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This study proposes an Improved Particle Swarm Optimization (PSO) algorithm based on 

weather forecasting to minimize data transfer time in wireless sensor networks and 

maximize network lifetime. In addition, the research used a combination of an Improved 

Particle Swarm Optimization algorithm, improved Ant Colony Optimization (ACO), 

machine learning analysis and weather forecasting to further improve results. Sensor nodes 

have limited energy, using renewable energy to power sensor nodes provides a sustainable 

solution that ensures long-term reliable operation and avoids the need for battery 

replacement, especially for sensors located in remote locations, such as underground in 

agriculture. Since these sensors are likely to be operated day and night, the energy 

consumption needs to be optimized to extend the network lifetime. In this study, we used 

an optimized version of a metaheuristic algorithm called Particle Swarm Optimization to 

optimize the energy consumption of sensor nodes through optimal data transfer using 

weather forecast data (Temperature). In our work, we considered an optimal scheduling 

where data is represented by a directed acyclic graph (DAG). The results demonstrate the 

effectiveness of our proposed method in minimizing the data transfer time and thereby 

extending the sensor lifetime. Then, applying the combination improves the findings. Our 

method, based on weather forecasting, will make a significant contribution to improving 

the energy consumption of sensors, particularly in precision agriculture, which requires 

efficient use of sensor energy and maximizing network lifetime more than other fields due 

to its continuous monitoring and the need for continuous data collection over large areas, 

which requires a high level of sustainability. 
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1. INTRODUCTION

A wireless sensor network is a deployment of multiple 

devices equipped with sensors that interact with each other to 

perform a collaborative measurement process, as illustrated in 

Figure 1. 

The Internet of things (IoT) is leading to major changes in 

agriculture by gathering real-time information such as soil, 

moisture, temperature and weather information, allowing 

farmers to react at the right time, optimizing irrigation, 

fertilizer, pesticide delivery, and helping to make the farm and 

its components easier to manage. Improving energy 

consumption in the Internet of Things (IoT) is critical, 

especially for smart agriculture, where IoT devices are used to 

continuously monitor crops and soil. Efficient energy use 

allows sensors and devices to operate for longer periods of 

time without frequent recharging or battery replacement, 

which is critical for managing extensive agricultural 

operations. By minimizing energy consumption, smart 

agriculture systems can improve sustainability, reduce costs 

and make better decisions. 

A functional structure of a wireless sensor network platform 

composed of sensor nodes, gateway nodes and deployment 

devices can be used for multiple IoT applications and ensures 

high quality performance which, including early deployment 

and high quality service [1]. The primary components of WSN 

are sensors that communicate and share information over the 

internet. Several routing algorithms are designed to optimize 

power dissipation in WSNs [2]. The IoT is a giant network that 

provides a common platform and common language for all 

connected devices to communicate with each other. There are 

many classes of IoT applications like big data, business 

analytics, monitoring and control [3]. 

Radio Frequency Identification (RFID) and Wireless Sensor 

Networks (WSN) are the main technologies that ensure the 

proper functioning of IoT paradigm. Agriculture based on IoT 

allows automated control and energy efficiency on the farm 

[4]. Many energy harvesting techniques such as solar, thermal 

and vibration are used by WSN to solve the problem of limited 

energy of batteries instead of replacing them [5]. 

A Whale Optimization Algorithm with Simulated 

Annealing (WOA-SA) is used to choose the optimal cluster 

head of an IoT network in order to optimize the energy 

consumption of sensor nodes.  

The hybrid algorithm proved its supremacy on artificial bee 

colony algorithm, genetic algorithm, WOA and adaptive 
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gravitational search algorithm [6]. The NSGA II (Non-

Dominated Sorting Genetic Algorithm) is used to optimize the 

battery control signal in photovoltaic system with grid 

connection [7]. Particle Swarm Optimization algorithm (PSO) 

is a non-deterministic method that can be used to solve 

difficult optimization problems, it was proposed by Kennedy 

and Eberhart [8]. This method is inspired by the social 

behavior of animals that evolve in swarms [9] and schools of 

fish [10]. 

