
1. INTRODUCTION

Fluid flow and heat transfer in a four-sided lid-driven 
rectangular domain has been the subject of intensive research 
in recent years. This is due to its significant applications such 
as cooling of electronic devices, furnaces, heat exchangers, 
boiler tubes, cooling of cylinder heads in I.C. engines, heating 
and cooling of buildings, heating of electric irons, heat 
treatment of engineering components, quenching of ingots, 
freezing of foods, etc. 

Extensive literature studies have focused on heat transfer 
and fluid flow in rectangular or square cavities. These studies 
fall into two categories. The first deals with horizontal top [1-
-10] or bottom [11] wall sliding lid-driven two dimensional
cavities, in which the top wall has a constant velocity [1-3] or
oscillates [4, 5], and behaves similarly in three dimensional
cavities [6, 7, 9, 10, 16]. Various boundary conditions are
applied to other solid walls in such cases. The second one is
concerned with side-driven, differentially heated cavities in
these cases, left or right vertical wall or both vertical walls
move with a constant velocity in their planes [12, 13, 14] in
these studies, to create a temperature gradient in the cavity
usually the lid-driven side and the one opposing are heated
differentially.

Lorenzini et at. [12] have investigated the constructal 
design of rectangular fin intruded into mixed convective lid-

driven cavity flows. Aydn [13] numerically studied 
mechanisms of aiding and opposing forces in a shear- and 
buoyancy-driven cavity. The square cavity had one vertical 
hot wall moving upwards or downwards, the opposite cold 
wall fixed, and both horizontal walls adiabatic. Oztop and 
Dagtekin [14] examined mixed convection in a two-sided, 
lid-driven differentially heated square cavity. 

Kuhlmann et al. [15] conducted a numerical and 
experimental study on steady flow in rectangular two-sided 
lid-driven cavities. They found that the basic two-dimensional 
flow was not always unique. For low Reynolds numbers, it 
consists of two separate co-rotating vortices adjacent to the 
moving walls. 

Blohm and Kuhlmann [16] studied experimentally 
incompressible fluid flow in a rectangular container driven by 
two facing side walls which move steadily in anti-parallel for 
Reynolds numbers up to 1,200. Two rotating cylinders of 
large radii close the cavity tightly, and create the moving side 
walls. Beyond a first threshold, three-dimensional cells 
bifurcate supercritically out of the basic flow state. When 
both side walls move at the same rate (driven symmetrically), 
oscillatory stability was tricritical. 

Xu et al. [17] have investigated the unsteady flow with heat 
transfer adjacent to the finned side wall of a differentially 
heated cavity with conducting adiabatic fin. Basak et at. [18] 
have investigated the effects of thermal boundary conditions 
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Numerical simulations for 2-D unsteady, incompressible flow with heat transfer in a four-sided lid-driven 
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to the force generated by moving fluid, the direction of moving walls and the Reynolds number affect fluid 
flow in the rectangular domain in addition, at different Reynolds numbers along the cold wall of the domain, 
the variation in average and local Nusselt numbers reveals that overall heat transfer increases isotherms 
showed that as Reynolds numbers increase, the horizontal temperature gradient near the vertical walls 
decreases, because of which heat transfer decreases. 
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on natural convection flows within a square cavity. Ilis et al. 
[19] have studied the effect of aspect ratio on entropy 
generation in a rectangular cavity with differentially heated 
vertical walls. Study of combined free convection and surface 
ratiation in closed cavities partially heated from below 
studied by Singh and Singh [20]. Wahba [21] has investigated 
the multiplicity of states for two-sided and four-sided lid 
driven cavity flows. 

The above-mentioned literature survey pertinent to the 
present problem under consideration revealed that lid-driven 
cavities have interesting applications in various fields. 
However, no studies in the literature considered the case of a 
four-sided lid-driven rectangular domain with fluid flow and 
heat transfer. Specifically, in the present paper discussing the 
four-sided lid-driven rectangular domain, the lower wall is 
moved to the left, the upper wall is moved to the right, while 
the right wall is moved upwards and the left wall is moved 
downwards. All four walls move with equal speed. 

What motivated us is the enormous scope of applications 
of unsteady incompressible flow with heat transfer as 
discussed earlier. Literature survey also revealed that the 
problem of fluid flow and heat transfer in a four-sided lid-
driven rectangular domain, along with slip wall, and 
temperature boundary conditions, has not been studied 
numerically. Furthermore, to investigate the importance of the 
applications enumerated earlier, there is a need to determine 
numerical solutions of the unknown flow variables to fulfil 
this requirement, we present numerical simulations of the 
problem of fluid flow and heat transfer in a four-sided lid-
driven rectangular domain, along with slip wall and 
temperature boundary conditions, using the SIMPLE 
algorithm. 

