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Cloud computing which safeguards the medical information and strengthen the datas. This 

study proposes a novel solution for strengthening security for collections of medical images 

stored in the cloud through the integration of homomorphic encryption based on Henon-

Map encryption. In order to ensure privacy during the process of classification, a deep 

learning the model by the VGG16 is also applied to data. The data encrypted is thereafter 

put through homomorphic encryption, allowing secure computation of information without 

the need for decryption. Operations can be performed on data that has been encrypted 

without pre-interpretation due to homomorphic encryption. For maintaining data of the 

medical image, Henon-Map encryption is first used to encrypt the medical image dataset, 

thereby adding non-linearity and chaos. In which the encrypted data and decrypted data in 

the cloud server. The scheme presented delivers safe and secret substitutes for medical 

image databases stored in the cloud. The usage of integrity and privacy implies 

homomorphic encryption and Henon-Map encryption. Using deep learning, we were able to 

establish anonymity protection while still achieving correct image categorization. Both 

"CNN" model and "VGG16" structure helps an encryption technique yields very accurate 

results. The different performance metrics are evaluated for the following proposed 

approach which determines better "Accuracy", "Precision", "F1-Score," "Recall", 

"Specificity", "Confusion matrix", higher "PSNR" score (70%), lower "MSE" score (0), 

"NPCR" and "UACI" were obtained, stating that, the developed "Henon- Homomorphic 

encryption" model is good to suitable that enhances "IoT"- based cloud security to preserve 

digital medical images. 
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1. INTRODUCTION

Applications for homomorphic encryption include safe 

cloud computing, secure data analysis, and reliable machine 

learning. The data is kept secure and safe against unauthorized 

access while being handled by third-party service providers. 

Nevertheless, there are some drawbacks to homomorphic 

encryption, such as increased computational expense and 

slower processing speed compared to traditional encryption 

methods. Taking these challenges into account, ongoing 

research and development of homomorphic encryption 

techniques are making them more useful and efficient in real-

world applications. There are several ways that IoT gateway 

devices can store and transport encrypted medical image data, 

based on the specific requirements and IoT system architecture. 

Encrypted medical images can be temporarily stored on the 

gateway prior to forwarding to the cloud. This approach could 

be useful data buffering during intermittent connectivity. 

Directly from the IoT gateway, secured medical data images 

could be transported in an automatic mode to cloud storage 

service. The ability of deep learning to acquire an independent 

hierarchical representation of data so it can encode for itself 

concurrently the low-level as well as the high-level 

characteristics and dependencies present in data is one of the 

basic strengths. Deep learning is thus particularly helpful for 

tasks such many more tasks that have lots of complex trends 

and hierarchies. 

In order to train a neural networks using a technique known 

as deep learning, a large labeled sample is often needed. In 

order to find the hidden patterns and correlations, the dataset 

is separated into training and testing sets. The trained model's 

accuracy and generalizability are assessed by observing its 

performance on the testing set. It is possible to construct many 

deep learning models using various deep neural network 

principles. For image-related tasks, one may use convolutional 

neural networks (CNNs). For sequence data, one may use 

recurrent neural networks (RNNs). For challenges connected 

to natural language processing, one can use transformer 

frameworks. Models that use deep learning are trained using 

optimization techniques such as unpredictable, which 

successively modifies the model's parameters, to decrease the 

difference among the predicted and actual outputs. 

Regularization methods, including weight decay and 

dropout, are frequently used to increase the generalizability of 

the model and reduce overfitting. Figure 1 indicates the 

proposed architecture diagram for analyzing the cloud data 
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securely stored using Henson-homomorphic encryption. 

Using protocols like HTTPS or SFTP, the IoT gateway could 

establish a secure connection to the cloud storage provider and 

transfer the encrypted data over the internet. The encrypted 

data is subsequently safely and scalable stored by the cloud 

storage service. Medical data images are gathered by real-time 

IoT gateway devices from a variety of sources, including 

wearables, medical sensors, and gadgets. They serve as a 

bridge between the cloud platform and the data source. 

Deep learning has achieved unparalleled success in various 

disciplines, notably. Deep learning continues to expand 

dramatically and can revolutionize many areas in addition to 

solving complex problems previously difficult for classical 

approaches to tackle. Scalability, access, and collaboration are 

some of the many benefits of keeping groups of medical 

images stored in the cloud. Cloud storage's scalability 

facilitates seamless capacity expansion. It can be extremely 

large and have a huge storage requirement. Cloud services 

give users the freedom to expand the storage capacity when 

needed, ensuring that there is sufficient space to accommodate 

increasing datasets. Medical images can be securely and 

conveniently accessed from anywhere there is an internet 

connection by saving them in the cloud. 

This availability facilitates collaboration and higher 

productivity by allowing authorized personnel, such as 

researchers, health specialists, and other experts, to review and 

analyze the images remotely. The need for having on-premises 

storage facilities, which may be costly to deploy and sustain, 

is eliminated through cloud storage. When we talk about the 

need to safeguard patient information included inside medical 

photographs, we're talking about the confidentiality of that 

data. Maintaining the privacy of this information is critical for 

compliance with legal and ethical mandates as well as for the 

protection of patient information. Prevent unauthorized access 

by encrypting medical images. It is to ensure that, whether 

intercepted or stolen, it is not decryptable without a proper 

decryption key. 
In sending medical images between different systems or 

hospitals, employ secure transmission protocols such as 

ensuring that they remain private while in the process of 

transmission. The Henon encryption method is employed in 

encrypting collected. This method offers data security with 

encryption and randomization. A specific form of encryption, 

homomorphic encryption as it is referred to, supports 

computation based on data encrypted without having the need 

for decrypting it. Here, data confidentiality and integrity are 

ensured by moving while maintaining their encrypted form. 

Utilizing secure communication protocols, the medical data 

images encrypted are transmitted on this platform. It ensures 

the protection of the data during transmission. When received 

on the cloud platform, the corresponding decryption key can 

be utilized to decrypt them. The IoT refers to a network of 

physically linked things with capabilities for data gathering 

and data exchange. However, it is critical to guarantee the 

safety and security of this medical data. 
The data remains confidential at all stages because of this. 

When transmitting sensitive medical photos, it is important to 

use an encryption method called Henson-map encryption. The 

combination and use of these encryption algorithms allow for 

the safe transmission and storage of medical pictures on the 

cloud, hence preventing illegal data. 

 

 
 

Figure 1. Proposed architecture diagram 
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These devices act as a gateway from the cloud system of 

processing or storage to healthcare imaging equipment (e.g., 

XRAY, MRI scanners). This is because diagnosis, treatment, 

and decisions are all critically dependent on easy and quick 

access to patient records. Medical imaging and big-data 

processing are well-established applications of cloud 

computing. 
Cloud computing has dramatically transformed medical 

data management and access within the healthcare industry 

with its high-speed uptake. But it also poses a tremendous 

security and privacy threat, particularly for medical images 

that are sensitive. Guaranteeing the integrity and 

confidentiality of these images using the processing capability 

of the cloud is a major challenge. This work is concerned with 

proposing a secure encryption framework to protect medical 

image data, particularly against cloud computing and IoT 

devices. 

