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Performance monitoring is essential to ensure the scalability and efficiency of 

microservices-based applications. This paper presents the design, development, and 

evaluation of an automated monitoring system using Kubernetes, Prometheus, and Grafana 

to optimize the performance of critical microservices within an ERP ecosystem, such as the 

OrderProcessingService and InventoryManagementService. Through continuous 

monitoring, the system collects real-time metrics, including CPU usage, memory 

consumption, and latency, enabling the detection of anomalies and performance 

regressions. Load testing with JMeter was conducted to simulate various system demands, 

identifying resource management issues and bottlenecks. The results show improvements 

in efficiency and stability, especially in memory management and reduced CPU usage in 

high-demand scenarios. OrderProcessingService demonstrated consistent performance, 

while InventoryManagementService showed variability, requiring further optimization. 

The developed system provides a foundation for continuous performance improvement, 

contributing to the scalability, reliability, and resilience of microservices-based 

architectures. 
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1. INTRODUCTION

Microservices architecture has emerged as a key solution to 

address the increasing complexity of modern applications. 

This approach allows monolithic applications to be broken 

down into a series of independent services, each responsible 

for a specific functionality within the system. By facilitating 

autonomous development, deployment, and scalability, 

microservices have radically transformed the way distributed 

applications are designed and managed. However, while this 

approach offers flexibility and modularity, it also introduces 

significant challenges in performance monitoring and 

optimization, as any inefficiency in one service can affect the 

overall performance of the system [1]. 

One of the main challenges in microservice-based 

architectures is ensuring operational efficiency as the number 

of services and interdependencies between components 

increases. Any degradation in the performance of a 

microservice can trigger cascading effects, impacting the 

entire system. For this reason, it is essential to have monitoring 

systems capable of quickly detecting performance regressions 

and inefficient resource usage, such as CPU and memory 

mismanagement. However, traditional monitoring tools often 

fail to capture these complex interactions, especially in 

distributed environments [2, 3]. 

The impact of these challenges on the performance and 

scalability of microservices is multifaceted. First, 

inefficiencies in resource management, such as CPU and 

memory, can create bottlenecks that slow down system 

response times during peak demand. This is particularly 

critical in distributed architectures where the constant 

interaction between services amplifies the effect of any 

individual degradation. Second, inadequate monitoring 

reduces the ability to identify resource usage patterns, which 

complicates optimization efforts and increases operational 

costs, particularly in cloud-based environments. Finally, 

scalability is compromised when proactive strategies for 

dynamic load balancing and adaptive deployments are not 

implemented, leading to system instability under fluctuating 

demands. This study aims to address these challenges by 

developing an automated monitoring system that enhances 

operational efficiency and scalability in microservices-based 

architectures. 

The objective of this study is to develop an automated 

monitoring system that identifies deviations in resource usage 

across different versions of microservices. This system 

focuses especially on analyzing CPU and memory usage 

behavior to detect regressions and optimize resource 

management. For this study, the OrderProcessingService and 

InventoryManagementService microservices were selected, as 
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they are critical for order and inventory management, 

respectively. These microservices were chosen due to their 

relevance within the ERP ecosystem under study. Through 

continuous monitoring and real-time data analysis, we aim to 

identify critical points that require adjustments to improve the 

overall performance of the system. 

Monitoring distributed architectures is an area of growing 

interest, as it ensures stability and efficient resource utilization 

in complex applications [4]. Previous studies have shown that 

the implementation of automated monitoring systems is 

essential to guarantee scalability and performance in 

microservices environments [5, 6]. This study contributes to 

this field by developing a tool that monitors and detects 

anomalous patterns in resource usage, enabling continuous 

improvements in system efficiency. 

In this sense, the study focuses on automated performance 

monitoring and resource usage optimization in distributed 

environments. By identifying regressions in CPU and memory 

usage, the system aims to enhance the responsiveness and 

stability of microservices-based applications, contributing to 

their scalability and operational robustness. 

 

 

2. RELATED WORK 

 

The microservices architecture has gained popularity in the 

last decade due to its ability to facilitate the scalable 

development of distributed applications. However, this 

approach also introduces complexities in performance 

monitoring and optimization, which has led to intensive 

research into tools and techniques to enhance the efficiency of 

microservices. The following discusses recent studies that 

address these challenges, including monitoring systems, 

anomaly detection, and optimization techniques. 

 

2.1 Monitoring tools in microservices 

 

Monitoring tools play a crucial role in ensuring the stability, 

performance, and reliability of microservice architectures. As 

distributed systems grow in complexity, these solutions offer 

essential insights into resource consumption, service health, 

and early detection of bottlenecks. Effective monitoring 

ensures continuity and enables proactive responses to 

disruptions. In environments spanning multiple cloud 

platforms, comprehensive visibility is key for maintaining 

operational consistency. 

Giamattei et al. [7] identified Prometheus and Jaeger as 

relevant tools for real-time metric collection. These tools 

provide transparency into CPU and memory usage, allowing 

quick responses to performance issues. They also offer alerting 

mechanisms to minimize downtime and ensure customer 

satisfaction. 

The management of multiple service requests is critical for 

system performance. Gao et al. [8] showed that an optimized 

API Gateway architecture, with heterogeneous acceleration, 

reduces latency and ensures stability under high demand. In 

parallel, Krause [9] emphasized asynchronous messaging via 

AMQP, which prevents bottlenecks and facilitates smooth 

communication between microservices, especially under 

heavy loads. These patterns enhance scalability and fault 

tolerance by decoupling services. 

Framework selection is equally vital. Rossetto et al. [10] 

found Quarkus more efficient than Spring Boot, reducing 

memory usage by 80% and CPU consumption by 95%, 

making it ideal for resource-intensive applications. Similarly, 

Somashekar and Gandhi [11] proposed machine-learning-

based configuration techniques to optimize performance 

across varying workloads, improving adaptability. 

