
Optimizing Microservices Performance and Scalability Through Automated Monitoring

with Kubernetes and Prometheus

Cesar Felipe Henao Villa1* , Camilo Andrés Echeverri Gutiérrez2 , Leidy Catalina Acosta Agudelo2 ,

David Alberto García Arango2 , Lisbet Maria Garzon Cano3 , Euris Santa Arboleda3 ,

Marlo Eliecer Hoyos Garcia3

1 Faculty of Engineering, American University Corporation, Medellín 050012, Colombia
2 Department of Research, Administrative Management Consultants S.A.S, Envigado 055428, Colombia
3 Department of Technological Innovation, Somos Gestión Positiva S.A.S, Medellín 050021, Colombia

Corresponding Author Email: chenao@coruniamericana.edu.co

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300225 ABSTRACT

Received: 4 November 2024

Revised: 20 January 2025

Accepted: 14 February 2025

Available online: 27 February 2025

Performance monitoring is essential to ensure the scalability and efficiency of

microservices-based applications. This paper presents the design, development, and

evaluation of an automated monitoring system using Kubernetes, Prometheus, and Grafana

to optimize the performance of critical microservices within an ERP ecosystem, such as the

OrderProcessingService and InventoryManagementService. Through continuous

monitoring, the system collects real-time metrics, including CPU usage, memory

consumption, and latency, enabling the detection of anomalies and performance

regressions. Load testing with JMeter was conducted to simulate various system demands,

identifying resource management issues and bottlenecks. The results show improvements

in efficiency and stability, especially in memory management and reduced CPU usage in

high-demand scenarios. OrderProcessingService demonstrated consistent performance,

while InventoryManagementService showed variability, requiring further optimization.

The developed system provides a foundation for continuous performance improvement,

contributing to the scalability, reliability, and resilience of microservices-based

architectures.

Keywords:

microservices architecture, automated

monitoring, performance optimization,

Kubernetes, Prometheus and Grafana

1. INTRODUCTION

Microservices architecture has emerged as a key solution to

address the increasing complexity of modern applications.

This approach allows monolithic applications to be broken

down into a series of independent services, each responsible

for a specific functionality within the system. By facilitating

autonomous development, deployment, and scalability,

microservices have radically transformed the way distributed

applications are designed and managed. However, while this

approach offers flexibility and modularity, it also introduces

significant challenges in performance monitoring and

optimization, as any inefficiency in one service can affect the

overall performance of the system [1].

One of the main challenges in microservice-based

architectures is ensuring operational efficiency as the number

of services and interdependencies between components

increases. Any degradation in the performance of a

microservice can trigger cascading effects, impacting the

entire system. For this reason, it is essential to have monitoring

systems capable of quickly detecting performance regressions

and inefficient resource usage, such as CPU and memory

mismanagement. However, traditional monitoring tools often

fail to capture these complex interactions, especially in

distributed environments [2, 3].

The impact of these challenges on the performance and

scalability of microservices is multifaceted. First,

inefficiencies in resource management, such as CPU and

memory, can create bottlenecks that slow down system

response times during peak demand. This is particularly

critical in distributed architectures where the constant

interaction between services amplifies the effect of any

individual degradation. Second, inadequate monitoring

reduces the ability to identify resource usage patterns, which

complicates optimization efforts and increases operational

costs, particularly in cloud-based environments. Finally,

scalability is compromised when proactive strategies for

dynamic load balancing and adaptive deployments are not

implemented, leading to system instability under fluctuating

demands. This study aims to address these challenges by

developing an automated monitoring system that enhances

operational efficiency and scalability in microservices-based

architectures.