Figure 1. Internet of things devices in agricultural field 

The equipment scheduling modeling method allows an 

energy consumption optimization in the IoT environment by 

using the multi-objective fuzzy algorithm [11]. Based on the 

Hybrid Energy Efficient and QoS Aware (HEEQA) algorithm, 

the energy consumption in the Internet of Things (IoT) was 

minimized and the network lifetime was maximized without 

affecting quality of service [12]. The use of cooperative nodes 

and relay deployment extends the lifetime of the wireless 

network by 12 times compared to the non-cooperative network 

[13]. LEACH (Low-Energy Adaptive Clustering Hierarchy) 

decreases the energy dissipation of sensor nodes by 8 times 

compared to conventional routing protocols [14]. A 

comparison between an existing exhaustive grid search 

algorithm and Particle Swarm Optimization-Multiple-Sink 

Placement Algorithm (PSO-MSPA) proved that the latter 

prolonged the lifetime of wireless sensor network from 3050 

to 3450 [15]. 

The hybrid optimization algorithm named, Multi-Objective 

Fractional Artificial Bee Colony (MFABC), extends the 

wireless sensor network lifetime compared to LEACH, PSO 

and ABC by developing a new fitness function, which 

considers energy consumption, distance and delay [16]. 

Particle Swarm Optimization Algorithm is used to choose 

the best base station locations with the objective of reducing 

energy consumption [17]. Particle Swarm Optimization 

Algorithm can prolong the lifetime of the network and save 

40% of energy by finding the optimal sink position to the relay 

nodes [18]. 

Adaptive signal processing and distributed source coding 

principles save the sensor node energy (from 10% - 65%) [19]. 

The Sensor Protocols for Information via Negotiation (SPIN) 

is used for information dissemination in wireless sensor 

networks and can transmit 60% more data than conventional 

approaches for a given amount of energy [20].  

To develop a low cost solar powered soil and weather 

monitoring system, a system comprised of IoT, data mining 

and an android mobile application was created. This system 

helps to optimize irrigation, enhance accuracy and promote 

conservation efforts. It also invites low-income households to 

adopt advanced climate-smart farming practices [21]. The 

model of two-level weather forecast based on solar radiation 

prediction outperforms the Exponentially Weighted Moving 

Average (EWMA) in terms of simulated wireless sensor 

performance [22]. The use of the weather-dependent fuzzy 

logic model in generating irrigation valve control commands 

guarantees an optimal level of irrigation, enhancing the overall 

efficiency of the irrigation system [23]. 

The significance of incorporating weather forecasts into 

energy management systems is established by emphasizing the 

dependencies of various building components on weather 

conditions [24]. A real-time system implemented on a TI 

CC2530 platform using advanced clustering and routing 

methods showcases improved energy efficiency and extended 

lifetime for a Wireless Sensor Network (WSN) [25]. 

Multi Agent Architecture (MAS) implemented in a cloud 

environment with a WSN attains an average energy savings of 

41% in the offices of the experimental group [26]. An 

automated solar-powered weather station reduces the cost of 

obtaining scientific weather information in local communities 

in Africa by using meteorological sensors, a liquid crystal 

display (LCD), a microcontroller and a GSM modem [27]. 

Renewable energy reduces the cost of electricity and the 

pollution of the environment that has been caused by the 

excessive use of fuel. The agriculture has been elevated to an 

entirely new level using renewable energy harvesting and IoT 

[28]. 

2. PROBLEM STATEMENT

Today, Algeria's agricultural sector is growing at a very fast 

rate, and needs to be improved with the development of 

Internet of Things (IoT) and solar energy harvesting 

technologies especially in desert regions where the annual 

sunshine is more than 3000 hours/year. 

A better example is the city of El Oued, located in the 

northeastern Algerian Sahara. This city transforms the dry 

lands into agricultural lands by fighting the sand and its drift; 

it leads the agricultural production in Algeria with 60%. 

