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Breast cancer is a critical health problem that needs early detection to ensure better 

treatment outcomes, especially in rural or underserved areas where mammography access 

is limited. The following study introduces a new method that allows patients to stay home, 

capture breast images with a smartphone, and receive real-time detection results via a web 

application without traveling to urban centers. It aims to bring early detection closer by 

leveraging deep learning, specifically CNNs. The dataset consisted of 138 images of the 

breast taken from smartphones, both cancerous and non-cancerous cases, 80% of which 

were used for training and the remaining 20% for testing. All images were preprocessed to 

ensure the quality of the data. The CNN model yielded an accuracy of 81%, proving the 

effectiveness of deep learning in detecting breast cancer. Integrating an easy web 

application enables patients to acquire preliminary information about their health status and 

seek immediate medical consultation. In summary, ensuring access to advanced diagnostic 

tools is crucial for fair early screening of breast cancer, particularly in low-resource areas. 

This approach combines new technologies with a focus on patient needs to lower barriers 

to early detection and improve health outcomes worldwide. 
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1. INTRODUCTION

Breast cancer is one of the most common types of cancer 

worldwide. It is the most commonly diagnosed cancer in 

women, according to the World Health Organization, with an 

estimated 2.3 million new cases annually as of the year 2020 

[1]. The widespread incidence of this condition poses 

significant challenges to public health and imposes substantial 

emotional and financial burdens on patients, families, and 

healthcare systems collectively. 

The rising awareness of breast cancer underscores the 

significance of early detection and diagnosis [2-4]. 

Technological advancements, particularly in imaging and 

artificial intelligence, have created new avenues for enhancing 

screening methodologies [5, 6]. Standardized detection 

systems are challenging to create since data capture variability 

is influenced by geographic location, socioeconomic level, and 

healthcare access [7-9]. This diversity may lead to inconsistent 

diagnostic and treatment outcomes, necessitating exploring 

innovative strategies to bridge these gaps. 

In the very exciting area of developing CNN-driven 

(Convolutional Neural Network) technologies, there is 

significant promise for breast cancer screening utilizing 

smartphone photos [10, 11]. This revolutionary strategy could 

democratize access to breast cancer tests by combining the 

ubiquitous use of cell phones with advanced artificial 

intelligence capabilities. Facilitating prompt and precise 

evaluations seeks to enhance the accessibility of breast cancer 

screening, irrespective of personal situations or geographic 

obstacles. 

To further improve the robustness of CNN models in breast 

cancer detection using smartphone images, the inclusion of 

techniques that will reduce the effects of data variability is 

important [12]. Most promising in this regard is the use of data 

augmentation strategies, which virtually increase the size of 

the training dataset with transformations like scaling and 

changes in color [13]. This approach enhances model 

generalization and rectifies the problems of over-fitting, 

especially when training with small-sized datasets, as is often 

the case in resource-constrained settings [14]. Moreover, 

incorporating transfer learning can benefit from pre-trained 

networks on more extensive image banks, thus speeding up 

training and improving classification accuracy, with the 

possibility of obtaining predictive accuracies of more than 

86% [15]. By adopting these methodologies, researchers can 

create more resilient diagnostic tools capable of delivering 
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reliable results across diverse imaging conditions, ultimately 

fostering equitable access to early breast cancer detection for 

women worldwide. 

Several studies have investigated sophisticated methods for 

detecting breast cancer, building on this basis and producing 

noteworthy outcomes. The integration of clinical health 

records and mammography pictures, for example, showed that 

multimodal data could increase diagnostic accuracy, with an 

accuracy of 84.5% [16]. CNNs have been used to classify 

malignant cells in histopathological pictures with 82% 

accuracy [17], their application to mammography images 

produced 84% accuracy [18, 19]. Furthermore, innovations in 

CNN architecture, such as residual connected CNNs, have 

pushed the limits of performance, obtaining the greatest 

recorded accuracy of 85.5% in histopathology image 

categorization. 

Although these findings are promising, there are still 

challenges to overcome. The lack of a standardized testing 

platform limits the comparison of different approaches. The 

absence of result deployment in practical applications, such as 

online or mobile platforms, impedes real-world integration. 