The objective of this study is to develop an automated

monitoring system that identifies deviations in resource usage

across different versions of microservices. This system

focuses especially on analyzing CPU and memory usage

behavior to detect regressions and optimize resource

management. For this study, the OrderProcessingService and

InventoryManagementService microservices were selected, as

Ingénierie des Systèmes d’Information
Vol. 30, No. 2, February, 2025, pp. 551-563

Journal homepage: http://iieta.org/journals/isi

551

https://orcid.org/0000-0001-7426-2589
https://orcid.org/0000-0003-0667-0913
https://orcid.org/0000-0003-1538-1881
https://orcid.org/0000-0002-0031-4275
https://orcid.org/0009-0009-0897-6407
https://orcid.org/0009-0006-7030-3295
https://orcid.org/0009-0002-7140-1541
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300225&domain=pdf

they are critical for order and inventory management,

respectively. These microservices were chosen due to their

relevance within the ERP ecosystem under study. Through

continuous monitoring and real-time data analysis, we aim to

identify critical points that require adjustments to improve the

overall performance of the system.

Monitoring distributed architectures is an area of growing

interest, as it ensures stability and efficient resource utilization

in complex applications [4]. Previous studies have shown that

the implementation of automated monitoring systems is

essential to guarantee scalability and performance in

microservices environments [5, 6]. This study contributes to

this field by developing a tool that monitors and detects

anomalous patterns in resource usage, enabling continuous

improvements in system efficiency.

In this sense, the study focuses on automated performance

monitoring and resource usage optimization in distributed

environments. By identifying regressions in CPU and memory

usage, the system aims to enhance the responsiveness and

stability of microservices-based applications, contributing to

their scalability and operational robustness.

2. RELATED WORK

The microservices architecture has gained popularity in the

last decade due to its ability to facilitate the scalable

development of distributed applications. However, this

approach also introduces complexities in performance

monitoring and optimization, which has led to intensive

research into tools and techniques to enhance the efficiency of

microservices. The following discusses recent studies that

address these challenges, including monitoring systems,

anomaly detection, and optimization techniques.

2.1 Monitoring tools in microservices

Monitoring tools play a crucial role in ensuring the stability,

performance, and reliability of microservice architectures. As

distributed systems grow in complexity, these solutions offer

essential insights into resource consumption, service health,

and early detection of bottlenecks. Effective monitoring

ensures continuity and enables proactive responses to

disruptions. In environments spanning multiple cloud

platforms, comprehensive visibility is key for maintaining

operational consistency.

Giamattei et al. [7] identified Prometheus and Jaeger as

relevant tools for real-time metric collection. These tools

provide transparency into CPU and memory usage, allowing

quick responses to performance issues. They also offer alerting

mechanisms to minimize downtime and ensure customer

satisfaction.

The management of multiple service requests is critical for

system performance. Gao et al. [8] showed that an optimized

API Gateway architecture, with heterogeneous acceleration,

reduces latency and ensures stability under high demand. In

parallel, Krause [9] emphasized asynchronous messaging via

AMQP, which prevents bottlenecks and facilitates smooth

communication between microservices, especially under

heavy loads. These patterns enhance scalability and fault

tolerance by decoupling services.

Framework selection is equally vital. Rossetto et al. [10]

found Quarkus more efficient than Spring Boot, reducing

memory usage by 80% and CPU consumption by 95%,

making it ideal for resource-intensive applications. Similarly,

Somashekar and Gandhi [11] proposed machine-learning-

based configuration techniques to optimize performance

across varying workloads, improving adaptability.

Cloud-native designs are essential for modern deployments.

Taibi et al. [12] stressed the importance of containerization,

which simplifies deployments and reduces risks through

isolated updates and continuous delivery. Zhou et al. [13]

focused on resilience, identifying common fault patterns and

proposing debugging strategies to enhance reliability.

Further research offers insights into management strategies.

Zuo et al. [14] combined an API Gateway with the Chain of

Responsibility pattern, improving request management while

reducing service coupling. Newman [15] explored

synchronous communication through REST APIs,

highlighting interoperability benefits while cautioning about

bottlenecks. Fernando and Wickramaarachchi [16] addressed

performance optimization in resource-constrained

environments, presenting solutions that maintain high

performance despite limited resources.

