
 
 
 

 
 

 
1. INTRODUCTION 

The journal bearing with axial grooves is extensively used 
in high-performance diesel engine, gas turbine shafting and 
fuel pump. In order to improve the performance and service 
life of the engines, more and more attention has been paid to 
improving the lubrication performance, a key determinant of 
engine performance, of the journal bearing with axial grooves 
[1-2]. With the development of surface etching and laser 
technique in recent years, the micro dimples have been 
applied to increase the load-carrying capacity of modern 
machine components thanks to its secondary lubrication and 
micro-hydrodynamic effects. It is widely recognized that 
texturing well-designed dimples on the surface of journal 
bearing is a promising way to improve the load-carrying 
capacity [3-8]. 

Since the lubrication performance hinges on the shape, 
location and geometric parameters of the dimples, domestic 
and foreign scholars have spared no effort in the search for 
the appropriate dimple shape, location and geometric 
parameters. Li Y. N. et al. [9] probed into the effect of the 
geometric parameters, density and location of rectangular 
surface texture on the tribological properties of journal 
bearing. Tala-Ighil N. et al. [10] analyzed the impact of 
spherical dimple location on the load-carrying capacity of 
journal bearing, suggesting that the dimples at the maximum 
film pressure could improve the load-carrying capacity and 
reduce the friction coefficient of the bearing. Li J. H. et al. 
[11] discussed the influence of the width, depth and area rate 

of rectangular grooves on the load-carrying capacity and 
frictional resistance coefficient of journal bearing, and 
concluded that the optimal depth of grooves should be 25mm 
to achieve the maximum load-carrying capacity and minimum 
frictional resistance coefficient. Gao Y. et al. [12] obtained 
the optimal dimple shape, depth and location through the 
investigation on how the journal bearing lubricity is affected 
by the distribution pattern and dimensional parameters of 
rectangular grooves, rectangular concave pits and circular 
concave pits. Liu J. et al. [13] explored the effect of the 
trapezoidal herringbone grooves on the load-carrying 
capacity and the friction of journal bearing, and found that the 
number and trapezoidal angle of the grooves have a minimal 
impact on the load-carrying capacity, but a direct bearing on 
friction. Comparing the friction coefficients of radial journal 
bearings with transverse, circumferential and herringbone 
grooves, Adatepe H. et al. [14] disclosed that circumferential 
and herringbone grooves could effectively reduce the friction 
coefficient of the bearing. Ashihara K. et al. [15] studied the 
effect of groove depth on friction coefficient, oil film cooling 
effect and the flow rate of journal bearing, and arrived at the 
optimal depth of grooves. Khatri Chandra B. et al. [16] 
examined the influence of spherical pits over the lubricity and 
operation stability of journal bearing under combined 
pressure, pointing out that spherical pits could reduce the 
friction torque and damping coefficient and increase the 
stiffness coefficient of the bearing. 

Focusing on the full circle journal bearing, the 
abovementioned studies mostly tackled oil film rupture issue 
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with the Reynolds or Swift-Stieber boundary condition. In 
actual working conditions, however, the full circle journal 
bearing features poor stability at a high speed, and the oil film 
will form again after rupturing. In other words, the bearing 
has not only the rupture boundary but also the reformulation 
boundary during the operation. To overcome the poor high-
speed stability of the full circle journal bearing, axial grooves 
are designed on the inner surface of the bearing to prevent 
pressure perturbation in the axial direction. Compared with 
the full circle journal bearing, the journal bearing with axial 
grooves has better stability but weaker load-carrying capacity. 

Targeted at the low load-carrying capacity of journal 
bearing with axial grooves, this paper textures micro dimples 
on the surface of bearing pads, adopts the mass conservative 
JFO boundary condition to address the oil film rupture and 
reformulation, and uses the Reynolds equation to build the 
hydrodynamic lubrication model for the dimple-textured 
journal bearing with axial grooves. Moreover, the effects of 
the dimple’s shape, location and geometric parameters on the 
load-carrying capacity are investigated to obtain the 
maximum load-carrying capacity. This research lays the 
theoretical basis for optimal surface texture design of journal 
bearing with axial grooves. 