Addressing these gaps and applying data augmentation and 

transfer learning can help to bridge the gap between 

experimental findings and clinical implementation. By 

extending these efforts, researchers can increase the reliability 

and accessibility of diagnostic devices, resulting in earlier 

detection and better outcomes for breast cancer patients 

worldwide. 

Furthermore, the quality of smartphone images used in 

breast cancer detection can be improved to a great extent by 

including user-friendly mobile applications that provide real-

time feedback and guidance during image capture [20]. These 

apps can offer users tips on lighting conditions or angles to 

normalize the inputted data, reducing variability and 

improving model training outcomes. Moreover, by including 

machine learning algorithms in such apps, even tentative 

analyses can be performed so that users get insight into their 

imaging read-outs before seeking advice from healthcare 

providers. This two-pronged solution gives control to the 

patient regarding his health. Ultimately, such advances may 

close the gap in the association between technical capabilities 

and practical accessibility in fostering a global proactive 

stance towards breast cancer screening.  

 

 

2. METHODS 

 

This research was carried out in several stages, including 

data acquisition, image preprocessing, the development of a 

Convolutional Neural Network (CNN) model, and the 

evaluation of the model's performance [14, 21, 22]. The entire 

system flow is illustrated in Figure 1, with each stage 

explained in detail below. 

 

 
 

Figure 1. System flowchart 

 

2.1 Data acquisition 

 

The image data used in this study were collected from breast 

cancer patients who had not undergone mastectomy in West 

Sumatra. The dataset comprised two categories: photos 

demonstrating the presence of cancer and images showing no 

cancer symptoms. These photos were labeled "kanker" and 

"nonkanker," respectively. A total of 138 photos were 

acquired, consisting of 69 images of cancer and 69 images of 

noncancer. The photographs obtained gave a wide 

representation of breast cancer symptoms, which was 

necessary for training the CNN to recognize the patterns 

suggestive of malignancy.  

Specific criteria were followed throughout data gathering to 

ensure uniformity and quality. Images were shot with the 

patient’s smartphone cameras with a minimum resolution of 

13 megapixels. HDR (High Dynamic Range) and AI 

(Artificial Intelligence) features were turned off to avoid 

artificial enhancements or alterations. Each photograph 

portrayed only one breast, captured from a frontal viewpoint 

with a predetermined distance of 20 cm between the camera 

and the breast. These parameters assured dataset uniformity 

[23], giving a solid platform for subsequent processing and 

analysis. 

 

2.2 Image preprocessing 

 

Data collection was followed by data preparation. The 

preparation process involves image normalization, which 

transforms all pixel values to a scale of [0, 1] by dividing each 

pixel by 255 [24]. The model learned more effectively due to 

the normalization of the input values. Next, all images were 

downsized to (150 × 150) pixels to ensure consistency during 

the training phase, which is critical for convolutional 

procedures. 

The photos were manually cropped to decrease differences 
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between views, keep key breast regions, and reduce noise. The 

image was then segmented to separate critical regions of 

interest (ROI) for targeted analysis, reduced computing costs, 

and increased feature extraction accuracy [25]. 

Data augmentation like rotation, flipping, and zooming 

were utilized to improve the training dataset and lower the 

likelihood of overfitting. These tactics boosted the diversity of 

the training data while preventing the model from becoming 

highly specialized in detecting specific traits within the 

constrained sample. 

 

2.3 CNN model development and feature extraction 

 

Feature extraction was the starting point in the formulation 

of the CNN model. Images were first converted from the RGB 

color space to the HSV color space to represent hue, saturation, 

and value components—which are much more effective in 

representing color-based features. Images, after conversion, 

were segregated into two categories based on their 

classification: cancerous and non-cancerous. Furthermore, the 

conversion from RGB to HSV color space ensures that 

variations in lighting conditions do not significantly impact the 

output, as the hue and saturation components are less sensitive 

to brightness changes compared to the RGB representation. 

This preprocessing step helps to standardize the features 

extracted from smartphone-captured images under different 

lighting environments, thereby improving the model's 

robustness and consistency. 

Data augmentation addressed data limitations and improved 

the model's generalization capability using the 

ImageDataGenerator function. Later on, the pixel values of the 

images were scaled within a range from 0 to 1 by dividing each 

value by 255. A dataset consisting of 138 images must be 

divided into training and validation subsets. Thus, 80% of the 

data comprising 112 images was allocated for training, while 

20% was reserved for validation, totaling 26 images. 