Our main target of this work is to numerically investigate 
fluid flow and heat transfer in a four-sided lid-driven 
rectangular domain. We are used the QUICK scheme of finite 
volume methods to discretize the governing equations. 
SIMPLE algorithm is adopted to compute the numerical 

solutions of the flow variables, u -velocity, v -velocity, P , 

and   as well as local and average Nusselt numbers for 

50 Re 1,500  and Pr 6.63 at time 0.001t s . 

The summary of the layout of the current work is as 
follows: Section 2 describes mathematical formulation that 
includes the physical description of the problem, governing 
equations, and initial and boundary conditions. Section 3 
describes the numerical solution of the governing equations 
along with validity of results obtain with the benchmark 
solutions. Section 4 discusses the numerical results. Section 5 
illustrates the conclusions of this study. 

2. MATHEMATICAL FORMULATION 

2.1 Physical description 

Geometry of the problem considered in this work along 
with the boundary conditions is depicted in the Figure 1. A 
four-sided lid-driven rectangular domain around the point (1, 
0.5) in which laminar unsteady incompressible flow is 
considered. The lower wall is moved to the left, the upper 
wall is moved to the right, while the right wall is moved 
upwards and the left wall is moved downwards. All four walls 

move with equal speed. The vertical lids have different 

constant temperatures. The horizontal walls are adiabatic. 
The left wall considered as the hot wall and the right is as the 
cold wall. 

 
 

Figure 1. Geometry of the four-sided lid driven rectangular 
domain problem. 

 

We are assuming that, the values of 
0T and T are chosen 

suitably so that the temperature defined on the left wall is 
greater than that of right wall. We are assumed that, at all 
four corner points of the computational domain, velocity 

components  ,u v vanish. It may be noted here regarding 

specifying the boundary conditions for pressure, the 
convention followed is that either the pressure at boundary is 
given or velocity components normal to the boundary are 
specified.  
 

2.2 Governing equations   

The flow is assumed to be two-dimensional, unsteady state, 
laminar, and the fluid is incompressible. The dimensionless 
forms of the governing equations are the continuity, and the 
x - and y -components of the Navier-Stokes and the energy 

equations, assuming negligible dissipation and constant 
thermo-physical properties, as given below:  
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where , , , ,u v P Re , and Pr are the dimensionless velocity 

components in x - and y -directions, the dimensionless 

pressure, the dimensionless temperature, the Reynolds 
number, and the Prandtl number respectively. We define the 
following non-dimensional variables  
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The initial, no-slip and slip wall boundary conditions are 

given by: 
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Local Nusselt number is 
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Integration of the local Nusselt number along the wall is 

used to calculate the average Nusselt number. 
 

1

0

1
.yNu Nu dx

A
                                                                  (9) 

 
The stream function is calculated from the definition 
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It is taken 0  at the solid boundaries. 

3. VALIDATION OF THE NUMERICAL SOLUTIONS 

We are used a finite volume method to solve the governing 
equations in the discretizing controlling equations, the second 
order Quick scheme is selected. SIMPLE algorithm is 
adopted in solving the conservation equations. Discretization 
of the governing equations using Quick scheme is being 
skipped here as it is available in the literature [22]. 

All the results obtained in this study converged to a 

maximum residual of 810 . Furthermore, we are considered 

three different grid systems:    100 50 ,  150 75 ,   and 

 200 100  to ensure grid-independent results and 

 150 75 grid points were considered to obtain accurate 

solution in the entire computation of this study. We are also 
noted that by increasing the grid density by 77%, from 

 150 75  to  200 100 , the relative change in the value of 

the average Nusselt number is less than 1% (0.43%), which 

confirm that computed results on the  200 100 grid are 

indeed grid-independent. 
The validation of current simulation has been verified with 

Iwatsu et al. [2] and Oztop and Dagtekin [14]. There is a 
good agreement for the average Nusselt numbers in the 
current study when compared to those of [2] and [14] as 
shown in table 1. 

Table 1. Comparison of the average Nusselt number obtained 
in the present study with Iwatsu et al. [2] and Oztop and 

Dagtekin [14]. 
 

 number Iwatsu et al. [2] 

Nu  

Oztop and Dagtekin 

[14] Nu  

This study 

Nu   

100 1.34 1.33 1.30 

400 3.62 3.60 3.59 

1,000 6.29 6.21 6.21 

4. RESULTS AND DISCUSSION  

Fluid flow and temperature fields in a four-sided lid-driven 
rectangular domain are examined. The numerical simulations 
are performed with the same Reynolds numbers on both sides 
of the domain. Simulations in the rectangular domain are 
performed for the Reynolds number range from 50 to 1,500. 
The Four-sided lid-driven rectangular domain is analysed 
according to the direction of the moving plate shown in 
Figure 1. 
 