Table 1. Communication and optimization patterns in

microservices architectures

Author Method Results

Giamattei et al. [7]

Monitoring with

Prometheus and

Jaeger

Provides real-time

metrics and visibility of

resource usage such as

CPU and memory.

Gao et al. [8]

API Gateway with

heterogeneous

acceleration

Reduces processor load,

improves latency, and

ensures stability under

high demand.

Krause [9]

Asynchronous

messaging with

AMQP

Avoids bottlenecks and

improves communication

between microservices

under high load.

Rossetto et al. [10]

Comparison of

Spring Boot and

Quarkus

Quarkus reduces memory

usage by 80% and CPU

consumption by 95%,

ideal for critical

environments.

Somashekar and

Gandhi [11]

Optimal

configuration with

machine learning

Optimizes performance

under different

operational conditions.

Taibi et al. [12]
Cloud-native design

and containerization

Facilitates deployments

and minimizes

management risks.

Zhou et al. [13]
Fault pattern

analysis

Provides effective

debugging strategies for

common errors.

Zuo et al. [14]

API Gateway,

Chain of

Responsibility

Improves request

management and reduces

service coupling.

Newman [15]

Synchronous

communication with

REST APIs

Increases service

interoperability but may

cause blocking under

high load.

Fernando and

Wickramaarachchi

[16]

Performance

optimization in

constrained

environments

Enables high

performance in resource-

limited settings.

The studies summarized in Table 1 demonstrate how

specific design patterns, such as API Gateways and

asynchronous messaging, are essential for efficient request

management and fundamental to achieving scalability and

resilience in modern microservice architectures. These

552

strategies, when combined with robust monitoring tools like

Prometheus and Jaeger, empower organizations to maintain

system health, prevent service interruption, and optimize

performance under peak loads. Collectively, these approaches

represent best practices for managing distributed systems, so

these can meet growing demands while maintaining

operational agility.

2.2 Scalability strategies in microservices architecture

Scalability is one of the fundamental pillars of

microservices architecture, as it enables systems to efficiently

distribute workloads. Reviewed studies show various

strategies for achieving optimal scalability, including dynamic

and static load balancing algorithms and integration with

orchestration platforms like Kubernetes, as shown in Table 2.

These strategies allow microservices to adapt to different load

levels, ensuring system availability and performance.

Table 2. Scalability strategies in microservices architectures

Author Method Results

Mummana

et al. [17]

Dynamic Load

Balancing

Proposes adaptive algorithms to

dynamically distribute traffic across

microservices based on node

performance, enhancing scalability

and preventing overloads.

Blinowski

et al. [18]

Vertical and

Horizontal

Scaling

On Azure, vertical scaling proves to

be more cost-efficient compared to

horizontal scaling, although

excessive scaling can negatively

impact performance.

Camilli et

al. [19]

Actor-driven

Decomposition

Iterative decomposition improves

modularity and scalability,

supporting decision-making in real

applications.

The practical application of these scalability strategies has

been demonstrated in various studies. For instance, Mummana

et al. [17] proposed adaptive algorithms that dynamically

distribute traffic across microservices based on node

performance. This approach enhanced scalability and

prevented overloads, significantly reducing response times

during high-demand scenarios. Similarly, Blinowski et al. [18]

evaluated vertical and horizontal scaling strategies, showing

that vertical scaling on Azure is more cost-effective but may

degrade performance if overused. These findings emphasize

the importance of carefully balancing resource allocation to

achieve optimal performance.

Actor-driven decomposition strategies also play a pivotal

role in improving scalability. Camilli et al. [19] applied this

technique to iteratively refine microservices' modularity,

achieving a notable improvement in throughput for decision-

making applications. Their approach highlights how strategic

decomposition can enhance system adaptability to fluctuating

workloads.

These case studies illustrate the tangible benefits of

applying specific scalability strategies in real-world

microservice architectures. By integrating such approaches,

organizations can better address the challenges of scalability

and operational efficiency in distributed systems.