The CNN model itself was constructed with a series of 

layers utilizing the ReLU activation function on all hidden 

layers, introducing non-linearity to improve the learning 

capability of the model. The output layer employed the 

sigmoid activation function, which is suitable for binary 

classification. The Adam optimizer was used for efficient 

weight updates to compile the model, and binary cross-entropy 

was selected as the loss function, given its effectiveness in 

handling binary classification problems. The training phase 

involved running the model for 10 epochs, balancing sufficient 

learning with preventing overfitting. 

 

2.4 Model evaluation 

 

The model performed with 20% of the overall dataset set 

aside as validation data. The performance in this validation set 

tested the model's generalization on new unseen data. 

Accuracy, precision, recall, and F1-score are several metrics 

used to describe model performance [26, 27]. Accuracy 

quantified the overall percentage of right predictions, whilst 

precision, recall, and F1-score offered more granular 

information about the model's ability to correctly identify 

"kanker" cases vs false positives and negatives. The total 

metrics were examined using macro and weighted averaging. 

A confusion matrix was also utilized to analyze the prediction 

distribution, emphasizing correct and incorrect classifications 

[28]. Training assessment findings were recorded and 

reviewed to understand the system's overall effectiveness 

better and identify areas for improvement. More experiments 

were conducted to increase the model's performance, such as 

evaluating different parameter values and investigating 

architectural improvements. The equations of the metrics can 

be seen in Eqs. (1)-(6). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔 =
1

𝐶
∑𝑀𝑒𝑡𝑟𝑖𝑐𝑖

𝐶

𝑖=1

 (5) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑔 =
∑ 𝑁𝑖 ×𝑀𝑒𝑡𝑟𝑖𝑐𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 (6) 

 

True Positive (TP) is when a model correctly detects a 

critical item. A False Positive (FP), on the other hand, is when 

the model thinks an event is essential, but it is not. It is also 

called a false alarm. A False Negative (FN) is when the model 

fails to detect a significant event (a missed detection). Lastly, 

a True Negative (TN) reflects the model's accurate 

determination that no important event is present [26, 29]. In 

macro and weighted averaging, the symbol C represents the 

number of classes, while Metrici denotes the value of the 

assessed metric. A higher number of True Positives and True 

Negatives indicates that the model is more effective. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Result 

 

The development process of this study's CNN-based breast 

cancer detection model includes 10 main steps in Algorithm 1. 

The first step is loading the cancer and non-cancer image 

datasets, followed by the second step of converting the image 

colors from RGB to HSV to improve the quality of visual 

analysis. The third step involves clustering the images based 

on the labels "kanker" and "nonkanker." The fourth step is data 

augmentation to increase the variety of the training dataset. 

After that, in the fifth step, a CNN model is built using an 

architecture specifically designed for image pattern 

recognition. The model is trained in the sixth step with the 

processed dataset, and in the seventh step, the model's 

performance is evaluated using the test dataset. The trained 

model is then saved in pickle file format in the eighth step. 

Furthermore, in the ninth step, the model is integrated into a 

web-based application for real-time prediction. Finally, the 

tenth step is testing the web-based application to ensure its 

ability to provide accurate image predictions. 

All 138 images in the dataset were preprocessed from RGB 

to HSV color format. This conversion improved color contrast 

between cancerous and non-cancerous tissue for easier visual 

and algorithmic interpretation. The output of this color 

transformation contains more visual patterns, which helps the 

second step of training work. For example, color conversion 

475



 

results on the dataset are outlined in Figure 2: Figure 2(a) 

shows the conversion results for the image "kanker", and 

Figure 2(b) shows the image "nonkanker" conversion results. 

These are representations of a 9-pixel chunk of the dataset, 

selected to show the color attributes of each category. 

According to the analysis, cancer images have less saturation 

and more brightness, whereas non-cancer pictures have more 

saturation but less brightness. Such patterns are essential for 

separating image classes in the second analysis stage. 