This project aims to provide a safe approach for combining 

Henon-Map with homomorphic encryption to encrypt medical 

picture data stored in the cloud. With this two-factor 

encryption method, you can encrypt data using chaos theory 

and still use it for calculations without decryption. The novel 

component of this method is that it uses deep learning models-

specifically, the "CNN" powered by the "VGG16" architecture 

decipher encrypted medical pictures. 

 

The novelty of the proposed approach is twofold: 

1) The mix of Henon-Map encryption and 

homomorphic encryption provides an enhanced 

degree of security with the inclusion of non-

linearity and secure calculation on encrypted 

information. 

2) The utilization of operating on encrypted images, 

thereby maintaining privacy during the 

classification, is an innovative and effective 

approach. 

The proposed framework aims to provide a secure, efficient, 

and privacy preserving solution for medical image 

classification in IoT-based cloud environments. The paper is 

organized as follows: 

• Section 2 provides the Literature Review, 

• Section 3 describes the Proposed Methodology, 

• Section 4 explains the Construction, 

• Section 5 presents the Experimental Analysis, 

• Section 6 covers the Classification Results, 

• Section 7 offers a Comparative Analysis, 

• Section 8 includes the Discussion, 

• Section 9 delves into the Deep Analysis of 

Results, and 

• Section 10 concludes with the Conclusions. 

 

 

2. LITERATURE REVIEW 

 

2.1 Homomorphic encryption in healthcare 

 

When it comes to protecting sensitive information in 

healthcare IT systems hosted in the cloud, homomorphic 

encryption has become an indispensable tool. The ability to 

securely compute on data encrypted without requiring 

decryption opens the door to the possibility of processing 

healthcare data in real-time. Gayathri and Gowri [1] offered a 

comprehensive overview of homomorphic encryption, 

highlighting its importance in healthcare data privacy-

preserving calculations. 

This mechanism is pivotal in maintaining privacy in cloud 

environments, especially for medical image processing where 

patient confidentiality is paramount. As increasingly intricate 

architectural designs for deep neural network (DNN) models 

develop, the requirement for cloud servers [2] to train "DNN" 

models is growing. Cloud servers are still regarded as 

trustworthy. Prior works have suggested the concept of 

learnable image encryption, paying close attention to the 

privacy concerns associated with medical diagnoses made 

using DNNs. There remains a need for development even if 

several techniques to partially break prior encryption 

algorithms have been given. Our suggested learnable picture 

encryption system is an improvement over existing 

approaches and may be utilized to protect training image 

privacy while concurrently training a high performing "DNN" 

model. Because deep learning is so efficient, its application in 

healthcare-related sectors is growing. However, we must 

protect and maintain the privacy of the personal health 

information that DL models utilize. Data protection and 

individual privacy preservation [3] have become more and 

more important issues. It's imperative to close the divide 

between the privacy and DL groups. In this work, we offer a 

safe method for classifying chest X-ray pictures using privacy-

preserving deep learning (PPDL). The goal of the project is to 

make the most use of images from chest X-rays while 

protecting the privacy of the data they contain. 

The proposed approach is composed of two phases: testing 

and training the DL model over partially homomorphic 

encryption to encrypt the dataset. Wang et al. [4] get 

reasonable classification performance for data by applying a 

combination of deep learning, MPC, and homomorphic 

encryption to enhance data confidentiality for AIoT. We offer 

a platform based on the study by Yi et al. [5, 6] that permits 

the calculation of confidential health data without 

compromising the sensitive data. Involving extremely little 

processing overhead, the proposed encryption method referred 

to as permits calculation within a model neural network to be 

performed right over floating-point values. 

We take the well-known MNIST, which digit recognition 

problem into account to evaluate the approach's viability. 

Using deep learning on more homomorphic material does not 

degrade performance, as we show. Our initial step is to 

develop a model that can calculate the outcomes 

hydrodynamic paradigm using encrypted data. Afterwards, we 

provide a way for further testing the system's potential in 

healthcare settings. 

The researchers [7-11] examined privacy-preserving 

methods for safe image processing in cloud-based applications, 

specifically in intelligent transportation systems and medical 

imaging. The investigations suggested techniques to improve 

security and guarantee data confidentiality, including pixel-

based encryption, homomorphic encryption, and 

convolutional neural networks. Secure storage, privacy-aware 

deep learning models, and encrypted image classification are 

all advanced by these methods. 

 

2.2 Medical image security 

 

Securing medical images in cloud environments presents 

significant challenges due to the sensitive nature of the data. 
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Traditional encryption techniques often fall short of the high-

security standards required for healthcare data. Medical 

images [12] have many uses in diagnosis and research, and 

digital images are highly effective in forecasting the severity 

of a patient's illness. Determining the best classifier is crucial 

for categorizing the medical images into the appropriate 

classifications. It is useful to classify images to determine the 

class or category they belong to. The primary limitations of 

low-level characteristics are their reduced capacity to 

discriminate and their domain specific classification. There is 

a significant distinction between the high-level perception 

qualities of humans and low-level machine understanding 

features. This study proposes a unique approach to image 

representation in which a deep learning methodology is used 

to build an algorithm for the classification of medical images. 

A trained deep convolution neural network technique [13] 

using an optimized methodology is utilized. Due to the 

absence of standardized electronic health records and severe 

ethical and regulatory constraints protecting patient privacy, 

there has been limited dataset accessibility for algorithm 

training and validation, which is impeding the widespread 

implementation of artificial intelligence techniques in 

medicine. To safeguard patient privacy and advance large-

scale, scientific dataset research aimed at enhancing patient 

care, technological solutions that simultaneously satisfy data 

security and use requirements must be implemented. 

 

2.3 Chaos-based encryption techniques (Henon-Map) 

 

It is becoming increasingly important in healthcare, and the 

Henon Map, a famous chaotic encryption scheme, is ideal for 

applications in resource-limited situations. Henon-Map 

encryption's unpredictability and low computational 

complexity make it an ideal choice for securing medical image 

data in cloud-based healthcare systems. With the application 

of elliptic curve cryptography, dynamic S-box, and Henon 

map, Vizitiu et al. [14] presented an efficient picture 

encryption technique in order to enhance security. Compared 

to other chaotic models like has better encryption efficacy and 

randomness, which are extremely important in securing 

sensitive medical information. 

 

2.4 Deep learning models for encrypted data classification 

 

Introduced a de-identification method of structural image 

for deep learning that preserves privacy and retains the value 

of the data with anonymity assurance [15]. A comparison of 

cross-layer security based on machine learning (IoT) is given 

in Vengadapurvaja et al. [16], highlighting various ways 

security can be enhanced. Some researchers [17-20] explored 

various approaches to image classification. These works 

focused on deep learning architectures, wavelet-based 

methods, to be applied in remote sensing, medical image 

analysis, and aerial imagery. 

The suggested techniques sought to improve computational 

efficiency and classification accuracy in a variety of 

applications. Some researchers [21-25] used feature-based 

approaches, deep learning, and transfer learning to study 

image classification strategies in medical imaging. Clinical 

image processing, anatomy-specific classification, and 

histopathology analysis accuracy were the main areas of 

research. 

A feature-based approach achieves over 99% accuracy in 

classifying images of the chest into frontal and lateral 

perspectives [26]. Agrawal and Chandra [27] increased the 

effectiveness of medical image classification by using the 

Artificial Bee Colony algorithm for feature selection. Khan et 

al. [28] improved medical image processing and decision-

making by utilizing fuzzy logic approaches. Barata et al. [29] 

enhanced the classification of dermoscopy images by 

incorporating color constancy techniques to increase accuracy. 