2. THEORETICAL ANALYSIS 

2.1 Geometric model 
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Figure 1. Sketch map and coordinates of the journal bearing 
with three axial grooves 

 
The journal bearing with three axial grooves is illustrated 

in Figure 1, where Ob and Oj stand for the bearing and journal 

center, respectively;   
and φ refer to the oil film position 

from the negative direction of Y axis and offset line, 
respectively;  θ and e denote the offset angle and eccentricity, 
respectively; Rb and R represent the radiuses of the bearing 
and the journal, respectively; ω means the angular speed of 
the journal; B and D signify the width and diameter of the 
bearing, respectively; plus, β is the initial position angle, ζ is 
the axial groove width angle, and α is the pad angle. 

Since spherical and cylindrical pits are easy to process, the 
array of such pits is textured on the surface of each bearing 
pad. The bearing pad with spherical and cylindrical pits array 
is shown in Figure 2, where mi and ni denote the number of 
pits in the circumferential and axial directions, respectively; 
rd stands for the radius, hd refers to the maximum depth of pits; 
ξÕη represents the local-coordinate system in pit center. For 
the sake of simplicity, each pit is assumed to be located in a 
square unit with the length of lc. Hence, the area ratio of each 
pit can be expressed as:  
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Figure 2. Sketch map of bearing pad i textured with spherical 
and cylindrical dimples 

 

2.2 Governing equations 

The lubrication behavior of the oil film in the journal 
bearing with three axial grooves is analyzed by the Reynolds 
equation based on the laminar flow, constant temperature and 
the lubrication hypothesis of incompressible Newtonian fluid. 
The dimensional Reynolds equation of bearing pad i can be 
expressed as [12]:  

 
3 3

( ) ( ) 6i i i i ih p h p h

x x z z x
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where, pi is the oil film pressure of bearing pad i; μ is the oil 
film dynamic viscosity; hi is the oil film thickness, which is 
obtained by formula (3). 
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where, ε equals the quotient of e divided by c and denotes the 
eccentricity ratio; c is the radial clearance, Ω is the texture 
area; hti is the oil film thickness of the pit, and is given by 
formula (4). 
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According to the JFO theory, the oil film will break into 

strips when the oil film pressure falls below the cavitation 
pressure, and the lubricating area is divided into the full fluid 
film region and the cavitation region. The full fluid film 
region is covered only by the lubricative oil film. The 
lubrication behavior in this region is expressed by formula (2); 
the cavitation region, however, is filled up with oil and gas 
mixture, and the oil film pressure is equal to the constant 
cavitation pressure. The lubrication behavior in this region is 
governed by the equation below: 
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In order to determine the rupture boundary and 
reformulation boundary of the oil film, the pressure 
distribution at the two boundaries must satisfy the Reynolds 
cavitation boundary condition and JFO conservation of mass 
boundary, respectively [17] :  
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where n is the normal vector of the oil film’s rupture 
boundary and reformulation boundary; vn is the oil film’s 
normal velocity; ρc is the oil film density in the cavitation 
region; ρ is the overall oil film density; pc is the cavitation 
pressure. 

For the convenience of analysis, the lubrication governing 
equations in the full fluid film region and the cavitation 
region should be nondimensionalized. For this purpose, the 
dimensionless variables are defined as follows:  
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where λ is the dimensionless axial coordinate; Pi is the 
dimensionless pressure; Hi denotes the dimensionless oil film 
thickness; ψ equals the quotient of c divided by Rb and 
denotes the clearance ratio. Substitute formula (8) into 
formula (2) and formula (5) to obtain the lubrication 
governing equations in the two regions:  
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During the solution of the dimensionless lubrication 

governing equations (9) and (10) in the two regions, the oil 
film’s rupture boundary and reformulation boundary are 
automatically identified by the JFO boundary condition and 
Payvar-Salant method. The function g and variable Fi are 
defined as follows [18]:  
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where P0 is the dimensionless atmospheric pressure; Pc is the 
dimensionless cavitation pressure. The lubrication governing 
equations in the full fluid film region and the cavitation 
region can be combined into the following equation:  
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Through numerical calculation, the boundary conditions of 

the film pressure distribution of bearing pad i are determined 
as follows:  

 

1

( 1)

0

0

0

i

i i i

i i i

P

P

P



   

   



   

  

 
 



                                                           

(14) 

 

2.3 Load-carrying capacity 

The dimensionless pressure Pi of the bearing pad can be 
obtained by solving the unified lubrication governing 
equation (13) of bearing pad i in the full fluid film region and 
the cavitation region. Then, the dimensionless oil-film force 
Fi of the bearing pad is decomposed to the radial and 
tangential components:  
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where Ω1 denotes the oil film region. 