Similarly, Meng et al. [20] developed the Midiag system,

which uses sequential traces to diagnose failures in

microservices-based systems. Midiag predicts potential issues

before they occur, facilitating proactive intervention and

improving the overall system performance.

2.3 Connection with previous studies

The current study on optimizing microservices performance

through an automated monitoring system is related with

previous research addressing proactive monitoring and

resource optimization in distributed architectures. Specifically,

the identification of resource usage variability between

microservices, such as the OrderProcessingService and

InventoryManagementService, reflects findings in the

literature that shows the impact of heterogeneity in

microservices design and implementation [21, 22]. This study

shows that combining advanced monitoring tools with

machine learning techniques can significantly enhance the

operational efficiency of microservices systems [23, 24]. This

approach can be seen in the monitoring system used in this

study, which enables real-time failure detection and

contributes to optimizing resource consumption, including

CPU and memory usage.

Additionally, research by Meng et al. [20] on the Midiag

system offers a valuable framework for sequential trace

analysis in microservices. This type of analysis deepens the

understanding of interactions between services and their

impact on system-wide performance, which this study also

explores. Furthermore, Khazaei et al. [23] highlights the

importance of performance modeling in distributed platforms

like Amazon EC2, reinforcing the relevance of predictive

techniques used in the system developed for this study [23].

Similarly, the framework for microservices deployment

proposed by Waseem et al. [24] provides insights into

overcoming challenges in adopting DevOps practices, which

guided the continuous delivery pipeline implemented in this

research [24]. Finally, Guerrero et al. [21] underscore the role

of resource optimization strategies in multi-cloud

environments, further supporting the relevance of the

orchestration and monitoring techniques applied here.

2.4 Integration of relevant strategies in the monitoring and

optimization of microservices

In the current literature on microservices, several studies

have addressed the challenges related to monitoring,

deployment, and resource optimization in distributed

environments. The research by Meng et al. [20], Khazaei et al.

[23] and Niño-Martínez et al. [25], provides strategic insights

that directly influence the development and improvement of

the automated monitoring system presented in this article. The

work by Khazaei et al. [23] focuses on predictive performance

modeling, inspiring the integration of metrics to evaluate

resource consumption under different loads. On the other hand,

Niño-Martínez et al. [25] offer a framework for adopting

DevOps in microservices, which has guided the

implementation of the continuous delivery pipeline in

Kubernetes for this research. Finally, the proactive traceability

approach proposed by Meng et al. [20], through the Midiag

system, provides valuable ideas for detecting anomalous

patterns and anticipating failures before they occur.

Table 3 summarizes the contributions of these key studies

and highlights how their findings have shaped the technical

and methodological decisions in the development of the

proposed monitoring system in order to provide a clear

understanding of how the selected strategies have been

adapted to improve resource management and performance in

this work.

The insights gathered from these studies have been

553

fundamental to shaping the automated monitoring system

proposed in this article. The adoption of predictive modeling,

continuous delivery frameworks, and proactive traceability

improved the efficiency of the microservices architecture and

make foundation for future developments. Integrating these

strategies ensures scalability and operational robustness while

enabling early detection of resource inefficiencies and

potential failures. As a result, this system offers a practical

solution for organizations seeking to enhance the performance

and reliability of microservices-based applications.

Table 3. Impact of key studies on the system implementation

Author Method
Impact and Adaptation in

This Study

Meng et

al. [20]

Midiag: A diagnosis system

based on sequential traces

to predict failures.

Considered for future

iterations of the system,

exploring traceability

techniques to identify

anomalous patterns in real-

time.

Khazaei et

al. [23]

Developed a predictive

model to optimize resource

allocation on Amazon EC2.

Inspired the use of metrics

to evaluate resource

consumption under different

loads, integrating

preventive monitoring

techniques.

Niño-

Martínez

et al. [25]

Provided a framework for

DevOps adoption in

microservices, identifying

challenges and

recommendations.

Guided the implementation

of the continuous delivery

pipeline to automate version

management in Kubernetes.