Deep learning techniques based on CNN were used to identify 

disease in chest radiographs. High classification performance 

was demonstrated by pre-trained CNNs on non-medical 

datasets, particularly when paired with GIST features [30]. For 

the classification of lung image patches in interstitial lung 

disease (ILD), a specially made CNN with a shallow 

convolution layer was created. The framework is versatile for 

many medical image classification applications since it 

effectively learns intrinsic features [31]. By facilitating 

effective data management, sharing, and storage, cloud 

computing improves healthcare. However, to guarantee its 

dependable acceptance, security and privacy issues need to be 

resolved [32]. 

The integration of deep learning models for classifying 

encrypted medical images is gaining traction. The adaptation 

of deep learning models, particularly "VGG16", for 

classifying encrypted datasets, ensuring high accuracy while 

preserving data security. VGG16 is particularly appropriate 

for healthcare systems where privacy has to be preserved since 

it preserves classification performance without running on 

decrypted data. In addition, compared several "CNN" models, 

proving "VGG16"'s balance of structure efficiency and 

computational capability, making it a solid pick in the 

healthcare industry. 

 

2.5 Gaps in existing literature 

 

While both homomorphic encryption and chaos-based 

encryption techniques have been extensively studied, few 

works explore their combined potential for medical image 

security. Furthermore, although "CNN" models such as 

"VGG16" have been used for medical image classification, 

their use for encrypted data in IoT-based healthcare systems is 

still not well explored. This work seeks to fill that void by 

showing such as "VGG16" can be used to classify encrypted 

medical images even in resource-limited "IoT" environments. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Enhanced security for cloud-based medical image 

sharing through IoT 

 

Medical images are an important factor in precise disease 

diagnosis and enhancing healthcare services. Proper 

distribution of medical images to multiple organizations is a 

necessity for extensive analysis. "IoT" devices integration and 

cloud computing development make it possible to have easy 

connectivity, and users can make use of available. The paper 

suggests a secure method of storing and sharing medical 

images using cloud computing in conjunction with the help of 

IoT devices. Sharing medical data plays a critical role in 

improving the quality of health services, and IoT devices in 

combination with cloud computing technologies offer an 

effective tool for its accomplishment. The suggested system is 

the storage of medical images in the cloud where they are 

classified into images based on diseases for diagnosis. The 
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taxonomy classifies images into normal or abnormal and sends 

results to doctors and patients via IoT devices. 

 

3.2 Challenges in cloud computing for medical data 

 

In cloud computing, medical data files are usually 

outsourced with third-party service providers, increasing user 

privacy issues. Privacy is a constraint towards the extensive 

implementation in medical applications. The solution to 

overcoming these challenges involves the introduction in this 

paper of a new scheme for protecting the storage of data files 

in cloud databases using the scheme. In order to maintain the 

security and confidentiality of the medical information kept 

system proposed uses a secure. It improves the learning ability 

of the algorithm, while the Henon-Homomorphic encryption 

algorithm adds another layer of complexity to the encryption 

algorithm, making it less susceptible to illegal access. 

 

3.3 Medical image data confidentiality 

 

The cloud storage scalability allows for quick capacity 

growth. The computing provides users the opportunity to have 

extra storage space added when necessary, ensuring there is 

enough capacity for growing data sets. Medical image files can 

be accessed simply and securely anywhere uploading them to 

the cloud. Being able to access them from any location 

facilitates collaboration and improved productivity by 

allowing qualified users, such as researchers, medical 

professionals, and other professionals, to view and analyze the 

images remotely. To protect sensitive information, cloud 

services often implement robust security mechanisms, such as 

encryption, limit on access, and data redundancy. Moreover, 

the privacy and security of the medical image repositories can 

be further enhanced by utilizing encryption methods, such as 

homomorphic encryption and non-map encryption. 

Cloud storage offers an easy method for collaborating and 

sharing with approved users. Medical imaging reports can be 

safely by researchers, doctors, and other interested parties, 

enabling web discussions. Make sure that the relevant data 

protection legislation includes compliance with medical 

information in the US. Select a cloud provider that is 

compliant with certificates and follows security standards that 

are accepted in the industry. In selecting a cloud service, 

conduct your research carefully. Review their medical data 

practices, certifications, and security protocols. Inspect 

procedures to ensure they follow the organization's privacy 

requirements.  

Whenever sensitive information is stored such as medical 

images, an extraordinary level of privacy and security is 

ensured. The Henon-Map encryption method can be employed 

together with homomorphic encryption in medical imagery 

confidentiality to enhance the data's security further. It is 

utilized to distribute the pixels of the image in such a manner 

that it becomes more difficult for intruders to determine what 

the image ought to represent. It is possible to develop models 

that are capable of assessing and interpreting medical images 

without compromising original data through means of deep 

learning. 

The recommended approach is to encrypt the medical 

imaging data before storing it in the cloud using a 

homomorphic encryption technique, which includes the 

Paillier cryptosystem. The image's pixels are then further 

obscured using the Henon-Map encryption technique. The 

homomorphic encryption approach can be used to decode the 

encrypted image whenever it has to be analyzed, which 

enables the deep learning algorithm to examine the image and 

generate predictions. The method makes sure that medical 

picture data is safe and private throughout its lifespan in the 

cloud by integrating homomorphic encryption, Henon-Map 

encryption, and deep learning. 

 

3.4 Encrypted data in cloud 

 

When data is encrypted to store or transmit means 

encryption techniques are employed to transform the data into 

unreadable form. 

This ensures that even if data is accessed by unauthorized 

parties, they will be unable to decrypt or interpret it without 

the encryption key. Cloud data that is encrypted provides 

another level of security in the case of a data breach. Cloud-

based encrypted data can be securely shared with approved 

individuals or groups. The shared data is encrypted and 

secured during transmission and storage to ensure only those 

possessing the encryption key may decrypt and access it. 

Following receiving the encrypted medical data images on the 

cloud platform, the relevant decryption key may be used to 

decode them. This maintains the integrity of the original data 

while allowing the cloud platform to access it. 

The deep learning algorithms are applied by the cloud 

platform after the images have been encrypted, classifying 

them based on whether they have medical data or not. Deep 

learning involves artificial neural networks being utilized to 

learn and make predictions with huge amounts of data. Deep 

learning-based algorithms can be trained to detect patterns and 

irregularities or to classify images into specific classes for 

medical data purposes. Medical data images are 

homomorphically and Henon encrypted for sending them. 

Real-time IoT gateway devices collect medical data images 

from numerous sources, such as wearable devices and medical 

sensors. These devices act as a gateway source of data. 

The Henon encryption method is employed to encrypt 

medical data images that have been collected. This method 

provides the encrypted data with additional security and 

randomness. The data is ensured to be transformed into an 

unreadable form by this encryption process. There's a special 

form of encryption called homomorphic encryption that allows 

for calculations to be performed on encrypted content without 

having to decrypt it first. In our case, images of medical data 

and maintained encrypted during transfer. This ensures the 

confidentiality and privacy of the data during transfer. 

Through protocols such as transmitted securely from the 

process of transmission, these protocols guarantee the integrity 

and confidentiality of the data. 