The dimensionless oil film force components along the 
minus x and y directions of bearing pad i can be expressed as:  
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Thus, the dimensionless load-carrying capacity W of the 

bearing is concluded as:  
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3. ANALYSIS AND DISCUSSION 

The unified lubrication governing equation of the full fluid 
film region and the cavitation region is discretized by the 
finite difference method. The discretized algebraic equations 
are solved by Gauss-Seidel iterative method. Based on the 
values of the variables g and Fi, the boundaries of the full 
fluid film region and the cavitation region are automatically 
identified, and the oil film pressure and load-carrying 
capacity are obtained. For the analysis, the ratio of bearing 
width to diameter is set as 1, the clearance ratio ψ as 0.0036, 
the clearance c as 0.432 mm, the radius Rb as 120 mm, the 
pad angle α as 110 °, and the groove width angles ζ and β as 
10 ° and 65 °, respectively. 

Aiming to achieve the maximum load-carrying capacity, 
spherical and cylindrical dimples are textured on the surface 
of bearing pads. The author investigates how the shape, 
location, number, area ratio and maximum depth of the 
dimples affect on the dimensionless load-carrying capacity of 
the bearing. The parametric values of the dimples are as 
follows: the circumferential number mi is 8, the axial number 
ni is 8, the area ratio s is 0.5, and the maximum depth hd is 
300 μm. Figure 3 depicts the variation in the dimensionless 
load-carrying capacity W with the eccentricity ratio ε when 
spherical and cylindrical dimples are textured at different 
positions. As shown in the figure, both the dynamic pressure 
effect and the dimensionless load-carrying capacity W of the 
bearing gradually increases with the eccentricity ratio ε. The 
dimensionless load-carrying capacity W of the bearing is 
relatively high when spherical and cylindrical dimples are 
textured on the surface of the bearing pad 3 and when 
cylindrical dimples are textured on the surface of bearing pad 
1. With the increase of the eccentricity ratio ε, the 
dimensionless load-carrying capacity W declines but the 
amplitude rises when spherical and cylindrical dimples are 
textured on the surface of bearing pad 2 or all the bearing 
pads. In addition, when spherical dimples are textured on the 
surface of bearing pad 1, the dimensionless load-carrying 
capacity W of the bearing varies little from that of non-
textured bearing, that is, spherical dimples of bearing pad 1 
has little influence on the load-carrying capacity. 

Figure 4 shows the eccentricity ratio ε induced variation in 
dimensionless load-carrying capacity W of the bearings 
textured with spherical and cylindrical dimples. As can be 
seen in this image, the dimensionless load-carrying capacity 
W of the bearings textured with spherical and cylindrical 
dimples shows an upward trend with the increase of 
eccentricity ratio, and the increase is greater than that of non-
textured bearings. By comparison, the bearing textured with 
cylindrical dimples has a larger dimensionless load-carrying 
capacity W, and the amplitude of W increases obviously with 
the eccentricity ratio ε.  
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Figure 3. Dimensionless load-carrying capacity W vs. 
eccentricity ratio ε with spherical and cylindrical dimples 

textured at different positions 
 

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

3

6

9

12

D
im

en
si

o
n

le
ss

 l
o
ad

-c
ar

ry
in

g
 

ca
p
ac

it
y
 W

Eccentricity ratio 

 The bearing textured with cylindrical dimples 

 The bearing textured with spherical dimples

 Non-textured bearings

 
 

Figure 4. Dimensionless load-carrying capacity W vs. 
eccentricity ratio ε at various dimple shapes 

 
Then, the author examines how the number, area ratio and 

maximum depth of the dimples affect lubrication performance 
when cylindrical dimples are textured on the surface of 
bearing pad 3. Figure 5 records the variation in dimensionless 
load-carrying capacity W with the circumferential number m3 

and the axial number n3 of the dimples. It can be seen that the 
dimensionless load-carrying capacity W increases firstly and 
then decreases as the circumferential number m3 and the axial 
number n3 of the dimples keep growing. The maximum value 
of W appears when the circumferential number m3 is 6 and the 
axial number n3 is 4. 
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(a) Dimensionless load-carrying capacity W vs. 
circumferential number m3 
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Figure 5. Dimensionless load-carrying capacity W vs. 
circumferential number m3 and axial number n3 when 

cylindrical dimples are textured on bearing pad 3 
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Figure 6.  Dimensionless load-carrying capacity W vs. area 
ratio s when cylindrical dimples are textured on bearing pad 3 