The harvest season in this region is always early and has a 

high quality compared to the other cities due to the climate. 

This city has a huge reserve of groundwater that goes deep 

to approximately 2000 meters, and with this El Oued gathered 

between the soil fertility, climate and water availability, but it 

had a lot of problems and challenges such as wind, storms; the 

appearance of some dangerous insects because of the free fall 

of temperature especially in May and October.  

Figure 2. Agricultural area in El Oued City 

In addition, the main problem is the lack of electricity, 

which leads to a constant search for fuel to power engines 

especially for irrigation. El Oued's geographical location has 

several advantages for a large use of solar energy to provide a 
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strategic position to play an important role in the electricity 

energy generation. We captured a satellite image of a small 

Agricultural area in El Oued City-Algeria from Google Earth 

Pro that rises to 799 meters as shown in Figure 2. 

In addition to energy harvesting, precision agriculture, 

which consists of IoT, cloud computing, and big data, can 

address the previous problems, reduce farmers' efforts, lower 

costs, and increase yields. Even though the southern region of 

Algeria has a high number of hours of sunshine per year, which 

is very efficient for solar energy harvesting, the farms are very 

large and their management is quite complex, so the sensors 

are very busy day and night and the energy consumption needs 

to be optimized. 

We see that the solar energy harvested must be used in a 

rational way in order to preserve the electricity during the 

night or on cloudy days. Optimizing the use of solar energy in 

precision agriculture is an interesting concept that we have 

studied in our paper, all with the aim of exploiting the wealth 

of our country and the world and promoting its economy. 

3. PROPOSED WORK

3.1 Fitness function 

To find an optimal scheduler that correctly transfers all data 

with the replicated and unallocated backup copies, we 

minimize the scheduling length. 

Based on the assumption that at most one node (sensor) can 

experience a permanent failure, we propose some new static 

techniques that minimize the scheduling length in the worst-

case scenario. 

The advantage of static scheduling is that it can take 

dependencies and data transfer costs into account when 

making scheduling decisions. To achieve this, we use our 

Improved Particle Swarm Optimization algorithm (PSO) since 

the problem under study is an optimization problem. 

It is assumed that there are nnode nodes in the system named 

n1, n2, n3…, nnode. The problem’s inputs are defined by the 

direct acyclic graph (DAG), G= (D, E, Exe (D)), where D= d1, 

d2…, dn represents the data set. E present data dependency, 

from the node of data di to the node of data dj, Exe(d) is a 

function representing the cost of transmission, which is the 

time required to compute and transmit the data d  D.  

Any node may fail due to battery discharge caused by 

successive transmit and receive operations, especially in the 

absence of solar energy (at night or on cloudy days). It is 

assumed that at most one node will be unable to transmit the 

data properly in our proposed algorithm. 

A replicated backup copy of the primary copy is transferred 

independently of whether the primary copy (Pri) is 

successfully transferred or not. An unallocated backup copy of 

the primary copy is transferred if the primary copy (Pri) fails. 

Dmsg is a message from a primary copy Pri to its unallocated 

backup copy, indicating whether Pri was successfully 

transferred or not. 

Dmsg is used to indicate message time cost. Since our 

solution is based on a hybrid approach that combines both 

passive and active redundancy, we use two types of backup 

copies, replicated and unallocated. The order of data 

dependencies is modeled by binary variables that allow the 

order of the data to be determined. x (i, j, k) is a binary 

variable, such that x (i, j, k) = 1 if and only if the primary copy 

𝑥𝑖
𝑃  of the data 𝑥𝑖  is correctly transmitted by the node 𝑁𝑘  at

step j. Similarly, the binary variables xRepli (i, j, k), xDesal (i, j, 

k) are used for replicated 𝑥𝑖
𝑅  and unallocated 𝑥𝑖

𝐷  backup

copies.

i  {1,…,n}, j  {1,…,}, k  {1,…, nnode}. 