3. METHOD

This study adopts an automated approach for monitoring

microservices performance, using specialized tools and key

metrics with the goal of optimizing their efficiency. The

process was designed to continuously collect and analyze

resource usage metrics, such as memory and CPU, which

allowed for the detection and resolution of deviations that

could impact the overall system performance.

3.1 Orchestration and monitoring tools

For managing and monitoring the microservices

architecture, widely recognized tools were selected for their

efficiency and robustness.

Docker was employed for containerizing microservices,

providing a standardized environment that ensures portability

and consistent deployment of applications. Using Docker

allows packaging applications and their dependencies into

lightweight containers, ensuring they run uniformly across

diverse environments. This is essential for maintaining

consistency between development, testing, and production

setups [22].

Kubernetes, on the other hand, was used to orchestrate these

containers. Its features include automated workload

distribution, self-healing capabilities, and horizontal scaling,

ensuring that microservices remain stable and operational even

under fluctuating demand. Kubernetes simplifies the

management of containerized applications at scale, enabling

automated deployments, maintenance, and scalability in

dynamic environments [22].

For real-time performance monitoring, Prometheus was

implemented as an open-source tool designed to collect and

store system and application metrics. Prometheus can gather

detailed metrics such as CPU usage, memory consumption,

and latency, providing in-depth insights into microservices'

performance. Its multidimensional data model and powerful

query language (PromQL) allow detailed analysis of

infrastructure and application states [22].

The integration of Prometheus with Grafana enabled

visualization of these metrics through dynamic and interactive

dashboards. Grafana provides an intuitive interface for

creating custom dashboards, facilitating the identification of

anomalies and performance bottlenecks. Additionally,

Prometheus supports alerting mechanisms that are critical for

proactive system management, enabling early detection of

issues and implementation of solutions before they impact end

users [26, 27].

This workflow allowed proactive adjustments to

microservices configurations based on collected metrics,

ensuring operational stability and continuous system

performance improvement. Performance metrics were

primarily collected from critical components of the simulated

ERP system, such as the OrderProcessingService and

InventoryManagementService. Key metrics, including CPU

usage and memory consumption, were selected due to their

direct impact on the stability and efficiency of microservices.

These metrics facilitated the identification of anomalies and

effective optimization of resource allocation.

3.2 Performance metrics selection

In a microservices system, certain components play

fundamental roles that directly impact operational efficiency

and customer satisfaction. In this study,

OrderProcessingService and InventoryManagementService

were selected as key services for evaluation due to their

strategic importance within the ERP ecosystem and their

impact on overall system performance.

OrderProcessingService is responsible for managing the

entire lifecycle of customer orders, from reception to

validation and routing for fulfillment. Its importance lies in its

direct impact on customer experience, as poor response times

or errors in processing can lead to dissatisfaction and loss of

trust [22]. Additionally, this service is particularly sensitive to

demand peaks, such as those occurring during promotional

events or high seasons, making it a critical point for evaluating

scalability and system stability [16].

InventoryManagementService, in contrast, is essential for

maintaining accurate inventory tracking, enabling critical

decisions related to replenishment and product distribution.

Accurate and up-to-date information from this service is key

to preventing both overstock and stockouts, contributing to

optimized operational costs and ensuring product availability

for customers [21]. Its performance also influences logistical

processes and the system's responsiveness to changes in

demand [16].

Reasons for selection:

These two services were selected due to their relevance

within the ERP ecosystem:

Critical operational impact:

Both services directly influence operational efficiency and

the end-user experience.

Contrasting characteristics:

While OrderProcessingService tends to have high and

predictable transactional loads, InventoryManagementService

experiences significant variability due to its interaction with

554

dynamic data related to demand and supply.

Relevance for key metric evaluation:

The selected metrics, such as CPU usage, memory

consumption, response time, and request throughput, have a

direct impact on the stability and efficiency of these services

[21, 16].