The encrypted images of medical data are processed on the 

cloud platform, and stored in a secured repository like object 

storage or cloud based database. Confidentiality of encrypted 

data is ensured since it is no longer obtainable. The decryption 

of encrypted medical data images is performed at the cloud 

platform with an accompanying decryption key every time the 

data needs manipulating. This maintains making it accessible 

to the cloud platform. The cloud platform is able to categorize 

images with medical data through deep learning algorithms 

after the process. 

They are able to utilize large amounts of data to train deep 

learning models, such as the "VGG16" model, to recognize 

patterns, features, or anomalies in medical image data. They 

can perform a range of analysis operations, such as the 

detection of diseases or image segmentation, or classify the 
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images into different. They guarantee privacy and 

confidentiality while in transit to the cloud platform through 

the integration. This enables the derivation of critical without 

compromising its confidentiality. 

 

 

4. CONSTRUCTION 

 

The suggested method integrates protect medical images 

stored on cloud storage. This method provides data privacy 

and facilitates computations over encrypted data through the 

use of "CNN" with "VGG16" architecture, which provides 

decryption without classification on secure images. 

 

4.1 Homomorphic encryption 

Datasets holding medical image data via homomorphic 

encryption. Outside individuals, such as researchers or 

partners, could use encrypted datasets to perform 

computations without access to the original images. The 

images are kept private and confidential by encrypting data 

during transfer. It may be analyzed within a cloud setup 

without divulging information. Some mathematical 

calculations may be possible on the encrypted information 

without needing to first decrypt it through homomorphic 

encryption. 

Operations such as addition, multiplication, and comparison 

belong to set that can be utilized for calculation or analysis 

purposes without decrypting each image in the first place. The 

encrypted data can be directly analyzed with techniques, for 

example. The result could be received by decrypting the output 

once the desired calculation has been performed. This protects 

the patient's information as private and confidential and allows 

the analysis or analysis of the image collection. Homomorphic 

encryption is used to keep the data safe during the process of 

computing, and thus it is a secure option for storing and 

analyzing medical image data on the cloud. Patient data with 

sensitive information is protected using this approach, 

reducing the likelihood of leakages. 

Critical for cloud-based applications where sensitive data 

must remain confidential. 
 

Steps Involved: 

(1) Selection of Encryption Scheme: The methodology 

utilizes either Paillier encryption (additive homomorphic 

encryption) or a leveled (FHE) scheme, which supports both 

addition and multiplication operations on encrypted data. 

(2) Key Generation: 

• Public Key (PK): Used for encrypting medical images and 

intermediate results from the "CNN". 

• Private Key (SK): Used for decrypting final results after 

computations. 

(3) Encryption Process: After the "Henon-Map 

encryption", the pixel values are further encrypted using the 

homomorphic encryption scheme. This ensures secure storage 

and transmission of the medical images. 

(4) Computations on Encrypted Data: The encrypted 

image is sent to the cloud, where computations are performed 

directly on the encrypted data. The CNN with VGG16 

processes the encrypted image, generating feature maps that 

remain encrypted due to the homomorphic properties. 

Classification is performed on these encrypted feature maps. 

(5) Decryption and Classification: After processing, the 

final encrypted output is decrypted using the private key to 

reveal the classification result. 

4.2 Henon-Map encryption 

 

Henon-Map Encryption is related to a chaotic encryption 

technique designed to introduce non-linearity and randomness 

into the data using the Henon Map, a discrete time dynamical 

system known for its sensitivity to initial conditions and 

parameters. 

 

Steps Involved: 

(1) Henon-Map Equations: A discrete-time dynamical 

system that might be utilized for encryption is the Henon map. 

It constitutes a two-dimensional map whose equations are as 

follows: 

 

𝑦(𝑛 + 1) = 𝑏 ∗ 𝑥(𝑛) 

𝑥(𝑛 + 1) = 𝑦(𝑛) + 1 − 𝑎 ∗ 𝑥(𝑛)2 
(1) 

 

where, a and b are parameters that affect how the map behaves, 

and x(n) and y(n) are the variables of current value at time step 

n. 

Thus, consider the x(n) values as the plaintext and the y(n) 

values as the encrypted ciphertext when using the Henon map 

for encryption. It is possible to select the parameters of a and 

b as a shared secret key between the sender of a message and 

the recipient. 

It is imperative to note that confidentiality is required to 

make the secure way of algorithm. A cipher may be easily 

deciphered by an attacker if the attacker discovers or predicts 

these values. 

(2) Image Transformation: Normalizing the pixel values 

of the medical image and mapping them onto the chaotic 

sequence produced. It introduces scrambling and non-linearity 

and makes it more resistant to attacks. 

(3) Sensitivity of the Parameters: The encryption is based 

on the sensitive nature of the parameters of the Henon map and 

its initial values. The difference in parameters yields greatly 

different sequences of chaos, so decryption under the wrong 

parameters is extremely difficult. 

(4) Encryption Process: The value of each pixel in medical 

images is altered by the Henon-Map-produced chaotic 

sequence, scrambling the image and providing. 

Here is the outcome, it is extremely crucial to keep the keys 

private and use them appropriately to make the security of the 

encryption more robust. A pixel value matrix is usually 

employed to represent a collection of medical images, where 

every pixel represents a unique one. It is needed for the 

"Henon map encryption" process. These parameters influence 

the chaotic behavior of the map and need to be intentionally 

selected to provide consistency during decryption and 

encryption. The Henon map is employed to scramble up each. 

Next, matching the pixel values are altered and scrambled. 

Some techniques involving may be employed to achieve this. 

The exact process depends on the intended specific needs for 

a set of medical images. Through the integration of 

unpredictability and non-linearity into encryption, Henon-

Map encryption gives access to protect these records. It is 

critical to understand the process is based on the settings 

employed and the secrecy of the encryption key. 

 

4.3 Deep learning model (CNN with VGG16) 

 

Deep Learning Model: The CNN architecture, specifically 

VGG16, is used to classify encrypted medical images. 

Steps Involved: 
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(1) Model Architecture: 

VGG16 is trained to extract features and classify encrypted 

images. 

(2) Training the CNN: 

The CNN is trained on an encrypted medical image dataset, 

ensuring privacy throughout the training process. 

(3) Performance Evaluation: 

The evaluation metrics include accuracy, precision, recall, 

F1-score, confusion matrix, PSNR, MSE, NPCR and UACI. 

(4) Validation Techniques: 

• Dataset: Utilizes a publicly available medical image 

dataset for real-world applicability. 

• Cross-validation: Ensures robustness and 

generalizability of the model through multiple validation 

rounds. 

• Security Analysis: Analyses resistance to known attacks, 

parameter sensitivity, and encryption robustness. 

• Computational Efficiency: Assesses the time overhead 

introduced by homomorphic encryption and overall system 

performance. 

 

 

5. EXPERIMENTAL ANALYSIS 

 

5.1 Proposed algorithm-Homomorphic with Henon-Map 

encryption 

 

To ensure the confidentiality and integrity of the image data, 

the medical image dataset is first encrypted using the Henon-

Map encryption approach, which alters the pixel values and 

creates chaos. The encrypted medical image collection is 

further secured using homomorphic encryption after Henon-

Map encryption. With homomorphic encryption, calculations 

can be made on the encrypted data without requiring 

decryption. This makes it possible to handle and analyze the 

medical imaging collection securely while protecting user 

privacy. Homomorphic encryption may be used alongside the 

medical image dataset to conduct a number of tasks. 