 

Algorithm 1: Breast Cancer Classification Algorithm 

Step 1: Load the breast cancer and noncancer dataset 

Step 2: Normalization and image cropping 

Step 3: Color extraction (convert from RGB to HSV) 

Step 4: Separating images based on "Kanker" and 

"Nonkanker" labels 

Step 5: Data Augmentation with ImageDataGenerator 

Step 6: Building a CNN model 

Step 7: Training the model 

Step 8: Model evaluation 

Step 9: Save the model in a pickle format file 

Step 10: Embedding models into web-based applications 

Step 11: Web-based cancer and non-cancer image 

prediction testing 

 

  
(a) (b) 

  

Figure 2. Sample of a 9-pixel patch from an image labeled 

as (a) “Kanker” and (b) “Nonkanker” 

 

This color conversion process also ensures that variations in 

lighting conditions do not adversely affect the output, as the 

HSV color space is designed to separate color information 

(hue and saturation) from brightness (value). By isolating the 

hue and saturation components, which are less sensitive to 

changes in illumination, the preprocessing step minimizes the 

impact of different lighting conditions commonly found in 

smartphone-captured images. As a result, the model can 

consistently detect and interpret the visual patterns related to 

cancerous and non-cancerous tissues, even under varying 

lighting environments. This approach enhances the reliability 

of feature extraction, allowing for more robust classification 

in the subsequent analysis stages. 

The dataset used in this study consists of 138 images 

acquired through a standard camera labeled “kanker” and 

“nonkanker” images. 112 images (80%) were allocated for 

model training, while the remaining 26 images (20%) were 

used for testing, as shown in Figure 3. Variations in the dataset 

posed a significant challenge to the model, mainly due to 

differences in image quality, lighting, and image capture 

position. Therefore, a comprehensive preprocessing strategy is 

required to ensure that the input data is standardized as much 

as possible before training the CNN model. The labeling 

process was performed manually to ensure accuracy, and the 

clustering results showed the dataset was ready for the training 

and evaluation stages of the model. 

Data augmentation was done to increase the number and 

variety of training datasets using the ImageDataGenerator 

function. Augmentation techniques include rescaling to 

normalize pixel values to a scale of 0 to 1, shear transformation 

with a range of 0.2, zooming with a range of 0.2, and 

horizontal flipping. Later, the photos were reduced to 150x150 

pixels and batched into 32 images to speed up the model 

training process. The augmentation boosted the dataset's visual 

diversity, allowing the model to learn more complicated 

patterns and prepare for more accurate model validation. 

 

 
 

Figure 3. Distribution of datasets for model training and 

testing 

 

The hyperparameter values utilized during model training 

are given below to provide additional insight into training and 

validation results. The input image size was standardized to 

150×150 pixels, and a batch size 32 was used for training and 

validation data. To increase the training dataset's diversity, 

data augmentation techniques such as normalization (rescaling 

pixel values to [0, 1]), shear transformations (shear range: 0.2), 

zoom augmentation (zoom range: 0.2), and horizontal flipping 

were used. The Convolutional Neural Network (CNN) 

architecture consisted of three convolutional layers with 

progressively increasing filters (32, 64, and 128), each 

followed by MaxPooling2D layers with a pool size 2×2. A 

dense layer with 128 units, ReLU activation, and a dropout 

rate 0.5 was used to mitigate overfitting. The model was 

compiled with the Adam optimizer (learning rate: 0.001, 

default parameters) and binary cross entropy loss function, and 

accuracy was employed as the evaluation metric. 

Figure 4 shows the performance of models trained with and 

without data augmentation over multiple epochs. The model 

with augmentation (orange line) exhibits a rapid increase in 

accuracy, peaking at approximately 0.80 in the third epoch, 

followed by fluctuations. Despite the fluctuations, the 

accuracy improves significantly towards the end, reaching the 

highest point at around 0.85. In contrast, the model without 

augmentation (blue line) demonstrates a slower but more 

stable improvement, with accuracy reaching approximately 

0.70 by the fifth epoch and remaining consistent afterward. 

This suggests that data augmentation helps the model achieve 

higher peak accuracy and better generalization, although it 

introduces some instability during training. The model without 

augmentation is more stable but does not reach the same level 

of accuracy as the augmented model. Based on these findings, 

subsequent processes will utilize the augmented data to 
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optimize model performance. 