 
(a)                                           (b) 

 
(c)                                          (d) 

 

Figure 2. Streamlines (a - c) and isotherms (b - d) for: Re 
= 50 and Re = 100. 

 

Streamlines (a - c) and isotherms (b - d) for Re  50 and 

100 are shown in Figure 2. For Re  50 and Re  100 in 

Figure 2(a) and (c), we observe, there is a primary cell with 
two secondary cells: the primary cell is at the center of the 
domain, however, the cell is not quite centered on the 
symmetry lines. The two secondary cells are weak and 
formed near the moving walls on both sides. 

For Figure 2(a) and (c), 
67.46 10 ,ext   1.01,x  0.51y   and  

51.28 10 ,ext   1.01,x  0.51y  respectively. 

 

 
(a)                                           (b) 

 

Figure 3. (a) Streamlines and (b) isotherms for: Re = 500. 
 

Streamlines and isotherms for Re  500 shown in Figure 3. 

For Re  500 in Figure 3(a), we observe that there are two 

secondary cells only. Both weaker cells are near the moving 
left and right walls. We also observe that streamlines become 
dense near the moving left and right walls. 
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For Figure 3(a) and (c), 31.68 10ext    , 1.01,x  0.51y  . 

 

    
(a)                                              (b) 

 
(c)                                            (d) 

 

Figure 4. Streamlines (a - c) and isotherms (b - d) for: Re 
= 1,000 and Re = 1,500. 

 

Streamlines (a - c) and isotherms (b - d) for Re  1,000 and 

1,500 are shown in Figure 4. For Re  1,000 and Re  1,500 

in Figure 4(a) and (c), we observe, there is a primary cell 
with two secondary cells: the primary cell is at the center of 
the domain, however, the cell is not quite centered on the 
symmetry lines. The two secondary cells are weak and 
formed near the moving walls on both sides. 

For Figure 4(a) and (c),  
52.54 10ext   , 1.01,x  0.51y   and 

52.36 10 ,ext   1.01,x  0.51y  respectively. 

From Figure 2(a) and (c), Figure 4(a) and (c), we observe, 
there is a primary cell with two secondary cells: the primary 
cell is at the center of the domain; however, the cell is not 
quite centered on the symmetry lines. The two secondary 
cells are weak and formed near the moving walls on both 
sides. From Figure 3(a), we observe that there are two 
secondary cells only. Both weaker cells are near the moving 
left and right walls. We also observe that streamlines become 
dense near the moving left and right walls. 

This happens because of the fluid rises along the right cold 
wall and sinks on the left hot wall due to forces generated by 
the moving fluid. Formation of two rotating cells at each side 
and a rotating cell at the center makes the heat transfer from 
left to right possible. The same phenomena have not been 
observed with one and two vertical sided lid-driven cavities 
in the literature isotherms in Figure 2(b), (d), Figure 3(b), and 
Figure 4(b) and (d) show that as the Reynolds numbers 
increase the horizontal temperature gradient near left and 
right vertical walls decreases, because of which heat transfer 
decreases. 

Based on the numerical solutions for u-velocity, Figure 5 
illustrates the variation of u -velocity along the vertical line 

through the geometric center of the rectangular domain at 

Reynolds numbers Re  50, 100, 500, 1,000, and 1,500. We 

can see that u -velocity increases from the bottom wall to the 

top wall of the rectangular domain. 
 

 
 

Figure 5. u -velocity along the vertical line through the 

geometric center of the domain. 
 

 
 

Figure 6. v -velocity along the horizontal line through the 

geometric center of the domain. 
 

Based on the numerical solutions for v-velocity, Figure 6 
illustrates the variation of v -velocity along the horizontal line 

through the geometric center of the rectangular domain at 

Reynolds numbers Re  50, 100, 500, 1,000, and 1,500. We 

can see that as Re is increased from 50 to 1,500 the v -

velocity profile looks more negative which is not the case for 
individual Reynolds numbers. We found that, v -velocity 

becomes almost similar in shape with increase Reynolds 
number. So, an oscillatory flow of v -velocity profiles has 

been observed in the domain. 
 

 
 

Figure 7. Local Nusselt number along the cold wall. 
 

