structure, which ensures both the segmentation performance 

and the efficiency based on time-space complexity.
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Figure 7. Results of ablation experiment on UNet-like 

network layers 

 

4.4.5 Algorithm performance comparison study 

To verify the performance advantages of the proposed 

algorithm, comparative experiments with similar and different 

segmentation algorithms were conducted on the LUNA16 

dataset under the same hardware environment. The 

experimental results are as follows: In the similar 

segmentation experiments, the segmentation performance of 

the proposed algorithm was compared with that of the current 

UNet, MM-UNet, DASGC-UNet, AFC-UNet, and META-

UNet algorithms on the same dataset. The results of the 

performance experiment are shown in the Figure 8 and Figure 

9. 

The results of the experiments indicate that, among the 

similar segmentation algorithms, the algorithm proposed in the 

paper outperforms the other five common attention-based 

UNet algorithms, with a significant performance advantage. 

The reason for this is that the four improvements in the 

proposed algorithm optimize the UNet algorithm from 

different aspects, addressing issues such as small target loss 

and data imbalance in the UNet algorithm. 

In experiments comparing different category segmentation 

algorithms on the same dataset, the proposed algorithm 

achieved better segmentation performance than the current 

UNet, Transform Vit, Transform Swin, Mamba, and other 

algorithms. 

 

 
 

Figure 8. Experimental results of performance comparison of 

similar algorithms based on UNet network 

 
 

Figure 9. Experimental results of performance comparison 

across different types of algorithms 

 

 

Experimental results indicate that, in comparison to the 

current state-of-the-art image segmentation algorithms, the 

proposed algorithm outperforms others in segmentation 

performance. Therefore, the proposed algorithm demonstrates 

a significant competitive advantage in segmentation. 

 

 

5. CONCLUSION AND OUTLOOK 

 

This paper presents "UNet Based on an Improved 

Coordinate Channel Attention Mechanism and Its 

Applications." The proposed algorithm (or model) enhances 

the coordinate channel attention mechanism by constructing a 

fused attention mechanism across horizontal, vertical, and 

channel dimensions. This establishes a three-dimensional 

dependency in the image, improving the attention 

mechanism's focus on nodules. Additionally, the sub-attention 

mechanism improves the coordinate channel attention, 

addressing misclassification issues in complex backgrounds or 

regions with similar intensities. The Tversky loss function was 

enhanced to increase the model's sensitivity to minority 

classes, resolving issues in UNet's medical image processing, 

such as small lesion omission, misclassification of highly 

similar tissues, and data imbalance. 

Experiments performed on the LUNA16 dataset show that 

the algorithm presented in this paper is both feasible and offers 

better performance compared to conventional algorithms. 

In the future, we aim to conduct further in-depth research in 

the following areas: 

(1) Performance Validation Across Different Datasets: To 

evaluate the algorithm's generalizability. 

(2) Optimization of Hyperparameter Settings: To further 

improve algorithm performance. 
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