𝑥(𝑖, 𝑗, 𝑘), 𝑥𝑅𝑒𝑝𝑙𝑖(𝑖, 𝑗, 𝑘), 𝑥𝐷𝑒𝑠𝑎𝑙(𝑖, 𝑗, 𝑘) ∈ {0,1}

 is an upper limit on the scheduling length, nnode is the

number of nodes. 

The objective function of our problem is linear and the 

minimization of the scheduling length can be mathematically 

formulated as follows:  

𝑚𝑖𝑛 ∑ ∑ 𝑗

𝑛𝑛𝑜𝑑𝑒

𝑘=1

 𝑥(𝑑0, 𝑗, 𝑘)



𝑗=1

(1) 

where, d0 is a fictional node added to the DAG data model in 

order to calculate the total scheduling length. The 

minimisation of the total scheduling length is done under the 

following constraints: 

(a) The primary copy of each data is scheduled only once,

i  {1, …, n}, 

∑ ∑ 𝑥(𝑖, 𝑗, 𝑘) = 1

𝑛𝑛𝑜𝑑𝑒

𝑘=1



𝑗=1

 (2) 

(b) Only one backup copy of each data is scheduled, i 

{1, …, n}, 

∑ ∑ 𝑥𝑅𝑒𝑝𝑙𝑖(𝑖, 𝑗, 𝑘) + 𝑥𝐷𝑒𝑠𝑎𝑙(𝑖, 𝑗, 𝑘) = 1

𝑛𝑛𝑜𝑑𝑒

𝑘=1



𝑗=1

(3) 

At any given time, an Nx node is being used to transfer 

either a primary copy of a data or its replicated backup copy. 

j  {1, …, }, k  {1, …, nnode}. 

∑ 𝑥(𝑖, 𝑗, 𝑘) + 𝑥𝑅𝑒𝑝𝑙𝑖(𝑖, 𝑗, 𝑘) ≤ 1

𝑛

𝑖=1

(4) 

(c) Backup copies must respect the same priority as their

primary copies, i  {1, l…, n}, and kI, 

∑ ∑ 𝑗 ∗ 𝑥𝑅𝑒𝑝𝑙𝑖(𝑖, 𝑗, 𝑘) + 𝐸𝑥𝑡𝑐(𝑚𝑖)

𝑛𝑛𝑜𝑑𝑒

𝑘=1



𝑗=1

≤ ∑ ∑ 𝑗 ∗ 𝑥𝑅𝑒𝑝𝑙𝑖(𝑙, 𝑗, 𝑘)

𝑛𝑛𝑜𝑑𝑒

𝑘=1



𝑗=1

(5) 

(d) The primary copy and its backup should not, under any

circumstances, be assigned to the same node. i  {1, …, n}, 

k  {1, …, nnode}, 

∑ 𝑥(𝑖, 𝑗, 𝑘) + 𝑥𝑅𝑒𝑝𝑙𝑖(𝑖, 𝑗, 𝑘) + 𝑥𝐷𝑒𝑠𝑎𝑙(𝑖, 𝑗, 𝑘) ≤ 1



𝑗=1

(6) 

We used our fitness function and the constraints in the 
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Improved Particle Swarm Optimization Algorithm in Section 

3.4 to achieve improved results. 

3.2 High performance computing 

The University of Batna 2 in Algeria has a high performance 

computing (HPC) cluster composed of a master node, twelve 

computing nodes and a storage node with a capacity of 20 TB. 

These nodes are connected by two networks, a Giga 

Ethernet management network and a 100 Gbps InfiniBand 

computing network, see Figures 3 and 4. 

The HPC cluster was deployed and commissioned in 

February 2020. 

Figure 3. HPC architecture 

Figure 4. HPC components 

3.3 Weather prediction data 

Figure 5. Height contours in Algeria at 850 hpa 

Weather data plays an important role in agriculture by 

providing information that helps farmers organize activities 

such as planting, fertilizing, irrigating and harvesting and take 

the necessary measures to protect crops from storms, droughts 

and other ecological events that could harm them. 