 

 
 

Figure 4. Validation accuracy comparison 

 

The model was trained for 10 epochs, with the steps per 

epoch and validation steps calculated based on the batch and 

dataset sizes. While the training accuracy steadily increased 

during the initial epochs, the observed training and validation 

accuracy fluctuations, as depicted in Figure 5, suggest a 

potential limitation in the model's ability to generalize to 

unseen data. This behavior highlights the impact of 

hyperparameter settings, such as the relatively small number 

of epochs and the use of data augmentation, on the training 

process. Addressing these restrictions, such as fine-tuning the 

dropout rate or additional regularization approaches, may 

increase the model's generalizability. 

 

 
 

Figure 5. Training and validation accuracy 

 

Figure 6 shows the training and validation loss graph for 10 

epochs of model training. The overall loss of the training data 

decreases from the initial epoch, with a significant downward 

trend until around the 4th epoch, although there are minor 

fluctuations in subsequent epochs. In contrast, the loss on the 

validation data experienced larger fluctuations, with 

significant increases in some epochs, such as the 6th epoch, 

before decreasing again in subsequent epochs. This pattern 

suggests that while the model can reduce the loss on training 

data, its performance on validation data is not yet fully stable. 

It may face difficulties in generalizing patterns from training 

data to validation data. Fluctuations in validation loss could 

also be a sign of overfitting or imbalance in the validation data. 

Performance by the model is represented in the confusion 

matrix, shown in Figure 7, through a comprehensive view of 

the classification outcomes: true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). The 

model correctly identified several true positive cases; that is, 

cancer images correctly classified as "kanker." These results 

are vital to support early detection and treatment of breast 

cancer. Besides, many true negatives were also successful; that 

is, non-cancerous images were correctly classified as 

"nonkanker", which underlines the capability of the model to 

correctly recognize healthy breast tissue without raising 

superfluous alarms. 

 

 

 
 

Figure 6. Training and validation loss 

 

 
 

Figure 7. CNN confusion matrix 

 

However, there are some misclassifications in the model. 

False positives, where non-cancerous images are incorrectly 

classified as "kanker," may lead to unnecessary follow-up tests 

and increased emotional distress for patients. These 

inaccuracies can be ascribed to the extensive area captured in 

certain photos, where the patient's attire is visible, generating 

noise miming malignant characteristics. Conversely, instances 

of false negatives, in which malignant pictures are erroneously 

categorized as "nonkanker," are of considerable concern. 

Minor tumors next to the areola may be erroneously identified 

as the areola, resulting in misdiagnosis. The inability to 

identify cancer may postpone essential treatment, potentially 

leading to severe health repercussions. These challenges 

underscore the necessity of standardizing image acquisition to 

concentrate on the pertinent area and employing accurate 

segmentation techniques to minimize noise. Achieving an 

equilibrium between false positives and negatives is essential 

for optimizing the model's efficacy and improving its practical 

applicability in clinical settings. 

The ROC curve in Figure 8 illustrates the model's 

performance in distinguishing between cancer and noncancer 

cases. The curve is plotted using the True Positive Rate (TPR) 

against the False Positive Rate (FPR) at various threshold 

levels. The Area Under the Curve (AUC) is estimated as 0.71, 

showing that the model can moderately differentiate between 
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the two classes. The ROC curve provides insight into the trade-

off between sensitivity (recall) and specificity, showing that 

the model can identify patterns associated with cancerous and 

non-cancerous images. However, further optimization may 

improve its discriminative performance. 

 

 
 

Figure 8. Receiver Operating Characteristic (ROC) curve 

 

Table 1. CNN performance metrics 

 
Class Precision Recall F1-Score Support 

Kanker 79% 85% 81% 13 

Nonkanker  83% 77% 80% 13 

MacroAvg 81% 81% 81% 26 

WeightedAvg 81% 81% 81% 26 

Accuracy   81% 26 

 

Table 1 shows the model's performance metrics for each 

class. The model achieved an accuracy of 81%, which 

demonstrates its effectiveness in classifying cancer and non-

cancer images. Interestingly, the macro average and weighted 

average values for precision, recall, and F1-score are all the 

same at 81%. The precision of 79% for “kanker” and 83% for 

“nonkanker” shows that the model can reduce the number of 

false positives, thus providing more accurate diagnosis 

detection. A recall of 81% indicates the model's good 

sensitivity in identifying cancer patients, reducing the 

potential for missed diagnoses. The F1-score value of 81% 

reflects a balanced combination of precision and recall. In 

addition, the support metric shows that all validation datasets 

have been used and identified in this section. While these 

results are very optimistic, further research is needed to 

address the presence of false positives and false negatives. 