Cloud-native designs are essential for modern deployments. 

Taibi et al. [12] stressed the importance of containerization, 

which simplifies deployments and reduces risks through 

isolated updates and continuous delivery. Zhou et al. [13] 

focused on resilience, identifying common fault patterns and 

proposing debugging strategies to enhance reliability. 

Further research offers insights into management strategies. 

Zuo et al. [14] combined an API Gateway with the Chain of 

Responsibility pattern, improving request management while 

reducing service coupling. Newman [15] explored 

synchronous communication through REST APIs, 

highlighting interoperability benefits while cautioning about 

bottlenecks. Fernando and Wickramaarachchi [16] addressed 

performance optimization in resource-constrained 

environments, presenting solutions that maintain high 

performance despite limited resources. 

 

Table 1. Communication and optimization patterns in 

microservices architectures 

 
Author Method Results 

Giamattei et al. [7] 

Monitoring with 

Prometheus and 

Jaeger 

Provides real-time 

metrics and visibility of 

resource usage such as 

CPU and memory. 

Gao et al. [8] 

API Gateway with 

heterogeneous 

acceleration 

Reduces processor load, 

improves latency, and 

ensures stability under 

high demand. 

Krause [9] 

Asynchronous 

messaging with 

AMQP 

Avoids bottlenecks and 

improves communication 

between microservices 

under high load. 

Rossetto et al. [10] 

Comparison of 

Spring Boot and 

Quarkus 

Quarkus reduces memory 

usage by 80% and CPU 

consumption by 95%, 

ideal for critical 

environments. 

Somashekar and 

Gandhi [11] 

Optimal 

configuration with 

machine learning 

Optimizes performance 

under different 

operational conditions. 

Taibi et al. [12] 
Cloud-native design 

and containerization 

Facilitates deployments 

and minimizes 

management risks. 

Zhou et al. [13] 
Fault pattern 

analysis 

Provides effective 

debugging strategies for 

common errors. 

Zuo et al. [14] 

API Gateway, 

Chain of 

Responsibility 

Improves request 

management and reduces 

service coupling. 

Newman [15] 

Synchronous 

communication with 

REST APIs 

Increases service 

interoperability but may 

cause blocking under 

high load. 

Fernando and 

Wickramaarachchi 

[16] 

Performance 

optimization in 

constrained 

environments 

Enables high 

performance in resource-

limited settings. 

 

The studies summarized in Table 1 demonstrate how 

specific design patterns, such as API Gateways and 

asynchronous messaging, are essential for efficient request 

management and fundamental to achieving scalability and 

resilience in modern microservice architectures. These 

552



 

strategies, when combined with robust monitoring tools like 

Prometheus and Jaeger, empower organizations to maintain 

system health, prevent service interruption, and optimize 

performance under peak loads. Collectively, these approaches 

represent best practices for managing distributed systems, so 

these can meet growing demands while maintaining 

operational agility. 

 

2.2 Scalability strategies in microservices architecture 

 

Scalability is one of the fundamental pillars of 

microservices architecture, as it enables systems to efficiently 

distribute workloads. Reviewed studies show various 

strategies for achieving optimal scalability, including dynamic 

and static load balancing algorithms and integration with 

orchestration platforms like Kubernetes, as shown in Table 2. 

These strategies allow microservices to adapt to different load 

levels, ensuring system availability and performance. 

 

Table 2. Scalability strategies in microservices architectures 

 
Author Method Results 

Mummana 

et al. [17] 

Dynamic Load 

Balancing 

Proposes adaptive algorithms to 

dynamically distribute traffic across 

microservices based on node 

performance, enhancing scalability 

and preventing overloads. 

Blinowski 

et al. [18] 

Vertical and 

Horizontal 

Scaling 

On Azure, vertical scaling proves to 

be more cost-efficient compared to 

horizontal scaling, although 

excessive scaling can negatively 

impact performance. 

Camilli et 

al. [19] 

Actor-driven 

Decomposition 

Iterative decomposition improves 

modularity and scalability, 

supporting decision-making in real 

applications. 

 

The practical application of these scalability strategies has 

been demonstrated in various studies. For instance, Mummana 

et al. [17] proposed adaptive algorithms that dynamically 

distribute traffic across microservices based on node 

performance. This approach enhanced scalability and 

prevented overloads, significantly reducing response times 

during high-demand scenarios. Similarly, Blinowski et al. [18] 

evaluated vertical and horizontal scaling strategies, showing 

that vertical scaling on Azure is more cost-effective but may 

degrade performance if overused. These findings emphasize 

the importance of carefully balancing resource allocation to 

achieve optimal performance. 

Actor-driven decomposition strategies also play a pivotal 

role in improving scalability. Camilli et al. [19] applied this 

technique to iteratively refine microservices' modularity, 

achieving a notable improvement in throughput for decision-

making applications. Their approach highlights how strategic 

decomposition can enhance system adaptability to fluctuating 

workloads. 

These case studies illustrate the tangible benefits of 

applying specific scalability strategies in real-world 

microservice architectures. By integrating such approaches, 

organizations can better address the challenges of scalability 

and operational efficiency in distributed systems. 

Similarly, Meng et al. [20] developed the Midiag system, 

which uses sequential traces to diagnose failures in 

microservices-based systems. Midiag predicts potential issues 

before they occur, facilitating proactive intervention and 

improving the overall system performance. 