Precipitation meteorological data helps reduce water waste 

and optimize irrigation. Meteorological frost forecasts allow 

the protection of sensitive crops and ensure that the necessary 

measures are taken. Temperature and humidity information is 

critical in preventing plant fungal diseases. Weather 

forecasting helps improve agricultural productivity and 

sustainability.  

Weather data plays an important role in optimizing 

renewable energy harvesting, especially solar and wind 

energies. Knowing when the sun shines most intensely enable 

us to maximize energy harvesting, which can be stored for 

later use during low production periods.  

Algeria is characterized by climatic diversity due to its vast 

geographical area. The weather data we collected clearly 

illustrated this diversity clearly, allowing the simultaneous 

harvesting of many types of renewable energy, especially wind 

and solar energy since we focused on El Oued city, which will 

have a positive impact on its agricultural region by 

maximizing network lifetime. 

Figure 6. Accumulated total grid scale graupel 

Figure 7. Accumulated total grid scale hail 
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The meteorological data shown in the Figures 5-13 are 

detected by weather research and forecasting V4.2.1 model at 

the High Performance Computing (HPC) center of University 

of Batna 2. 

The figures show the importance of solar energy in El Oued 

city that can be used to power sensors. 

Figure 8. Total precipitation 

Figure 9. Wind speed contours 

Table 1. Weather forecasting data in El Oued City 

Data Value 

Height Contours From 1475 to 1615 by 20 at 850 hpa 

Graupel From 1,6 to 12,8 

Hail From 1,6 to 12,8 

Total Precipitation From 1,6 to 51,2 

Wind Speed Contours From 0 to 70 by 10 at 300 hpa 

Snow From 0,4 to 25,6 

Sea Level Pressure Contours From 900 to 1100 by 4 

Relative humidity at 2 m 

above ground 
From 50 to 80 

Surface Temperature From 4 to 16 

Figure 10. Accumulated total grid scale snow and ice in 

Algeria 

Figure 11. Sea level pressure contours 

Figure 12. Relative humidity at 2 m above ground 
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Figure 13. Surface temperature 

All the figures are detected the month of January in Algeria. 

The information extracted from the figures in El Oued City is 

shown in the following Table 1. 

Despite the intermittent nature of energy from the 

harvesting system, which is significantly impacted by weather 

conditions, sensor nodes can adjust their programming 

schedules according to best suit their energy production and 

battery levels residual, and this is what we have worked on in 

this paper. 

 In this paper, we ameliorated a metaheuristic algorithm 

called Particle Swarm Optimization (PSO) by using weather 

forecast data, and then we used this improved form to optimize 

the energy consumption of sensor nodes by minimizing the 

data transfer path from the source nodes to the destination 

ones. 

3.4 Performance evaluation 

The swarm algorithm is inspired by the behavior of swarms 

of birds [9] and fish [10] as they migrate from one place to 

another. The movement of a particle in the swarm is influenced 

by three things: it follows its current direction, it moves 

towards the best position it has already found, and it follows 

the best positions its neighbors have reached. Due to the 

alignment of the functionality of the algorithm with the 

requirements of our research, we have chosen it over other 

algorithms. It also it performs better in balancing exploration 

and optimization, making it an ideal tool for real-time data 

transmission, such as in wireless sensor networks. 

Improving data transfer in networks means finding the most 

efficient path to send data from the source to the destination 

while minimizing delays and reducing energy consumption. In 

our research, we focused on a new principle for sending data 

between sensors, which is based on the battery level of 

neighboring (receiving) sensors after monitoring weather 

conditions for the lack of solar energy needed to charge sensor 

batteries.  

This means that the transmission of information between the 

source and destination is done through sensors whose battery 

is sufficient to maintain the remaining sensors whose batteries 

are depleted, thus maximizing the lifetime of the network. 