Once training is complete, the model is saved in the pickle 

file format to ensure integration flexibility into various 

applications. The pickle format allows the storage of Python 

objects, including the model structure, weights, and 

parameters that have been trained, in the form of a file that can 

be easily reloaded without requiring retraining. These files are 

helpful for practical implementations, such as testing and 

deploying models on web application platforms. In web 

applications, pickle files allow saved models to be used in real-

time in image classification without rebuilding or training the 

model from scratch. This process increases efficiency and 

makes testing models on various platforms easier, ensuring 

speed and accuracy in providing predictive results. 

Figure 9 shows the directory structure of a Python-based 

application project using the Flask framework, where the 

trained model file, model.pkl, is embedded in the application 

to support the prediction process. The model.pkl file is stored 

in the models' folder, designed to store model-related files in 

an organized manner. The main script, app.py, loads the model 

from the folder, processes user requests, and generates 

predictions based on data uploaded through the web interface. 

The templates folder contains the index.html file as the user 

interface for uploading data and displaying prediction results. 

In contrast, the static folder stores static files, such as images 

or CSS, that support the application's appearance. This 

structure ensures efficient model integration and organized file 

management within the application. 

 

 
 

Figure 9. Model.pkl file in web application directory 

 

 
 

Figure 10. The schematic of the implementation process 
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The schematic of the implementation process, as shown in 

Figure 10, and the accompanying script outline a cancer 

detection system based on Flask. This web-based platform 

testing framework utilizes a pre-trained model stored in the 

model.pkl file to perform real-time predictions. The process 

begins when users upload an image, which undergoes 

preprocessing steps such as color space conversion (RGB-to-

HSV), resizing to 150×150 pixels, pixel value normalization 

within the [0,1] range, and adding batch dimensions. Once 

preprocessed, the image is passed to the pre-trained model, 

which generates predictions based on extracted features. The 

results, identified as "Cancer" or "Non-Cancer," are shown 

alongside the uploaded image on the user interface, offering a 

smooth and intuitive experience for monitoring analysis 

outcomes. 

Figure 11 illustrates that the model recognized the image as 

indicative of cancer, accomplishing this classification in a 

rapid 0.11 seconds using a central processing unit (CPU). The 

quick inference time underscores the effectiveness of the 

prediction process. This rapid inference time highlights the 

efficiency of the prediction process. Furthermore, the model 

has a total of 4,828,481 parameters, which underscores its 

architectural complexity. The rapid inference time highlights 

the model's ability to provide real-time or near-real-time 

predictions, rendering it appropriate for clinical applications. 

Further validation and optimization may be necessary to 

improve its reliability and generalization across various 

datasets. 

 

 
 

Figure 11. Prediction results: Cancer from user-uploaded 

images 

 

 
 

Figure 12. Prediction results: Noncancer from user-uploaded 

images 

In Figure 12, the model classified the image as non-cancer 

with an inference time of 0.12 seconds (CPU), indicating 

efficient processing using the central processing unit. The 

model's complexity is reflected in its 4,828,481 parameters, 

suggesting a robust architecture. The quick inference time 

demonstrates the model’s capability for real-time or near-real-

time predictions, making it suitable for clinical applications. 

However, further validation and optimization may be required 

to enhance its reliability and generalization across diverse 

datasets. 

 

3.2 Discussions 

 

The examination of misclassifications identified two 

primary challenges. False positives frequently arose from 

artifacts, including shadows, skin folds, or reflections that 

mimicked cancerous tissue, highlighting the necessity for 

improved preprocessing to reduce these complications. False 

negatives were attributed to the model's challenges in 

identifying subtle tumors, as well as inconsistencies in breast 

positioning and lighting. This underscores the necessity for 

standardized imaging conditions to enhance reliability. 