Evaluating these services provides a comprehensive view of

the behavior of critical components under different workload

scenarios. By identifying and addressing performance issues

in these services, it is possible to improve the overall

efficiency of the system and apply these improvements to

other microservices with similar characteristics. Additionally,

the detailed analysis of these services validates the

effectiveness of the monitoring tools and optimization

strategies implemented.

3.3 Load testing and simulation

A set of 50 load tests was designed, simulating different

levels of system demand. These tests were conducted using

JMeter, a tool that allows the simulation of concurrent requests

ranging from 1,000 to 10,000 requests per minute. The tests

focused on observing the impact of these loads on the selected

microservices, particularly the OrderProcessingService and

InventoryManagementService. During each test, metrics such

as CPU usage, memory usage, and latency were recorded and

monitored, with the goal of identifying potential performance

regressions or abnormal behaviors under high-demand

conditions [28].

3.4 Statistical analysis and data filtering

Once the dataset from the load tests was collected, advanced

statistical techniques were applied to analyze and compare the

data between different versions of the microservices.

Specifically, Student's t-test was used to assess whether the

observed differences in performance metrics were statistically

significant. Additionally, control charts were used to monitor

the stability of the microservices over time, and Q-Q plots

(quantile-quantile) were employed to verify data

normalization.

Data filtering was a important step, as it allowed for the

elimination of outliers that could distort the analysis. By

filtering the data this way, the analysis focused exclusively on

deviations that had a real impact on system performance,

enabling precise identification of unexpected resource usage

spikes [16].

3.5 Microservices version comparison

The system evaluated multiple versions of the selected

microservices, with the goal of comparing base versions with

modified versions, specifically in terms of resource

consumption under different load configurations. Association

rule techniques were implemented to detect behavioral

patterns in the metrics, allowing for the identification of

correlations between inefficient resource usage and system

latency. This comparison enabled a precise evaluation of

performance regressions, as well as the improvements

introduced in the modified versions of the microservices [29].

3.6 Results validation

The results obtained were validated through cross-

comparisons with industry-standard benchmarks, such as the

ERP microservices suite g+. This validation was fundamental

to ensuring that the identified improvements in the

microservices were consistent with performance expectations

in high-demand environments. The performance data obtained

was used to optimize system parameters, reducing latency in

high-load scenarios and confirming the effectiveness of the

automated monitoring approach implemented [30].

4. RESULTS

In this study, key metrics related to microservices'

performance were analyzed using an automated monitoring

system. The results focus on memory and CPU usage, with the

purpose of identifying potential performance deviations and

regressions in different versions of the microservices under

evaluation.

4.1 Ram usage distribution for the microservice

Distribution of Memory Usage in Microservices

The microservices OrderProcessingService and

InventoryManagementService exhibited distinct memory

usage behaviors. Figure 1 shows that

InventoryManagementService demonstrates significant

variability in memory consumption, with values ranging from

low levels to unexpected peaks. This dispersion suggests

potential inefficiencies in resource management, particularly

under high-demand scenarios. Outlier points indicate that

InventoryManagementService occasionally uses more

memory than expected, potentially compromising overall

system performance during heavy loads [31].

On the other hand, Figure 2 shows that the

OrderProcessingService presents a more controlled

distribution of memory usage values. Although some outliers

are also observed, the distribution is more uniform and stable

compared to InventoryManagementService, suggesting a

more effective optimization in this microservice's memory

management [32]. This behavior reflects the

OrderProcessingService's greater capacity to efficiently

handle resources under varying load conditions, contributing

to the system's stability.

(a) Distribution of relative deviations for

memory/page_faults_rate

555

(b) Distribution of relative deviations for memory/usage

Figure 1. Graph of RAM indicator values distribution for

InventoryManagementService microservice

(a) Distribution of relative deviations for

memory/page_usage

(b) Distribution of relative deviations for memory/usage

Figure 2. Graph of RAM indicator values distribution for

InventoryManagementService microservice

Causes of Memory Usage Variability in

InventoryManagementService

Detailed analysis of InventoryManagementService

identified the following potential causes for the observed

variability:

• High Concurrency and Data Volume:

This microservice handles numerous concurrent requests,

particularly during operations such as inventory updates

and real-time availability checks. These tasks require

accessing large datasets, potentially causing memory

spikes if concurrent processing is not optimized [33].