2.3 Connection with previous studies 

 

The current study on optimizing microservices performance 

through an automated monitoring system is related with 

previous research addressing proactive monitoring and 

resource optimization in distributed architectures. Specifically, 

the identification of resource usage variability between 

microservices, such as the OrderProcessingService and 

InventoryManagementService, reflects findings in the 

literature that shows the impact of heterogeneity in 

microservices design and implementation [21, 22]. This study 

shows that combining advanced monitoring tools with 

machine learning techniques can significantly enhance the 

operational efficiency of microservices systems [23, 24]. This 

approach can be seen in the monitoring system used in this 

study, which enables real-time failure detection and 

contributes to optimizing resource consumption, including 

CPU and memory usage. 

Additionally, research by Meng et al. [20] on the Midiag 

system offers a valuable framework for sequential trace 

analysis in microservices. This type of analysis deepens the 

understanding of interactions between services and their 

impact on system-wide performance, which this study also 

explores. Furthermore, Khazaei et al. [23] highlights the 

importance of performance modeling in distributed platforms 

like Amazon EC2, reinforcing the relevance of predictive 

techniques used in the system developed for this study [23]. 

Similarly, the framework for microservices deployment 

proposed by Waseem et al. [24] provides insights into 

overcoming challenges in adopting DevOps practices, which 

guided the continuous delivery pipeline implemented in this 

research [24]. Finally, Guerrero et al. [21] underscore the role 

of resource optimization strategies in multi-cloud 

environments, further supporting the relevance of the 

orchestration and monitoring techniques applied here. 

 

2.4 Integration of relevant strategies in the monitoring and 

optimization of microservices 

 

In the current literature on microservices, several studies 

have addressed the challenges related to monitoring, 

deployment, and resource optimization in distributed 

environments. The research by Meng et al. [20], Khazaei et al. 

[23] and Niño-Martínez et al. [25], provides strategic insights 

that directly influence the development and improvement of 

the automated monitoring system presented in this article. The 

work by Khazaei et al. [23] focuses on predictive performance 

modeling, inspiring the integration of metrics to evaluate 

resource consumption under different loads. On the other hand, 

Niño-Martínez et al. [25] offer a framework for adopting 

DevOps in microservices, which has guided the 

implementation of the continuous delivery pipeline in 

Kubernetes for this research. Finally, the proactive traceability 

approach proposed by Meng et al. [20], through the Midiag 

system, provides valuable ideas for detecting anomalous 

patterns and anticipating failures before they occur. 

Table 3 summarizes the contributions of these key studies 

and highlights how their findings have shaped the technical 

and methodological decisions in the development of the 

proposed monitoring system in order to provide a clear 

understanding of how the selected strategies have been 

adapted to improve resource management and performance in 

this work. 

The insights gathered from these studies have been 
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fundamental to shaping the automated monitoring system 

proposed in this article. The adoption of predictive modeling, 

continuous delivery frameworks, and proactive traceability 

improved the efficiency of the microservices architecture and 

make foundation for future developments. Integrating these 

strategies ensures scalability and operational robustness while 

enabling early detection of resource inefficiencies and 

potential failures. As a result, this system offers a practical 

solution for organizations seeking to enhance the performance 

and reliability of microservices-based applications. 

 

Table 3. Impact of key studies on the system implementation 

 

Author Method 
Impact and Adaptation in 

This Study 

Meng et 

al. [20] 

Midiag: A diagnosis system 

based on sequential traces 

to predict failures. 

Considered for future 

iterations of the system, 

exploring traceability 

techniques to identify 

anomalous patterns in real-

time. 

Khazaei et 

al. [23] 

Developed a predictive 

model to optimize resource 

allocation on Amazon EC2. 

Inspired the use of metrics 

to evaluate resource 

consumption under different 

loads, integrating 

preventive monitoring 

techniques. 

Niño-

Martínez 

et al. [25] 

Provided a framework for 

DevOps adoption in 

microservices, identifying 

challenges and 

recommendations. 

Guided the implementation 

of the continuous delivery 

pipeline to automate version 

management in Kubernetes. 

 

 

3. METHOD 

 

This study adopts an automated approach for monitoring 

microservices performance, using specialized tools and key 

metrics with the goal of optimizing their efficiency. The 

process was designed to continuously collect and analyze 

resource usage metrics, such as memory and CPU, which 

allowed for the detection and resolution of deviations that 

could impact the overall system performance. 

 

3.1 Orchestration and monitoring tools 

 

For managing and monitoring the microservices 

architecture, widely recognized tools were selected for their 

efficiency and robustness. 

Docker was employed for containerizing microservices, 

providing a standardized environment that ensures portability 

and consistent deployment of applications. Using Docker 

allows packaging applications and their dependencies into 

lightweight containers, ensuring they run uniformly across 

diverse environments. This is essential for maintaining 

consistency between development, testing, and production 

setups [22]. 

Kubernetes, on the other hand, was used to orchestrate these 

containers. Its features include automated workload 

distribution, self-healing capabilities, and horizontal scaling, 

ensuring that microservices remain stable and operational even 

under fluctuating demand. Kubernetes simplifies the 

management of containerized applications at scale, enabling 

automated deployments, maintenance, and scalability in 

dynamic environments [22]. 

For real-time performance monitoring, Prometheus was 

implemented as an open-source tool designed to collect and 

store system and application metrics. Prometheus can gather 

detailed metrics such as CPU usage, memory consumption, 

and latency, providing in-depth insights into microservices' 

performance. Its multidimensional data model and powerful 

query language (PromQL) allow detailed analysis of 

infrastructure and application states [22]. 

The integration of Prometheus with Grafana enabled 

visualization of these metrics through dynamic and interactive 

dashboards. Grafana provides an intuitive interface for 

creating custom dashboards, facilitating the identification of 

anomalies and performance bottlenecks. Additionally, 

Prometheus supports alerting mechanisms that are critical for 

proactive system management, enabling early detection of 

issues and implementation of solutions before they impact end 

users [26, 27]. 