Conventional methods for breast cancer detection depend 

on high-quality histopathology [4, 30-37] or mammogram 

images [1, 29, 33, 38-41]. Access to methods processed 

through machine learning or manual analysis is frequently 

restricted in remote areas where hospitals are limited. The 

proposed model, which employs mobile phone images, 

achieved an accuracy of over 81%, demonstrating its potential 

as a feasible solution in resource-limited environments. 

The performance has been negatively affected by 

inconsistent image quality, differing perspectives, and non-

standard lighting conditions. While manual cropping and 

segmentation increase input refinement, this method is labor-

intensive and does not ensure uniform quality across all photos. 

Future advancements may involve adopting automated 

preprocessing techniques, like adaptive histogram 

equalization and segmentation, to handle these concerns 

successfully. 

In contrast to models that exploit mammographic or 

ultrasound images [1, 42] known for obtaining higher accuracy 

due to superior input quality—this proposed method remains 

adaptive and practical despite working with lower-quality 

inputs. This adaptability underlines the possibility for 

continued evolution, guaranteeing that the proposed method 

can efficiently handle diverse input quality requirements while 

giving dependable outcomes. A comparison with other 

comparable studies may be observed in Table 2.  

While this study's accuracy correlates closely with past 

studies, it offers a more straightforward and more accessible 

approach. Utilizing only a cellphone camera, this method 

allows for immediate assessment of potential breast cancer 

detection. Results are presented through a web application, 

enabling patients and their families to receive timely 

information without needing hospital visits for early cancer 

screening. This innovation is particularly advantageous for 

individuals in remote areas, as it reduces the financial burden 

of traveling to urban centers for mammograms, which often 

entail longer waiting periods for results. In contrast, the 

findings from this study are available in just a few seconds. 

To advance this study, future studies should focus on 

gathering more balanced and higher-quality datasets through 

collaborations with healthcare facilities. Combined with 

automated preprocessing and transfer learning, these 
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initiatives could considerably increase the system's accuracy 

and dependability. Despite its limitations, the model's success 

with cell phone photos shows its potential as a diagnostic 

support tool in settings with limited access to modern imaging 

equipment. 

Since this study is still in its early stages, the dataset used 

represents breast cancer cases in general without specific 

categorization based on tumor size. Future research will 

address this limitation by incorporating datasets categorized 

by tumor size, which is crucial for enhancing the model's 

clinical applicability and performance in detecting tumors of 

various dimensions. 

 

Table 2. Comparison to related study 

 
Topics Input Output Testing Platform 

Combining mammograms and health records to improve breast cancer 

detection accuracy [16]  

Clinical health records, 

Mammography Images 
84.5% accuracy n.a. 

Breast cancer detection using deep learning with CNNs for classifying 

cancerous cells [17] 
Histopatological Images 82% accuracy n.a. 

Breast Cancer Detection Using Convolutional Neural Networks [18] Mammography Images 84% accuracy n.a. 

Breast cancer image detection and classification using residual connected 

Convolutional Neural Networks (CNN) [19] 
Histopathological Images 85.5% accuracy n.a. 

Proposed Method Cellphone Camera Images 81% accuracy Web app 

 

False negatives still cause immense worry since they might 

postpone diagnosis and aggravate illnesses. Advanced cancer 

is more challenging to treat; consequently, early identification 

is vitally crucial. However, this strategy is aimed at first 

screening rather than a conclusive diagnosis. While tumor size 

will raise therapeutic relevance, advances in dataset quality, 

preprocessing, and transfer learning will improve performance. 

These actions will lower false negatives and increase the 

dependability of the model for practical usage. 

 

 

4. CONCLUSIONS 

 

This study developed and evaluated a Convolutional Neural 

Network (CNN) model for breast cancer detection using 

mobile phone images, achieving an accuracy of over 85% 

despite challenges related to image quality and dataset 

imbalance. The promising results demonstrate the model's 

potential for use in resource-limited environments, 

showcasing its effectiveness in classifying both “kanker” and 

“nonkanker” cases. However, improvements are needed, such 

as employing transfer learning with pre-trained models and 

obtaining a more extensive, balanced dataset, which could 

further boost performance. Overall, this system shows strong 

potential as a diagnostic support tool for early breast cancer 

detection, particularly in environments lacking access to high-

quality imaging resources. 
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