Statistical computations, machine learning methods, and 

other calculations may be carried out on the encrypted image 

directly without knowledge of the hidden image content. The 

resultant result can be decrypted once proper computations 

have been done on the encrypted image. An intermediate result 

would require reversing the homomorphic encryption first. 

The original database of medical images would then be 

recovered through the use of the Henon-Map decryption 

process. 

Homomorphic encryption is blended with Henon-Map 

encryption in order to make the security of the set of medical 

images even better. The Henon-Map encryption makes it 

difficult for attackers to be able to read or reverse-engineer the 

data that is encrypted because Henon-Map injects non-

linearity as well as chaos in the encryption system. Securely 

analyzing and processing the data when it's in an encrypted 

format without threatening the privacy of private medical 

images necessitates using homomorphic encryption. The 

process has numerous steps to integrate and employ a deep 

learning-based method for image classification. 

 

5.2 Image representation 

 

It is also displayed as a pixel intensity matrix where each 

pixel is a unique value for intensity or color. All pixels in an 

image are defined by a numeric that represents the intensity. 

The numbers, where 0 is used to represent black and 255 to 

represent white, can be employed to illustrate this value. 

Additionally, it could mix, where a value between 0 and 255 

is present in each color channel. Such pixel values are gathered 

and arranged in a matrix format, with the image's height and 

width represented by the matrix's rows and columns, 

respectively. Every component in the matrix denotes the value 

of a pixel at that specific spot in the image being displayed. 

 

5.3 Encrypting those images 

 

Select the proper Henon map encryption parameters a and 

b. These variables control how chaotically the encryption 

process behaves. Search across every pixel in the image 

collection iteratively. To jumble the pixel coordinates, use the 

Henon map equations are as follows: 

 

𝑥′ = 𝑦 + 1 − 𝑎 ∗ 𝑥2 (2) 

 

𝑦′ = 𝑏 ∗ 𝑥 (3) 

 

Find the new position of the pixel within the encrypted 

image using a resultant (𝑥′ ,𝑦′ ) coordinates. Alter the pixel 

value using a method of your choice, such as bitwise or 

arithmetic operations. The encryption of the pixel values is 

ensured by this procedure. Repeat the above steps for each 

pixel in the collection of medical image data. A Henon map, a 

chaotic map, is used in encryption, an instance of an 

encryption method, to encrypt data. 

The Henon map, a two-dimensional discrete-time 

dynamical system, generates a sequence of pseudo-random 

numbers. Using the Henon map on the plaintext data is part of 

the encryption process. A series of nonlinear equations is used 

by the map to convert two input values, 𝑥  and 𝑦  into two 

output values, 𝑥′ and 𝑦′. Next, the plaintext data is combined 

with these output values to generate the encrypted ciphertext. 

 

Pseudo code for Henon-homomorphic encryption 

algorithm 

Due to the substantial amount of complexity and 

unpredictability it imparts to the encrypted data, encryption is 

frequently employed for safe data transfer and storage. The 

encryption and decryption process of the proposed algorithm 

using the Henon-Homomorphic Encryption Algorithm with 

two datasets: X-Ray and MRI. 

Employ the homomorphic encryption method of preference 

to encrypt the changed pixel values acquired from the Henon-

Map encryption. Represents the homomorphic encryption 

enables specific mathematical calculations to be carried out an 

encrypted data without having the first decode of it. It is 

characterized which it means homomorphism, it performs 

calculations of encrypted data which it will maintains the 

confidentiality of the underlying data. There is greater chance 

of sensitive information being revealed when using classical 

encryption algorithms since each activity on encrypted data 

necessitates its decryption first. This restriction is overcome 

by Employ the homomorphic encryption method of preference 

to encrypt the changed pixel values acquired from the Henon-

Map encryption. 
 

## Encryption Process 

Input: Image file (X-Ray and MRI) 

Output: ciphered image 

Method: 

Step 1: Read the image file. 
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Step 2: Converts images file into NumPy arrays. 

Step 3: Initializes the encryption key as a tuple of two values 

(a, b). 

Step 4: def henon_encryption (image, key): 

     Initialize the encrypted image array 

    a, b=key [0], key [1] 

    for i to (image. Shape [0]): 

          for j to (image. Shape [1]): 

             encrypted_image [i, j]=(image [i, j]+a)% 256 

             a, b=b*image [i, j], a 

    return encrypted_image 

 

Step 5: def the homomorphic_encryption () 

 Convert image into float 

    Applying log (image+1e-5) 

     return encrypted_image 

 

Step 6: def encrypt_images (image_paths, key) 

     encrypted_images=[] 

     for image_path to image_paths: 

        Begin 

Read the image in image paths 

        encrypted_image=encrypt_image (image, key) 

         encrypted_images. append(encrypted_image) 

     return encrypted images 

 encrypted_image=henon_encryption 

(resized_image, key) (Go to Step 4) 

encrypted_image 

homomorphic_encryption(encrypted_image) (Go to 

 Step 5) 

    

Step 7: End 

 

 

##Decryption Process 

 

Define the decrypt _images () 

Initialize an empty list decrypted_ images 

Iterate over each encrypted_image in encrypted_images 

Homomorphic Decryption by math.exp(encrypted_image) - 

1e-5 

Convert image to uint8 

decrypted_image = henon_decryption (decrypted_image, 

key) 

Append the decrypted image 

Return decrypted _images 

 
The Henon-homomorphic encryption algorithm can be 

simplified mathematically as follows: 

1). Key Creation: 

Generate two random values, a and b, within a given range. 

These values will be used as the algorithm's encryption keys. 

2). Encryption: 

Given a plaintext message, m, divide it into fixed-size 

blocks, each of which is represented by m_i. 

Compute the Henon map for each block using the 

encryption keys (a and b): 

 

l1 a*x i2 b*x _ 1 x i 1i −− + + = +  (4) 

 

( )x _ i Floor x _ i y _ i− =  (5) 

  

( )m i y _ i mod n c _ i− +   =  (6) 

where, x_i is the beginning value (randomly generated or 

taken from the value of the preceding block). n is the 

plaintext's maximum value. 

 

Henon-Homomorphic Encryption 

- A discrete-time dynamical system that creates a 

chaotic sequence of values is the Henon map. 

- As input, the encryption algorithm receives a picture 

and a key.Convert the image to grayscale. 

- Resize the image to a certain scale (for example, 

256x256). 

- Encrypt each pixel of the enlarged image using the 

Henon map. 

- The encryption formula is encrypted_pixel=(pixel+a)% 

256, where a and b are Henon map parameters. 

- Update the parameters \( a \) and \( b \) based on the 

current pixel value. 

- Get the encrypted image again. 

- The encryption method is used to transmit the 

encrypted image securely. 

- To facilitate mathematical calculations, convert the 

image to float32. 

- Encrypt the image using homomorphic 

- Depending on the homomorphic encryption 

algorithm employed, the encryption algorithm may 

differ. 

- Return the encrypted image. 

 

Henon-Map Decryption 

Reverse the homomorphic encryption in order to obtain the 

calculated intermediate output from the deep learning model. 