This workflow allowed proactive adjustments to 

microservices configurations based on collected metrics, 

ensuring operational stability and continuous system 

performance improvement. Performance metrics were 

primarily collected from critical components of the simulated 

ERP system, such as the OrderProcessingService and 

InventoryManagementService. Key metrics, including CPU 

usage and memory consumption, were selected due to their 

direct impact on the stability and efficiency of microservices. 

These metrics facilitated the identification of anomalies and 

effective optimization of resource allocation. 
 

3.2 Performance metrics selection 
 

In a microservices system, certain components play 

fundamental roles that directly impact operational efficiency 

and customer satisfaction. In this study, 

OrderProcessingService and InventoryManagementService 

were selected as key services for evaluation due to their 

strategic importance within the ERP ecosystem and their 

impact on overall system performance. 

OrderProcessingService is responsible for managing the 

entire lifecycle of customer orders, from reception to 

validation and routing for fulfillment. Its importance lies in its 

direct impact on customer experience, as poor response times 

or errors in processing can lead to dissatisfaction and loss of 

trust [22]. Additionally, this service is particularly sensitive to 

demand peaks, such as those occurring during promotional 

events or high seasons, making it a critical point for evaluating 

scalability and system stability [16]. 

InventoryManagementService, in contrast, is essential for 

maintaining accurate inventory tracking, enabling critical 

decisions related to replenishment and product distribution. 

Accurate and up-to-date information from this service is key 

to preventing both overstock and stockouts, contributing to 

optimized operational costs and ensuring product availability 

for customers [21]. Its performance also influences logistical 

processes and the system's responsiveness to changes in 

demand [16]. 

Reasons for selection: 

These two services were selected due to their relevance 

within the ERP ecosystem: 

Critical operational impact:  

Both services directly influence operational efficiency and 

the end-user experience. 

Contrasting characteristics: 

While OrderProcessingService tends to have high and 

predictable transactional loads, InventoryManagementService 

experiences significant variability due to its interaction with 
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dynamic data related to demand and supply. 

Relevance for key metric evaluation:  

The selected metrics, such as CPU usage, memory 

consumption, response time, and request throughput, have a 

direct impact on the stability and efficiency of these services 

[21, 16]. 

Evaluating these services provides a comprehensive view of 

the behavior of critical components under different workload 

scenarios. By identifying and addressing performance issues 

in these services, it is possible to improve the overall 

efficiency of the system and apply these improvements to 

other microservices with similar characteristics. Additionally, 

the detailed analysis of these services validates the 

effectiveness of the monitoring tools and optimization 

strategies implemented. 

 

3.3 Load testing and simulation 

 

A set of 50 load tests was designed, simulating different 

levels of system demand. These tests were conducted using 

JMeter, a tool that allows the simulation of concurrent requests 

ranging from 1,000 to 10,000 requests per minute. The tests 

focused on observing the impact of these loads on the selected 

microservices, particularly the OrderProcessingService and 

InventoryManagementService. During each test, metrics such 

as CPU usage, memory usage, and latency were recorded and 

monitored, with the goal of identifying potential performance 

regressions or abnormal behaviors under high-demand 

conditions [28]. 

 

3.4 Statistical analysis and data filtering 

 

Once the dataset from the load tests was collected, advanced 

statistical techniques were applied to analyze and compare the 

data between different versions of the microservices. 

Specifically, Student's t-test was used to assess whether the 

observed differences in performance metrics were statistically 

significant. Additionally, control charts were used to monitor 

the stability of the microservices over time, and Q-Q plots 

(quantile-quantile) were employed to verify data 

normalization. 

Data filtering was a important step, as it allowed for the 

elimination of outliers that could distort the analysis. By 

filtering the data this way, the analysis focused exclusively on 

deviations that had a real impact on system performance, 

enabling precise identification of unexpected resource usage 

spikes [16]. 

 

3.5 Microservices version comparison 

 

The system evaluated multiple versions of the selected 

microservices, with the goal of comparing base versions with 

modified versions, specifically in terms of resource 

consumption under different load configurations. Association 

rule techniques were implemented to detect behavioral 

patterns in the metrics, allowing for the identification of 

correlations between inefficient resource usage and system 

latency. This comparison enabled a precise evaluation of 

performance regressions, as well as the improvements 

introduced in the modified versions of the microservices [29]. 

 

3.6 Results validation 

 

The results obtained were validated through cross-

comparisons with industry-standard benchmarks, such as the 

ERP microservices suite g+. This validation was fundamental 

to ensuring that the identified improvements in the 

microservices were consistent with performance expectations 

in high-demand environments. The performance data obtained 

was used to optimize system parameters, reducing latency in 

high-load scenarios and confirming the effectiveness of the 

automated monitoring approach implemented [30]. 

 

 

4. RESULTS 

 

In this study, key metrics related to microservices' 

performance were analyzed using an automated monitoring 

system. The results focus on memory and CPU usage, with the 

purpose of identifying potential performance deviations and 

regressions in different versions of the microservices under 

evaluation. 

 

4.1 Ram usage distribution for the microservice 

 

Distribution of Memory Usage in Microservices 

The microservices OrderProcessingService and 

InventoryManagementService exhibited distinct memory 

usage behaviors. Figure 1 shows that 

InventoryManagementService demonstrates significant 

variability in memory consumption, with values ranging from 

low levels to unexpected peaks. This dispersion suggests 

potential inefficiencies in resource management, particularly 

under high-demand scenarios. Outlier points indicate that 

InventoryManagementService occasionally uses more 

memory than expected, potentially compromising overall 

system performance during heavy loads [31]. 

On the other hand, Figure 2 shows that the 

OrderProcessingService presents a more controlled 

distribution of memory usage values. Although some outliers 

are also observed, the distribution is more uniform and stable 

compared to InventoryManagementService, suggesting a 

more effective optimization in this microservice's memory 

management [32]. This behavior reflects the 

OrderProcessingService's greater capacity to efficiently 

handle resources under varying load conditions, contributing 

to the system's stability. 