 
The variation in dimensionless load-carrying capacity W 

with the area ratio s is displayed in Figure 6 when cylindrical 
dimples are textured on bearing pad 3, the circumferential 
number m3 is 6, the axial number n3 is 4, and the maximum 
depth hd is 300 μm. It is seen that the dimensionless load-
carrying capacity W increases firstly and then decreases with 
the growth of the area ratio s. The trend is more obvious at 
large bearing eccentricities. The reason is that the wedge 
effect of the bearing is more significant when the eccentricity 
ratio is larger. The optimal area ratio s is put at 0.5, 
corresponding to the maximum dimensionless load-carrying 
capacity W. 

100 200 300 400 500
0

1

2

3

D
im

en
si

o
n

le
ss

 l
o
ad

-c
ar

ry
in

g
 

ca
p
ac

it
y
 W

 Eccentricity ratio =0.2

 Eccentricity ratio=0.4

Maximum depth hd/m  
 

Figure 7. Dimensionless load-carrying capacity W vs. 
maximum depth hd when cylindrical dimples are textured on 

bearing pad 3 
 

The variation in dimensionless load-carrying capacity W 
with maximum depth hd is presented in Figure 7 when 
cylindrical dimples are textured on bearing pad 3, the 
circumferential number m3 is 6, the axial number n3 is 4, and 
the area ratio s is 0.5. It is obvious that the dimensionless 
load-carrying capacity W increases firstly and then decreases 
as the maximum depth hd is further deepened. The 
phenomenon is attributable to the fact that: although the 
dynamic pressure effect increases with depth, it will be 
reduced as fluid backflow occurs when the depth is too large. 
Corresponding to the maximum dimensionless load-carrying 
capacity W, the maximum depth hd is 300 μm. 

4.  CONCLUSIONS 

This paper presents a hydrodynamic lubrication model for 
the dimple-textured journal bearing with axial grooves based 
on the mass conservative JFO cavitation boundary condition 
and the Reynolds equation. On this basis, the effect of the 
dimple shape, location and geometric parameters on the load-
carrying capacity is investigated at various eccentricities. The 
conclusions are listed below. 

Compared with the non-textured bearings, the dimple-
textured journal bearing with axial grooves boasts greater 
dimensionless load-carrying capacity, especially when the 
dimples are textured on pad 3. The maximum dimensionless 
load-carrying capacity can be obtained with the micro 
cylindrical dimples of area density s=0.5, maximum depth 
hd=300  μm, circumferential number m3= 6, and axial number 
n3= 4.  

The dimensionless load-carrying capacity increases firstly 
and then decreases with the increase of maximum depth, area 
density, circumferential number, and axial number of the 
micro cylindrical dimples. 
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NOMENCLATURE 

B 
c 
D 
e 
F 
H 
h 
ht 
l 
m 
n 
R             
r 
s 
P 
p 
v 
W 
 

width of the bearing  
radial clearance 
diameter of the bearing 
eccentricity 
dimensionless oil-film force 
dimensionless oil film thickness 
maximum depth 
oil film thickness 
side length 
circumferential  number 
axial  number  
radius 
radius 
area ratio 
dimensionless pressure 
oil film pressure, N. m-2 
velocity, m. s-1 
dimensionless load-carrying capacity 

Greek symbols 

 

 

 pad angle 

 
ε 
λ 

initial position angle 
eccentricity ratio 
dimensionless axial coordinate 

ζ axial groove width angle 
θ 
μ 
ρ 

offset angle 
oil film dynamic viscosity 
oil film density, kg. m-3 

 oil film position from the negative 
direction of Y axis 

φ 
ω 
ψ     
Ω 

oil film position from offset line 
angular speed of the journal, rad.s-1 
clearance ratio 
oil film region 

Subscripts 

 

b 
c 
d 
i 
n 
0             

bearing 
cavitation 
dimple 
bearing pad number 
normal vector 
atmospheric 

  

 

272

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);