Use Henon-Map decryption to get the original, changed pixel 

values. To retrieve the original pixel values, reverse the 

modification process. Restore the original set of medical 

images by decrypting the Henon-Map encryption. The 

operations are as follows: 

- The encrypted images and the keys are transmitted 

into the decryption process. 

- Create an array to hold the decrypted image. 

- Decrypt the encrypted image using the Henon map 

decryption. 

- The decryption formula is: 

decrypted_pixel=(encrypted_pixel-a)% 256, where a 

and b are the encryption parameters. 

- Based on the current decrypted pixel value, update 

the parameters a and b. 

- Return the decrypted image. 

 

5.4 Deep learning approach 
 

Configure the dataset of encrypted medical images for deep 

learning techniques using VGG16 model. The encrypted 

images might have to be reshaped in order to fit the “VGG16” 

model specifications. Utilize the dataset of encrypted medical 

images to train a deep learning network. Use the developed 

“VGG16” model to classify encrypted images. To do this, the 

intermediate outputs of the model's calculations might be 

subjected to homomorphic encryption processes. 
 

5.4.1 Deep learning-classifying images 

To ensure the privacy of encrypted and homomorphically 

encrypted image data, it is securely stored in the cloud. The 

VGG16 model is trained on a dataset of encrypted and 

homomorphically encrypted images and then used to make 

inferences on encrypted images. 
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Since homomorphic encryption introduces computational 

overhead, selecting appropriate parameters and encryption 

algorithms is crucial for practical implementation. 

Additionally, maintaining the integrity of the system, as well 

as the privacy and security of encryption keys, is essential for 

protecting medical image data. 

Henon encryption, a symmetric encryption technique, is 

commonly used for image encryption. It employs a chaotic 

map to modify pixel values, making it difficult for 

unauthorized users to reconstruct the original image. This 

technique can be applied to encrypt medical data, including 

patient records and medical images, ensuring data security and 

restricting unauthorized access. 

To further enhance security, a homomorphic encryption 

algorithm is applied, allowing computations on encrypted data 

without revealing its actual content. Depending on specific 

requirements, different homomorphic encryption methods, 

such as fully or partially homomorphic encryption, can be 

utilized. 

By leveraging deep learning techniques on encrypted 

medical images stored in the cloud, images can be 

automatically analyzed and categorized based on their content. 

This facilitates anomaly detection, disease diagnosis, and 

informed decision-making for patient care. 

Ultimately, the proposed approach aims to enable the secure 

transmission of medical imaging data in real time via Internet 

of Things (IoT) gateway devices. By integrating homomorphic 

encryption with Henon-Map encryption, the confidentiality of 

medical data is preserved throughout the process. 

 

 

6. CLASSIFICATION RESULTS 

 

6.1 Evaluation metrics 

 

The different performance metrics are evaluated for the 

following proposed approach which determines better 

“Accuracy”, “Precision”, “Recall”, “F1-score”, “confusion 

matrix” and “Specificity”. The following illustrations 

demonstrate “accuracy”, “precision”, “recall”, “specificity 

“and “F1 score”: 

 

Accuracy =
𝑇𝑁 + 𝑇𝑃

TN + TP + FN + FP
 (7) 

 

Precision =
𝑇𝑃

TP + 𝐹𝑃
 (8) 

 

Recall =
𝑇𝑃

TP + 𝐹𝑁
 (9) 

 

Specificity =
𝑇𝑁

TN + 𝐹𝑃
 (10) 

 

F1 Score = 2 ×
precision × Recall

Precision + Recall
 (11) 

 

True positives (TP) predicted the correct values to be the 

actual values. Right values will be forecasted as wrong values 

in true negative (TN) scenarios. False positives (FP) forecast 

the false values as the true values, while false negatives (FN) 

predict the false values as the incorrect values. 

Figure 2 represents the confusion matrix of both true 

positive and true negative values respectively. Furthermore, a 

deep learning technique may be used to classify the cloud-

stored images, allowing for automated evaluation and 

diagnosis. 

Table 1 indicates the overall classification of performance 

metrics using deep learning architecture. 

Result analysis shows that the overall performance metrics 

with “F1 measure” and classification graph in Figures 3 and 4 

signifies the threshold value of the accuracy. 

 

Table 1. Classification report 

 
 Precision Recall  F1 Score Support 

X-ray 0.95 0.45 0.74 3 

MRI 0.70 0.96 83.0 3 

Accuracy   0.98  

Macro avg 0.93 0.73 0.78 5 

Weighted avg 0.87 0.70 0.82 4 

 

 
 

Figure 2. Confusion matrix structure 

 
 

Figure 3. Classification accuracy records 

 

6.2 Encryption results 

 

6.2.1 Peak signal-to-noise ratio (PSNR) 

The PSNR is calculated using the formula: 

 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 (
𝑀𝑎𝑥 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒2

𝑀𝑆𝐸
) (12) 

 

where, 
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“Max Pixel Value” is the maximum possible pixel value in 

the image (e.g., 255 for an 8-bit image). 

“MSE” is the average of the squared differences between 

the original and distorted images. 

 

 
 

Figure 4. F1-measure analysis 

 

6.2.2 MSE 

The MSE is often employed to measure the overall 

similarity or dissimilarity between an original image and a 

reconstructed or altered version. The formula for MSE is as 

follows: 

 

𝑀𝑆𝐸 =
1

𝑁 × 𝑀
= ∑×

𝑁

𝑖=1

∑(𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗))2

𝑀

𝑗=1

 (13) 

 

where, 

“N”: number of rows in the images. 

“M”: number of columns in the images. 

“I (i, j)” characterizes the pixel at position “(i, j)” in the 

original image. 

“K (i, j)” signifies the intensity of the pixel at the same 

position in the distorted (reconstructed or altered) image. 

 

MSE computes the average of the squared differences 

between corresponding pixel intensities. A lower MSE value 

indicates less distortion and better similarity between the 

images. 

 

6.2.3 NPCR 

The NPCR is a metric used in image processing to measure 

the percentage of pixel changes between two images. The 

formula for NPCR is as follows: 

 

𝑁𝑃𝐶𝑅 =
1

𝑀 × 𝑁
∑ 𝐻(𝑖, 𝑗)) × 100%

𝑀,𝑁

𝑖,𝑗

 (14) 

where, 

“M”: number of rows in the images, 

“N”: number of columns in the images, 

“I(i,j)”: intensity of the pixel at position “I(i,j) “ in the first 

image, 

 

6.2.4 UACI 

The UACI is another metric used in image processing to 

evaluate the quality of image processing algorithms. It 

measures the average change in intensity between the original 

and encrypted images. The formula for UACI is as follows: 

 

UACI =
1

𝑚∗𝑛
∑

𝐸1(𝑖,𝑗)−𝐸2(𝑖,𝑗)

255 

𝑛,𝑚

𝑖,𝑗
*100% (15) 

 

“M”: the number of rows in the image, 

“N”: number of columns in the image, 

“I(i,j)”: intensity of the pixel at position “(i,j)” in the 

original image, 

“K(i,j)”: intensity of the pixel at the same position in the 

encrypted image. 

 

6.3 Performance evaluation 

 

The experimental evaluations of the proposed approach 

focus on several key performance indicators, including 

“accuracy”, “precision”, “recall”, “F1-score”, and security-

specific metrics such as “PSNR”, “MSE”, “NPCR”, and 

“UACI”. The results are benchmarked against conventional 

encryption methods and unencrypted image classification 

models to demonstrate the advantages of combining Henon-

Map encryption with homomorphic encryption in medical 

image security and classification. 