 

 
(a) Distribution of relative deviations for 

memory/page_faults_rate 
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(b) Distribution of relative deviations for memory/usage 

 

Figure 1. Graph of RAM indicator values distribution for 

InventoryManagementService microservice 

 

 
(a) Distribution of relative deviations for 

memory/page_usage 

 
(b) Distribution of relative deviations for memory/usage 

 

Figure 2. Graph of RAM indicator values distribution for 

InventoryManagementService microservice 

Causes of Memory Usage Variability in 

InventoryManagementService 

Detailed analysis of InventoryManagementService 

identified the following potential causes for the observed 

variability: 

• High Concurrency and Data Volume: 

This microservice handles numerous concurrent requests, 

particularly during operations such as inventory updates 

and real-time availability checks. These tasks require 

accessing large datasets, potentially causing memory 

spikes if concurrent processing is not optimized [33]. 

• Inefficient Memory Allocation and Release: 

Preliminary findings suggest potential issues related to 

memory fragmentation and inefficient garbage collection 

processes. These conditions may lead to excessive 

memory usage, particularly under fluctuating workloads. 

• Complex Data Queries and Reprocessing: 

Intensive operations, such as generating detailed reports 

or aggregating data from multiple sources, impose 

additional memory requirements. These demands are 

especially pronounced during peak load conditions. 

Comparison with OrderProcessingService 

By contrast, Figure 2 shows that OrderProcessingService 

demonstrates a more stable memory usage distribution. 

Although some outliers were observed, the overall distribution 

is more uniform, indicating more effective memory 

optimization strategies [32]. This behavior highlights 

OrderProcessingService's ability to efficiently manage 

resources under varying load conditions, contributing to the 

overall stability of the system.  

CPU Usage Evaluation 

CPU usage was another critical performance metric 

evaluated, as shown in Figures 3 and 4. For 

InventoryManagementService, Figure 3 reveals a significant 

increase in CPU usage in the target version compared to the 

base version. 

This increase suggests that the new version introduced 

changes that negatively impacted computational efficiency, 

potentially leading to bottlenecks during peak demand [33]. 

In contrast, Figure 4 shows that CPU usage in 

OrderProcessingService remained stable after updates to the 

target version. This stability ensures that operational 

efficiency is maintained without performance degradation, 

which is crucial for overall system reliability [34]. 

 

 
(a) Box plot 
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(b) Density plot 

 

Figure 3. Distribution of CPU indicators in the presence of 

regression 

 

 
(a) Box plot 

 
(b) Density plot 

 

Figure 4. Distribution of CPU indicators without regression 

To address the identified causes of memory usage 

variability in InventoryManagementService, it is 

recommended to implement specific optimization strategies. 

First, concurrency management can be improved by 

employing asynchronous processing techniques and thread-

safe data structures, which would reduce latency and memory 

spikes during intensive operations. Second, adjusting the 

garbage collector configuration in the runtime environment 

could minimize memory fragmentation and optimize resource 

release under fluctuating workloads. Finally, optimizing 

queries and reducing data reprocessing through advanced 

indexing and partitioning would significantly enhance 

efficiency in complex operations, particularly during high-

demand conditions. These measures would not only address 

current issues but also improve the system's stability and 

scalability, contributing to better resource utilization. 

 

4.2 Memory usage density distribution with and without 

filtering 

 

Impact of the Filtering Process on Memory Usage Data 

Figure 5 presents an analysis of memory usage distribution 

before and after the filtering process, using a Q-Q plot. This 

technique was applied to assess data normalization, a 

fundamental aspect for ensuring the accuracy of subsequent 

analyses. Prior to filtering, the points in the plot showed a 

noticeable deviation from the theoretical normal distribution 

line, indicating high data variability and the presence of 

outliers that complicated an accurate interpretation of system 

behavior [31]. 

After applying the filtering process, a significant 

improvement was observed in the alignment of points with the 

reference line. This suggests that the filtering was successful 

in removing noise and extreme variations in the data, allowing 

for a more realistic representation of memory usage in the 

microservices [32]. 

 

 
 

Figure 5. Density distribution of system memory indicators 

 

4.3 Interpretation of outliers in performance data 

 

Outliers were detected at several points during the analysis, 

both in memory usage and CPU usage (Figures 1-4). These 

extreme values represent situations where the microservices 
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consumed significantly more resources than the average, 

which may be linked to optimization issues or high system 

load moments [35]. 

For InventoryManagementService (Figure 1), the outliers 

appear to be related to load peaks where memory management 

is inefficient. This behavior could be due to bottlenecks in 

memory allocation or release processes, or tasks that are not 

properly adjusted to handle large volumes of requests [33]. 

In terms of CPU usage (Figure 3), the outliers in the target 

version suggest that code or architectural changes have 

introduced a heavier processing load under certain conditions. 

These extreme values indicate a regression in computational 

efficiency, reinforcing the need to review the changes made 

and conduct more exhaustive performance tests before final 

deployment [36]. 

In contrast, the OrderProcessingService (Figure 2) showed 

more stability, with fewer outliers and a more uniform 

handling of resources, indicating that its architecture is better 

optimized to manage system demands under various load 

conditions [34]. 

Recommendations for Managing and Optimizing 

Outliers: 

Effectively addressing outliers in performance data requires 

targeted strategies that combine advanced monitoring, 

algorithmic refinement, and architectural optimization. The 

following best practices are proposed for developers and 

operations teams: 

Advanced Monitoring and Predictive Alerting: 

Implement real-time monitoring tools such as Prometheus, 

configured to track key performance indicators (KPIs) like 

memory usage, CPU load, and request latency. Integrate these 

systems with PromQL to set dynamic thresholds based on 

historical patterns, enabling predictive alerting for potential 

anomalies. Additionally, consider augmenting traditional 

monitoring with AI-driven analytics to anticipate outliers 

before they occur, reducing response time to critical issues. 