Based on this, we introduce the Improved Particle Swarm 

Optimization Algorithm. Our algorithm is based on weather 

data, specifically temperature, which means that on sunny 

days there are no problems because the sensors are powered 

by solar energy. But at night and on cloudy days, we need to 

optimize the energy consumption of the sensors. The 

optimization is achieved by choosing the right data 

transmission path, which passes through sensors with high 

battery levels to maintain the charge of other sensors for as 

long as possible. After determining the best position (Gbest) 

in the entire swarm according to the position of the most 

charged sensor, we have used the equations that we have listed 

in the Section 3.1 in our algorithm to show the effectiveness 

of our proposed method. 

To improve the energy efficiency and extend the network's 

lifetime, we used weather forecast data in the improved PSO 

algorithm as shown in Algorithm 1, and since solar energy is 

consistent throughout the year in our region, we just focused 

only on temperature. 

Algorithm 1. PSO Position update according to temperature 

Require: temperature, equations 1, 2, 3, 4, 5, 6 

Ensure: Best-Objective-Values 

(1) X0: Initial Population

(2) S: necessary temperature to charge the sensor’s battery

(3) Gbest: the best position found by the entire swarm

(4) Pbest: the best position found by each particle

(5) V: numbers of variables

(6) P: size of population

(7) while (temperature≤S) do

(8) Determine the most charged sensor

(9) M: the position of the most charged sensor

(10) Gbest= X0+M*0,08 (improvement factor)

(11) end while

(12) Update PSO position

(13) Determine the most charged neighbor sensor

(14) N: The position of the most charged neighbor sensor

(15) for (i=1:P) do

(16) for (j=1:V) do

(17) x(i,j) = x(i,j)+v(i,j)+(N*0,08)

(18) end for

(19) end for

The principle we have followed is that the sensors optimize 

their energy consumption depending on the temperature, on 

cloudy days we minimize the energy consumption due to the 

lack of solar energy in order to protect the batteries from 

draining, and this is where the importance of weather forecast 

data lies. 

Figure 14. Network components 

68



To concretize our proposals for three nodes (Sensors), see 

Figure 14, and to show the effectiveness of the proposed 

method See Figure 15, we used the Improved PSO algorithm 

on its MATLAB implementation. The results obtained are 

shown in Figures 16 and 17. 

Figure 15. Flowchart of the proposed method 

Figure 16. Particle swarm optimization convergence 

characteristics  

Figure 17. Improved Particle Swarm Optimization 

convergence characteristics using temperature weather 

prediction 

We noticed in Figure 16 that the objective function value 

started dropping from 1,8 at 0 iteration to reach a value of 1 at 

23 iteration where it remained at that value as the iterations 

increases which means that all the data was transmitted 

correctly and successfully reached its destination. As for the 

Figure 17, the objective function value started to drop from 

1,54 at 0 iteration to reach a value of 1 at 14 iteration where it 

stopped at this value as the iteration increases, which means 

that all the data are transmitted correctly.  

In addition, data transfer time is minimized from 11.052457 

to 7.605885 seconds after using WRF data (temperature) so 

the harvested energy consumption is being optimized. 

In addition, we validate the effectiveness and efficiency of 

our improved method by performing a simulation using 

Python. By reducing data transfer time, we save more energy 

in the sensors and extend the network lifetime. The results 

shown in Table 2 confirm that our improved algorithm is 

efficient in terms of energy savings as compared to the PSO 

algorithm.  

Table 2. Comparison of data transfer time using PSO and 

improved PSO 

Number of 

Sensors 
03 05 20 100 

Transfer time 

using PSO 

11.05 

Seconds 

29 

Seconds 

2 minutes 

30 

Seconds 

6 minutes 

48 

Seconds 

Transfer time 

using 

IMPROVED 

PSO 

7,60 

Seconds 

13,98 

Seconds 

58 

Seconds 

2 minutes 

54 

Seconds 

The results showed that regardless of the number of sensors, 

the optimized algorithm consistently produced better results in 

terms of reducing data transfer time. This indicates that the 

sensor optimizes the harvested energy optimally, although the 

results are based on the worst weather conditions. 