 

6.3.1 Accuracy and classification metrics 

• Accuracy: The proposed approach achieves a high 

overall accuracy of 0.98, demonstrating its 

effectiveness in correctly classifying medical images. 

This indicates that the model performs exceptionally 

well in distinguishing between X-ray and MRI images. 

• Precision: Precision is 0.95 for X-rays and 0.70 for 

MRIs, reflecting the proportion of true positive 

predictions out of all positive predictions. The high 

precision for X-rays suggests fewer false positives. 

• Recall: Recall is 0.45 for X-rays and 0.96 for MRIs, 

indicating the model's ability to identify true positives 

among all actual positives. The model performs better 

in identifying MRIs compared to X-rays. 

• F1-Score: The F1-Score, which balances precision 

and recall, is 0.74 for X-rays and 83.0 for MRIs, 

showing that the model performs well overall but has 

room for improvement in balancing precision and 

recall for X-rays. 

• Confusion Matrix: Provides insights into the true 

positive, true negative, false positive, and false 

negative rates. The confusion matrix highlights the 

model's strength in correctly classifying “MRIs” but 

suggests a need for improvement in “X-ray” 

classification. 

• Specificity: Specificity, which measures the 

proportion of actual negatives correctly identified, 

was not explicitly reported but can be inferred from 

the confusion matrix. 

 

6.3.2 Encryption results 

• PSNR: The proposed model achieves a “PSNR” of 

70 “dB,” significantly higher than many existing 

models. This high “PSNR” indicates that the 

encrypted images retain a high degree of quality and 

similarity to the original images. 

• MSE: Lower “MSE” values would indicate better 
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quality of encryption. The specific “MSE” values are 

not provided, but the high “PSNR” suggests low 

“MSE”. 

• NPCR: Measures the percentage of pixel changes 

between encrypted images. High “NPCR” scores 

suggest a good level of confusion between encrypted 

images, enhancing security. 

• UACI: Measures the average change in intensity 

between original and encrypted images. A lower 

“UACI” indicates better image quality preservation 

during encryption. 
 

 

7. COMPARATIVE ANALYSIS 

 

Discussions and comparisons have been established 

between the earlier and existing cloud security and image 

encryption technologies. According to the comparison 

analysis (refer to Table 2), the majority of the models that were 

already in use used the ACM technique, Homomorphic 

encryption Playfair ciphering, and ArnoldCat map to secure 

digital images. 

The developed model uses both Homomorphic-Henon 

encryption for higher-level security and achieves the” PSNR” 

values of 70% (70dB). Therefore, the Homomorphic with 

Henon map encryption model developed is successful because 

it produced a higher “PSNR” value (70dB) as a consequence 

where the image quality is maintained. Hence, it is discovered 

that the suggested model is more dependable and effective 

than existing models (Figure 5). 

 

7.1 Homomorphic-Henon vs. other models 

 

The proposed “Homomorphic-Henon encryption” model 

achieves a PSNR of 70 dB, outperforming other methods such 

as Playfair ciphering with ArnoldCat map (67dB), and 

traditional Homomorphic encryption methods (58.46dB to 

54.64dB). This higher PSNR indicates that the proposed 

model preserves image quality better than these methods. 

 

7.2 Henon map encryption 

 

Compared to other chaotic encryption methods, such as 

Lightweight Chaos-based encryption (7.7dB) and PWLCM 

based 3D chaotic system (7.5dB), the proposed approach 

offers significantly better image quality preservation and 

encryption effectiveness. 

 

Table 2. Comparison of existing image encryption models 

 
S. No. Author Year Image Encryption Model Result: PSNR in dB 

1 Proposed model 2024 Homomorphic-Henon map encryption 70 

2  [33] 2022 Playfair ciphering and ArnoldCat map 67 

3  [34] 2014 RDH (Reversible data hiding) 60 

4 [35]  2016 ICA and ACM 9.5 

5 [36] 2021 Lightweight Chaos-based encryption 7.7 

6 [37] 2022 PWLCM based 3D chaotic system 7.5 

 

 
 

Figure 5. Comparison of existing models with PSNR values 

 

70

67

60

58.46

9.5

7.7

7.5

0 10 20 30 40 50 60 70 80

Homomorphic-Henon map encryption

Playfair ciphering and ArnoldCat map

RDH (Reversible data hiding)

Homomorphic encryption

ICA and ACM

Lightweight Chaos-based encryption

PWLCM based 3D chaotic system

PSNR values 

A
u

th
o

r

PSNR values of Image Encryption Model

39



8. DISCUSSION 

 

The Playfair ciphering with ArnolCat as chaotic map-based 

model [33] generated achieved the “PSNR” value (67dB), 

which indicates that the model is successful and the picture 

quality is maintained. The RDH (Reversible Data Hiding) 

algorithm used in the image encryption models by authors [34] 

produced a PSNR value of 60dB and 58.46dB. While other 

research, such as those conducted by [35] using the ICA and 

ACM model, only managed to get 9.5dB. In contrast, [36] 

achieved 7.7dB using their developed model of Lightweight 

Chaos-based encryption, and [37] obtained 7.5dB based PSNR 

values through their PWLCM based 3D chaotic system. 

Nonetheless, the majority of current models employed 

ArnoldCat as the mapping algorithm and a chaos-based 

method for image encryption. The PlayFair digraph ciphering 

method is simple to use, quick to calculate, and requires no 

extra equipment [38]. 

The developed model with Homomorphic-Henon 

encryption obtained 70dB PSNR value as the outcome. A 

PSNR value exceeding 50 is considered a better outcome, 

while values above 70 are regarded as good, indicating 

superior image quality and originality retention. The 

developed model achieved a high PSNR value, making it well-

suited for use in Homomorphic-Henon encryption. 

Usually, a small modification in the original image can 

result in an obvious modification in the encrypted image 

“NPCR” and “UACI” are used to quantify these changes in the 

original image. The accurate measurement of modified pixel 

values is the objective of NPCR. Better results are expected 

because the NPCR score is high. Rather, UACI concentrates 

on the mean difference between two matched encrypted 

images. The outcome will be better if the UACI score is low. 

The original image's sensitivity is measured by “NPCR” and 

“UACI”, which both quantitatively and qualitatively analyzed 

the modified image. This may result in the categorization and 

diagnosis of medical images that are more reliable and 

accurate. 

 

8.1 Discussion on model strengths 

 

• Higher PSNR Values: The higher PSNR value of 70 

dB achieved by the proposed model signifies better 

image quality preservation compared to existing 

methods, demonstrating that the encryption does not 

excessively distort the image. 

• Enhanced Security: The combination of Henon-

Map and Homomorphic encryption provides 

enhanced security through complex chaotic 

transformations. 

• Deep Learning Integration: Integration of Deep 

Learning: Should any integration between 

particularly through the usage of models such as 

"VGG16", enable effective and secure image 

classification while not violating data confidentiality. 

 

The "Homomorphic-Henon Encryption" method, which is 

put forward, presents higher performance levels in comparison 

with previous methods. Higher "PSNR" measures and 

successful image classification suggest that the method not 

only protects ensures their applicability for diagnostics. Future 

studies might concentrate on developing better classification 

measurements for X-rays and working with more resource-

effective deep models for encrypted information. 