Algorithm Optimization and In-Memory Caching: 

Redesign high-demand processing algorithms to minimize 

memory overhead and CPU consumption. For example, 

replace iterative data processing loops with parallelized 

computations to reduce latency. Introduce in-memory caching 

solutions like Redis for frequently accessed data, thereby 

avoiding redundant computations and mitigating memory 

spikes. This is particularly effective in operations involving 

real-time inventory updates or complex aggregations. 

Dynamic and Scalable Resource Management: 

Leverage Kubernetes' Horizontal Pod Autoscaler (HPA) to 

dynamically adjust resource allocation based on real-time 

metrics. Combine this with Vertical Pod Autoscaler (VPA) for 

optimal memory and CPU limits, ensuring balanced utilization. 

Employ workload-aware scheduling policies in Kubernetes to 

distribute high-traffic requests across nodes, preventing 

resource contention during peak demand. 

Rigorous Performance Testing and Regression Analysis: 

Conduct continuous integration (CI) pipelines with 

performance testing stages, using tools like Apache JMeter or 

Locust. Simulate high-demand scenarios to identify 

bottlenecks and ensure the system can handle peak loads 

without degradation. Integrate automated regression testing to 

evaluate the impact of code changes on computational 

efficiency, preventing the reintroduction of inefficiencies. 

Service Architecture Optimization: 

Apply actor-driven decomposition techniques to improve 

modularity and workload isolation within microservices. 

Optimize inter-service communication by implementing 

lightweight protocols like gRPC instead of REST for latency-

sensitive tasks. Incorporate circuit breakers and rate-limiters 

to prevent cascading failures caused by outliers. 

Proactive Resource Usage Prediction: 

Utilize machine learning frameworks such as TensorFlow 

or PyTorch to build predictive models that analyze historical 

resource usage patterns. These models can forecast resource 

requirements and preemptively scale resources to handle 

anticipated spikes, reducing the occurrence of outliers. 

By adopting these best practices, teams can enhance the 

resilience and scalability of microservices-based systems, 

ensuring consistent performance even under unpredictable 

workloads. 

 

4.4 Performance comparison between microservices 

 

The comparison between InventoryManagementService 

and OrderProcessingService reveals significant differences in 

performance, especially regarding memory and CPU usage. 

As noted earlier, InventoryManagementService displayed 

greater variability in both areas, suggesting less efficient 

resource management compared to OrderProcessingService 

[31]. 

In particular, Figure 1 shows that 

InventoryManagementService is more prone to extreme 

memory consumption, suggesting that it experiences 

overloads more frequently. This behavior could be related to 

intensive processing operations, such as handling large data 

sets or concurrent requests that are not adequately controlled 

[34]. 

On the other hand, OrderProcessingService (Figure 2) 

demonstrated a more consistent distribution in resource usage, 

indicating that it handles memory demands more efficiently. 

This stability suggests that the microservice is better tuned to 

handle various workloads without suffering performance 

degradation [33]. 
 

4.5 Recommendations for system optimization 

 

Based on the results obtained, it is clear that 

InventoryManagementService presents the greatest challenges 

in terms of performance stability. To improve its behavior, 

optimization techniques should be implemented, such as 

improving data handling algorithms and applying caching 

strategies to reduce the need for repetitive processing [34]. 

Additionally, it would be beneficial to optimize dynamic 

memory management and make improvements in processes 

that handle concurrent requests [31]. 

Although OrderProcessingService has shown more stable 

performance, continuous monitoring should be maintained to 

ensure that it retains its efficiency as system demands evolve. 

This microservice can serve as a model for optimizing other 

system components [32].  

To complement the initial recommendations, the following 

specific measures are suggested to address identified 

challenges and ensure actionable improvements: 

Advanced Caching and Data Handling: 

Implement in-memory caching systems such as Redis to 

optimize repetitive queries and reduce processing times, 

particularly in InventoryManagementService. 

Prioritize selective caching policies for high-demand 

operations, minimizing memory overhead and enhancing 

responsiveness. 
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Dynamic Resource Management: 

Employ Kubernetes' Horizontal Pod Autoscaler (HPA) for 

real-time scaling during workload spikes, ensuring optimal 

resource allocation. 

Integrate Vertical Pod Autoscaler (VPA) to dynamically 

adjust CPU and memory limits based on historical and real-

time usage patterns. 

Comprehensive Monitoring and Predictive Analytics: 

Expand existing monitoring tools with predictive analytics 

models to forecast resource bottlenecks and mitigate 

anomalies proactively. 

Use distributed tracing tools like Jaeger to identify and 

resolve inter-service communication inefficiencies. 

Refinement of Concurrent Processing: 

Optimize thread management in 

InventoryManagementService to handle concurrent requests 

more efficiently, reducing latency and memory contention. 

Apply thread-safe data structures and asynchronous 

processing to minimize resource contention. 

Continuous Testing and Validation: 

Incorporate regular load testing into the CI/CD pipeline to 

simulate high-demand scenarios and ensure system resilience. 

Perform regression testing to validate the impact of updates 

and prevent reintroduction of inefficiencies. 

Service Modularity and Communication Optimization: 

Refactor InventoryManagementService using actor-driven 

decomposition to isolate high-load tasks into separate services. 

Optimize inter-service communication by adopting gRPC 

protocols for latency-sensitive operations, improving overall 

efficiency. 
 