Based on the numerical solutions for the local Nusselt 
number, Figure 7. illustrates the variation of the local Nusselt 
number along the cold wall of the rectangular domain at 

Reynolds numbers Re  50, 100, 500, 1,000, and 1,500. We 

observed that, for each Reynolds number, the local Nusselt 
number decreases and thereby there is an increase in decay of 
heat. 
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Figure 8. Average Nusselt number as a function of Reynolds 
number. 

 
Overall heat transfer: Based on the numerical solutions for 

the average Nusselt number, Figure 8 illustrates the variation 
of the average Nusselt number as a function of Reynolds 

number. We can see that, as Re is increased from 50 to 1,500 

the average Nusselt number is also increased. We observe 
that overall heat increases as increase of Reynolds numbers. 

5. CONCLUSIONS 

This paper presents a numerical study to examine the 
effects of moving walls on the fluid flow and heat transfer in 
a four-sided lid-driven rectangular domain insulated 
boundary conditions are imposed on horizontal side walls. 
The governing equations are solved using the SIMPLE finite 
volume method. We compared previously published work on 
special cases of the problem and found good agreement. We 
presented and discussed graphical results for various 
parametric conditions. Heat transfer mechanisms and flow 
characteristics inside a rectangular domain are strongly 
dependent on moving walls and the Reynolds number. As the 
Reynolds numbers increase, so do both the local and average 
Nusselt number. 

Numerical solutions for u -velocity illustrate the variation 

of u -velocity along the vertical line through the geometric 

center of the rectangular domain at Reynolds umbers Re  50, 

100, 500, 1,000, and 1,500. We observed that u -velocity 

increases with increasing values of Reynolds from the bottom 
wall to the top wall of the rectangular domain. The numerical 
solutions for v -velocity illustrate the variation of v -velocity 

along the horizontal line through the geometric center of the 

rectangular domain at Reynolds numbers Re  50, 100, 500, 

1,000, and 1,500. We can see that as Re is increased from 50 

to 1,500 the v -velocity profile looks more negative which is 

not the case for individual Reynolds numbers. We found that, 
v -velocity becomes almost similar in shape with increase 

Reynolds number. So, an oscillatory flow of v -velocity 

profiles has been observed in the domain. 
From streamlines plots for Reynolds numbers 50, 100, 

1,000, and 1,500 of the rectangular domain, we observe, there 
is a primary cell with two secondary cells: the primary cell is 
at the center of the domain; however, the cell is not quite 
centered on the symmetry lines. The two secondary cells are 
weak and formed near the moving walls on both sides. While 
for Reynolds number 500, we observed that there are two 
secondary cells only. Both weaker cells are near the moving 
left and right walls. We also observe that streamlines become 
dense near the moving left and right walls. This happens due 
to the rises of the fluid along the right cold wall and sinks on 
the left hot wall due to forces generated by the moving fluid. 
Formation of two rotating cells at each side and a rotating cell 

at the center makes the heat transfer from left to right possible. 
The same phenomena have not been observed with one and 
two vertical-sided lid-driven cavities in the literature 
isotherms showed that, as Reynolds numbers increase the 
horizontal temperature gradient near the vertical walls 
decreases, because of which heat transfer decreases. 

Numerical solutions for the local Nusselt number illustrates 
the variation of local Nusselt numbers along the cold wall of 
the rectangular domain at Reynolds numbers 50, 100, 500, 
1,000, and 1,500. We observed that, for each Reynolds 
number, the local Nusselt number decreases and thereby there 
is an increase in decay of heat. The numerical solutions for 
the average Nusselt number illustrates the variation of 
average Nusselt numbers as a function of Reynolds number. 
We observe that the average Nusselt number, or overall heat, 
increases with increasing Reynolds numbers. 
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NOMENCLATURE 

Δt time spacing 

n





differentiation along the normal to the 
boundary 

A 
p’ 
P 

aspect ratio 
pressure, pa 
dimensionless pressure 

Nu 

Nu

H        
L      
T 

pV

x’, y’ 
x, y 
u’, v’ 

u, v 

Re 

Pr 

local Nusselt number 
average Nusselt number 
cavity height, m 
cavity length, m 
temperature, K 
lid-driven plate velocity, m.s-1 

cartesian coordinates 

dimensionless Cartesian coordinates 

velocities components in x,y direction, 

m.s-1

dimensionless velocities

Reynolds number

Prandtl number

Greek symbols 

 thermal diffusivity, m2.s-1 

υ kinematic viscosity, m2.s-1 
ψ stream function 
ρ fluid density, kg.m-3 
µ 
θ 

dynamic viscosity, kg. m-1.s-1 
dimensionless temperature 

Subscripts 

c cold wall 
h hot wall 
p 
w 

plate 
wall 
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