In the agricultural sector, an improved PSO algorithm can 

optimize the performance of wireless sensor networks that are 

used for crop monitoring. The lifetime of the network has been 

maximized by selecting the most energy efficient data transfer 

paths. The algorithm dynamically selects the best path for real-

time data transmission based on changing conditions such as 

weather and battery levels. Minimizing energy consumption 

makes the network more efficient and allows continuous 

monitoring without the need for frequent maintenance or 

recharging, improving the sustainability and productivity of 

smart farming. 

Figure 18. Data transfer time comparison using Improved 

PSO and the combined method 

In addition, we have combined the concept of weather 

forecasting with machine learning (supervised learning), 

Improved PSO Algorithm, and Improved ACO (Ant Colony 
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Optimization [29, 30]) Algorithm to get better results. The 

following steps explain the scenario. 

(1) Based on weather forecast data and historical battery level

data, SVM (Support Vector Machine) model [31] predicts

the effect of temperature on the sensors (battery charge

level).

(2) The Improved PSO works as described above.

(3) The improved ACO selects the best path with sensors that

have the highest battery level based on weather forecast

and using the equations in Section 3.1, to prolong the

network’s lifetime.

This combination gives us better results than using 

Improved PSO. See Figure 18. 

The results show that regardless of the number of sensors, 

the combined method gives better results than the improved 

PSO in terms of data transmission time, which proves the 

effectiveness of our approach. 

The reduction in transmission time conserves sensor energy 

and maximizes network lifetime. 

4. DISCUSSION

The use of the improved algorithm to select the best data 

transfer path between sensors in agricultural systems to reduce 

energy consumption has some technical limitations that can 

affect its deployment and performance. Choosing the optimal 

path based on battery level can cause delays in data 

transmission, especially if frequent calculation based on 

energy consumption is required. Also, sensors with higher 

charged batteries can become overloaded if energy is not 

managed efficiently. In addition, increasing the number of 

sensors can make the algorithm more complex. This requires 

additional processing resources. 

Despite the significant energy efficiency benefits of this 

system, it also has an impact on the environment. For example, 

the deployment of large numbers of sensors can have an 

impact on the natural environment, especially if the 

infrastructure requires digging up the soil or installing 

equipment in sensitive areas. In addition, the haphazard 

placement of equipment without proper planning can have a 

negative impact on biodiversity. 

By relying on renewable energy to power the sensors and 

using the optimization algorithm only when necessary, our 

system reduces these impacts and achieves a balance between 

system efficiency and environmental protection. 

5. CONCLUSIONS

In wireless sensor networks used in agricultural IoT, each 

sensor can collect, transmit, and receive data. These operations 

consume energy, which leads to complete battery depletion. 

Therefore, we use the concept of solar energy harvesting to 

feed the batteries and prevent them from going empty, 

especially when the agricultural zone is located in a very sunny 

region like the Algerian Sahara. 

In our work, we considered an optimal scheduling when 

data is represented by a DAG with two types of backup copies 

under the assumption that there will be a single failed node. 

The use of our Improved Particle Swarm Optimization (PSO) 

algorithm, which we developed based on weather forecast 

data, gives better results compared to the PSO algorithm and 

minimizes the data transfer time. The use of our combined 

method based on weather forecasting (Machine learning, 

Improved PSO and Improved ACO) improved the results even 

more. 

The combination of the use of solar energy harvesting and 

energy consumption optimization extends the network's 

lifetime.  

We chose critical weather conditions (in the middle of the 

winter) to show that our solution is also effective even in other 

conditions. Smart farming system based on weather forecast 

data has high productivity and authenticity, so it will help 

farmers increase agricultural yield and effectively manage 

food production. In the future, a comparison between the used 

method and other methods will be conducted, to choose the 

best one to be implemented in an Arduino testbed. 
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