 

5. DISCUSSIONS 

 

The analysis of the results obtained in monitoring the 

performance of microservices-based applications has revealed 

several key points essential for improving the efficiency and 

stability of these systems. Although microservices provide 

advantages in scalability and modularity, they also face 

significant challenges in resource optimization, as 

demonstrated by the memory and CPU usage graphs. Below, 

we discuss the implications of these findings, connect them 

with previous research, and propose recommendations for 

future implementations and studies. 

 

5.1 Implications of the results 

 

The microservices InventoryManagementService and 

OrderProcessingService exhibited contrasting behaviors 

regarding their memory and CPU usage. While 

InventoryManagementService showed significant variability 

and high usage peaks (Figure 1), OrderProcessingService 

demonstrated more efficient resource utilization (Figure 2). 

These results reflect a common phenomenon in 

microservice systems, where the heterogeneity in the design 

and implementation of different components can lead to 

disparate performance behaviors. Factors such as handling 

concurrent requests, internal code structure, or resource 

management strategies could influence this variability. 

These results are consistent with prior research highlighting 

the inherent unpredictability of microservice performance, 

which stems from their reliance on communication between 

components and the complexity of their interactions under 

fluctuating workloads [35]. As suggested in the study [36], the 

introduction of microservices brings increased complexity in 

resource coordination and monitoring, which, if not properly 

managed, can result in inefficiencies [37]. 

The performance differences observed between 

InventoryManagementService and OrderProcessingService 

can be attributed to specific design and implementation 

choices. OrderProcessingService benefits from an optimized 

concurrency model, utilizing asynchronous processing and 

thread-safe data structures that minimize contention and 

improve throughput under high-demand conditions. In 

contrast, InventoryManagementService relies on synchronous 

operations for critical tasks, which amplifies resource 

contention and latency during peak loads. Additionally, the 

absence of a robust caching mechanism in 

InventoryManagementService forces repetitive data 

processing, further increasing its memory and CPU 

consumption. These implementation differences highlight the 

need to apply solid design principles, such as implementing 

caching for frequently accessed data and optimizing memory 

management to reduce fragmentation. Addressing these 

aspects will enable future versions of 

InventoryManagementService to achieve a level of stability 

and efficiency comparable to OrderProcessingService, thereby 

improving the overall balance and performance of the system. 

 

5.2 Comparison with previous studies 

 

Several studies have demonstrated that the implementation 

of microservices can improve overall system performance 

when appropriate resource optimization is achieved [38]. In 

this study, the behaviors of OrderProcessingService and 

InventoryManagementService reflect this reality; however, 

the lack of adjustment in the target version of the 

InventoryManagementService microservice led to a 

significant CPU usage regression (Figure 4). These findings 

corroborate research emphasizing the importance of 

continuous performance testing and optimization when 

introducing new microservice versions [39]. 

Regarding CPU usage specifically, the presence of 

regressions in the target version suggests that the changes 

introduced were not thoroughly evaluated for performance 

impact. Different studies emphasize the need for systematic 

approaches to evaluate regressions in distributed systems, as 

lack of coordination among components can lead to processing 

bottlenecks [40]. 

 

5.3 Recommendations for optimization 

 

Based on the results obtained, it is clear that a key strategy 

for improving microservice performance in production 

environments is the implementation of continuous monitoring 

and thorough code review before deployment [39]. 

InventoryManagementService, which showed greater 

variability and regressions, could benefit from optimizing its 

internal algorithms to improve resource allocation and 

implementing better memory management strategies. A 

detailed review of the testing process in the target version 

could have prevented the increase in CPU usage and the 

emergence of outliers, which negatively impacted overall 

system performance. 

In line with the recommendations of Zhang et al. [36], 

adopting advanced monitoring tools and predictive analysis 

would allow earlier detection of performance regressions, 

minimizing their impact on the system [41]. Additionally, the 
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optimization of memory usage observed in 

OrderProcessingService could be replicated in other 

microservices to ensure greater performance stability under 

varying load conditions. 

 

5.4 Study limitations and future research 

 

Despite the results obtained, it is essential to highlight some 

limitations in this study. First, the data analyzed pertain only 

to two specific microservices, limiting the generalizability of 

the findings across other components in similar architectures. 

Future studies should include a broader analysis encompassing 

more microservices and versions to provide a more holistic 

view of performance in distributed systems.   

Another limitation is the reliance on data normalization 

during the filtering process (℃ 3). Although this technique 

improved data quality for analysis, exploring alternative data 

processing methods that do not depend so heavily on 

normalization may be necessary to avoid losing relevant 

information.  Future research could focus on developing new 

monitoring and data filtering methods that allow for more 

precise real-time performance evaluation without intensive 

preprocessing. 

Finally, conducting longitudinal studies to evaluate the 

impact of changes in microservice architecture over time 

would be valuable. Analyzing how different system versions 

respond to updates and infrastructure changes would provide 

crucial insights for developing better practices in managing 

performance in distributed architectures. 

To address the identified limitations, future research should 

broaden the scope of performance analysis to encompass 

additional microservices and varied architectural 

configurations. Expanding the dataset would provide a more 

holistic understanding of resource management challenges and 

uncover generalizable optimization strategies for distributed 

systems. Moreover, investigating innovative monitoring 

techniques, such as machine learning-based anomaly detection 

models, could significantly enhance the accuracy and 

responsiveness of real-time performance evaluations. These 

models would reduce dependency on preprocessing steps, 

enabling more precise and scalable monitoring of 

microservices in dynamic environments. 

Another promising avenue involves the development of 

adaptive scaling and load-balancing strategies that leverage 

historical performance data to dynamically predict and adjust 

to resource demands. Such approaches would minimize 

latency and improve system stability, especially under 

fluctuating workloads. Comparative studies across cloud 

platforms would also be beneficial in evaluating how different 

infrastructure characteristics impact resource utilization and 

scalability. Additionally, exploring the role of systematic code 

refactoring could reveal how architectural refinements 

improve microservices' performance, particularly in resolving 

bottlenecks related to concurrency and memory management. 