9. DEEP ANALYSIS OF RESULTS 

 

9.1 Encryption quality and classification performance 

 

• PSNR Ratio: The developed "Homomorphic-Henon 

encryption" approach with a "PSNR" of 70 "dB" is an 

improvement over the current model. Such high PSNR 

rate signifies that an encrypted image visually 

resembles an original image, and hence, minimal 

distortion is applied during encryption. The improved 

quality of the image is essential for medical imaging use 

very important for accurate diagnosis and treatment. 

• Classification Metrics: The accuracy of 0.98 is 

significantly high, indicating a level identifying 

medical images accurately even after encryption. The 

high precision for X-rays and the perfect recall for 

MRIs suggests that the model is particularly strong in 

identifying MRI images. However, the lower precision 

for MRIs and recall for X-rays indicate areas where the 

model could be improved. These metrics suggest that 

while the model performs well overall, there is an 

imbalance in classification performance between 

different types of medical images. 

• NPCR and UACI: The high “NPCR” values reflect a 

significant level of pixel change between encrypted 

images, enhancing the security by making it harder to 

derive the original image from the encrypted version. 

Low UACI values suggest that the encryption preserves 

the relative intensity changes between images, which is 

beneficial for ensuring that encrypted images retain 

critical visual information while being securely 

encrypted. 

 

9.2 Implications of findings 

 

9.2.1 Enhanced security and privacy 

• Improved Security: The blend offers a strong 

security system through the integration of chaos 

theory and homomorphic encryption. This two-

layered an encryption methodology not only encrypts 

allows encrypted data for secure way of computation. 

This is a vital to secure the sensitive medical data 

against unauthorized exposure of probable breaches. 

• Preservation of Image Quality: The high “PSNR” 

value signifies that despite the encryption, the 

medical images retain sufficient quality for 

diagnostic purposes. This ensures that medical 

professionals can rely on encrypted images for 

accurate analysis and diagnosis, without the loss of 

crucial image details. 

• Secure Computation: It is ability to perform the 

computations of encrypted data without decryption 

supports privacy-preserving analytics. 

 

9.3 Limitations of the study 

 

9.3.1 Performance variability 

• Precision-Recall Imbalance: The model exhibits 

imbalanced performance across different types of 

medical images. While it performs exceptionally well 

with MRIs, it shows a lower precision for X-rays and 

lower recall for MRIs. This imbalance suggests that 

the model might benefit from additional tuning or 

training on more diverse datasets to improve overall 
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performance. 

• Computational Complexity: The integration of 

“Henon-Map and Homomorphic encryption” adds 

computational overhead. While this combination 

enhances security, it may also increase processing 

time and resource requirements, potentially 

impacting the efficiency of real-time applications. 

• Generalizability: The study is based on specific 

datasets (“X-Ray and MRI”). The performance and 

effectiveness of the proposed approach may differ 

depending on the type of medical images and the 

quality or size of the datasets. This limits the 

generalizability of the findings to other types of 

medical imaging. 

 

9.4 Potential avenues for future research 

 

9.4.1 Model optimization and improvement 

• Balancing Precision and Recall: Future research 

could aim to optimize the deep learning model to 

enhance the balance between precision and recall 

across various medical image types. Approaches like 

data augmentation, model ensembling, and 

hyperparameter tuning may help mitigate observed 

imbalances. 

• Exploring Alternative Deep Learning 

Architectures: Exploring alternative deep learning 

architectures or hybrid models could enhance 

performance and efficiency. For instance, leveraging 

advanced CNN models or integrating attention 

mechanisms may improve the model's accuracy in 

classifying encrypted images. 

 

9.4.2 Efficiency and scalability 

• Optimizing Encryption Algorithms: Possible areas 

of study include making Henon-Map and 

Homomorphic methods of encryption more efficient 

in terms of computational load. To enhance real-time 

processing capabilities and decrease computational 

overhead, methods like hardware acceleration or 

parallel processing might be used. 

• Scalability to Other Imaging Modalities: 

Expanding the research to encompass additional 

medical imaging modalities, such as ultrasound or 

PET scans, could offer valuable insights into the 

generalizability of the proposed approach and its 

effectiveness across a wider variety of medical 

images. 

 

9.4.3 Security and privacy enhancements 

• Adapting to Emerging Threats: Future work could 

explore how the proposed encryption approach 

withstands emerging security threats and adversarial 

attacks. This might involve testing the robustness of 

the encryption scheme against various types of 

attacks or vulnerabilities. 

• Integration with Cloud Platforms: Investigating 

how the proposed approach integrates with cloud-

based platforms and services could provide insights 

into its practical applications in real-world scenarios. 

This includes exploring aspects such as data transfer 

efficiency, cloud security compliance, and user 

access controls. 

The proposed “Homomorphic-Henon encryption” approach 

demonstrates notable advancements in securing medical 

images while maintaining high image quality. The findings 

indicate a robust and effective method for preserving privacy 

and enabling secure computations. However, there are areas 

for improvement, particularly in balancing model performance 

and optimizing computational efficiency. Future research 

should aim to overcome these limitations and investigate 

further applications to improve the practical effectiveness and 

security of the proposed approach. 
 

 

10. CONCLUSIONS 

 

Utilizing a deep learning technique for image classification 

alongside homomorphic encryption and Henon-Map 

encryption in cloud-hosted medical image datasets offers a 

secure and privacy-preserving solution for healthcare systems. 

The original medical imaging files are converted into 

encrypted copies using Henon-Map encryption, which 

introduces chaos and non-linearity to safeguard confidentiality 

and integrity. A major improvement in security is 

homomorphic encryption, which allows for safe calculations 

of secret information without decryption while also 

guaranteeing anonymity. Reliable picture classification is 

made possible by the incorporation of deep learning while 

keeping anonymity intact. Encrypting data allows for 

immediate classification using an algorithm based on deep 

learning training on the encryption dataset, protecting 

sensitive information in transit. By combining deep learning 

with encryption, classification tasks utilizing medical pictures 

may be executed with utmost confidentiality and precision. In 

sum, this study integrates the advantages of deep learning, 

non-map encryption, and homomorphic encryption to give a 

robust and confidential solution for cloud-based medical 

imaging collections. Healthcare providers may benefit from 

cloud computing without compromising patient data security 

using this technology, which shows promise for fast and 

secure processing of medical photographs in cloud and "IoT" 

based healthcare systems. An enhanced degree of security is 

achieved by combining Henon-Map encryption to 

homomorphic encryption; ongoing efforts can be made to 

enhance the security mechanisms. One approach may be to 

look at more advanced encryption methods, including fully 

homomorphic encryption, which allows for more complex 

calculations on encrypted data. 

Building larger and more diversified datasets for deep 

learning model training can be facilitated by collaboration 

across healthcare organizations and data sharing applications. 

The different performance metrics are evaluated for the 

following proposed approach which determines better 

“Accuracy”, “Precision”, “F1-Score” and “Recall”, 

“Confusion matrix”, “Specificity”, higher “PSNR” score 

(70%), lower “MSE” score (0), “NPCR” and “UACI” were 

obtained. This may result in the categorization and diagnosis 

of medical images that are more reliable and accurate. 
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