Together, these directions could provide a foundation for 

optimizing distributed architectures, ensuring robustness and 

scalability in diverse deployment scenarios. 

 

 

6. CONCLUSIONS 

 

This study presented a comprehensive approach to 

optimizing the performance of microservices within an ERP 

system through the implementation of an automated 

monitoring system based on Kubernetes, Prometheus, Grafana, 

and JMeter. The results show that automation in monitoring 

not only allows for real-time detection of resource deviations 

but also helps optimize CPU and memory usage, ensuring 

operational stability under varying workloads. 

The ERP system evaluated, composed of the 

OrderProcessingService and InventoryManagementService 

microservices, exhibited differing levels of efficiency. 

OrderProcessingService maintained stable CPU usage, with 

variations below 5% during high-demand scenarios, indicating 

that the optimizations applied were effective. In contrast, 

InventoryManagementService experienced CPU usage spikes 

of up to 18%, suggesting opportunities for architectural 

adjustments or further resource optimization. This variability 

highlights the importance of analyzing each microservice 

individually, as differences in design can lead to significant 

performance disparities. 

The use of Prometheus enabled continuous collection of key 

metrics, such as CPU, memory consumption, and latency, for 

each microservice. These metrics were visualized and 

analyzed using Grafana, facilitating early anomaly detection. 

Additionally, the load testing conducted with JMeter evaluated 

system behavior under stress conditions, demonstrating the 

system’s ability to handle traffic increases of up to 30% 

without compromising service stability. These tests confirmed 

that integrating the monitoring system with a continuous 

delivery pipeline in Kubernetes accelerated problem detection 

in preliminary versions, reducing the deployment time for new 

functionalities by 25%. 

The automated system also improved resource management 

efficiency. Metrics indicate that average memory consumption 

was reduced by 12% in the latest system version, thanks to 

continuous monitoring and the elimination of redundant 

processes. This reduction directly impacts the operational 

costs of the ERP system by minimizing unnecessary horizontal 

scaling in cloud environments. Furthermore, the ability to 

monitor and dynamically adjust resources enabled the system 

to maintain 99.9% availability, ensuring minimal interruptions 

even during peak demand. 

Despite these achievements, some challenges remain. 

Managing latency in critical microservices such as 

InventoryManagementService continues to be an area for 

improvement. While the current tools effectively identify 

issues, integrating machine learning techniques for fault 

prediction could enable more proactive and precise solutions. 

Furthermore, adopting predictive resource optimization 

strategies tailored for distributed platforms could enhance 

system performance even further.This study demonstrates the 

importance of adopting a continuous monitoring architecture 

in ERP systems based on microservices, particularly in 

scenarios where scalability and operational efficiency are 

critical. The system's ability to adapt to changes in demand and 

ensure optimal resource usage represents a significant 

competitive advantage for organizations that rely on ERP 

systems to manage complex processes. The findings not only 

reinforce the importance of automated monitoring in 

distributed environments but also provide a solid foundation 

for future implementations focused on continuous 

improvement and system resilience. 

In conclusion, the implementation of this automated 

monitoring system has optimized resource usage and 

improved the operational efficiency of the evaluated ERP 

system. The combination of technologies such as Prometheus, 

Grafana, JMeter, and Kubernetes has proven effective in 
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managing microservice performance, while also offering a 

flexible framework for continuous improvements. This 

approach ensures that organizations can quickly respond to 

environmental changes and maintain high levels of availability 

and performance, strengthening system robustness and 

enhancing scalability. 

Furthermore, the automated monitoring system not only 

optimizes resource usage but also establishes a robust 

framework for the continuous improvement and evolution of 

microservices architectures. By delivering real-time 

performance insights and enabling dynamic anomaly detection, 

the system allows developers and operations teams to identify 

inefficiencies, resource bottlenecks, and architectural 

weaknesses at an early stage. This iterative feedback loop 

facilitates data-driven decision-making for implementing 

targeted optimizations, such as refining load-balancing 

algorithms, enhancing caching strategies, and reconfiguring 

resource allocation. 

Additionally, the system supports the evolution of 

microservices by adapting to the changing demands of modern 

distributed environments. Through predictive analytics and 

machine learning integration, it can anticipate workload 

variations and proactively recommend architectural 

adjustments, such as horizontal or vertical scaling and the 

modularization of high-demand services. Over time, this 

adaptability ensures that the architecture remains resilient to 

evolving workload patterns and technological advancements, 

aligning with emerging best practices in distributed system 

design. 

The long-term value of this monitoring system lies in its 

ability to transform static architectures into dynamic, self-

optimizing systems capable of maintaining high performance 

and reliability. By fostering an environment of continuous 

learning and adaptation, the system not only addresses 

immediate operational challenges but also sets a foundation 

for sustained innovation and scalability in microservices-

based systems. 

Future Research Directions 

This study has provided an initial analysis of key issues in 

microservice performance optimization, but it acknowledges 

the need to further strengthen the analysis of the root causes of 

these problems. For example, future research could focus on 

examining the interdependencies between components in 

distributed architectures, identifying how specific 

communication or synchronization patterns contribute to 

bottlenecks and resource variability. Additionally, developing 

causal models to evaluate the relationships between design 

decisions—such as the choice of communication protocols or 

concurrency management strategies—and their impact on 

performance would be valuable. 

Regarding the relevance of solutions, future studies could 

include controlled experiments comparing different 

optimization approaches in heterogeneous scenarios. This 

would not only validate the solutions proposed in this work but 

also identify the conditions under which they are most 

effective. Integrating techniques such as machine learning for 

predicting microservice behavior and simulating large-scale 

workloads could provide a more robust foundation for the 

development of resilient and scalable systems. 
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