• Inefficient Memory Allocation and Release:

Preliminary findings suggest potential issues related to

memory fragmentation and inefficient garbage collection

processes. These conditions may lead to excessive

memory usage, particularly under fluctuating workloads.

• Complex Data Queries and Reprocessing:

Intensive operations, such as generating detailed reports

or aggregating data from multiple sources, impose

additional memory requirements. These demands are

especially pronounced during peak load conditions.

Comparison with OrderProcessingService

By contrast, Figure 2 shows that OrderProcessingService

demonstrates a more stable memory usage distribution.

Although some outliers were observed, the overall distribution

is more uniform, indicating more effective memory

optimization strategies [32]. This behavior highlights

OrderProcessingService's ability to efficiently manage

resources under varying load conditions, contributing to the

overall stability of the system.

CPU Usage Evaluation

CPU usage was another critical performance metric

evaluated, as shown in Figures 3 and 4. For

InventoryManagementService, Figure 3 reveals a significant

increase in CPU usage in the target version compared to the

base version.

This increase suggests that the new version introduced

changes that negatively impacted computational efficiency,

potentially leading to bottlenecks during peak demand [33].

In contrast, Figure 4 shows that CPU usage in

OrderProcessingService remained stable after updates to the

target version. This stability ensures that operational

efficiency is maintained without performance degradation,

which is crucial for overall system reliability [34].

(a) Box plot

556

(b) Density plot

Figure 3. Distribution of CPU indicators in the presence of

regression

(a) Box plot

(b) Density plot

Figure 4. Distribution of CPU indicators without regression

To address the identified causes of memory usage

variability in InventoryManagementService, it is

recommended to implement specific optimization strategies.

First, concurrency management can be improved by

employing asynchronous processing techniques and thread-

safe data structures, which would reduce latency and memory

spikes during intensive operations. Second, adjusting the

garbage collector configuration in the runtime environment

could minimize memory fragmentation and optimize resource

release under fluctuating workloads. Finally, optimizing

queries and reducing data reprocessing through advanced

indexing and partitioning would significantly enhance

efficiency in complex operations, particularly during high-

demand conditions. These measures would not only address

current issues but also improve the system's stability and

scalability, contributing to better resource utilization.

4.2 Memory usage density distribution with and without

filtering

Impact of the Filtering Process on Memory Usage Data

Figure 5 presents an analysis of memory usage distribution

before and after the filtering process, using a Q-Q plot. This

technique was applied to assess data normalization, a

fundamental aspect for ensuring the accuracy of subsequent

analyses. Prior to filtering, the points in the plot showed a

noticeable deviation from the theoretical normal distribution

line, indicating high data variability and the presence of

outliers that complicated an accurate interpretation of system

behavior [31].

After applying the filtering process, a significant

improvement was observed in the alignment of points with the

reference line. This suggests that the filtering was successful

in removing noise and extreme variations in the data, allowing

for a more realistic representation of memory usage in the

microservices [32].

Figure 5. Density distribution of system memory indicators

4.3 Interpretation of outliers in performance data

Outliers were detected at several points during the analysis,

both in memory usage and CPU usage (Figures 1-4). These

extreme values represent situations where the microservices

557

consumed significantly more resources than the average,

which may be linked to optimization issues or high system

load moments [35].

For InventoryManagementService (Figure 1), the outliers

appear to be related to load peaks where memory management

is inefficient. This behavior could be due to bottlenecks in

memory allocation or release processes, or tasks that are not

properly adjusted to handle large volumes of requests [33].

In terms of CPU usage (Figure 3), the outliers in the target

version suggest that code or architectural changes have

introduced a heavier processing load under certain conditions.

These extreme values indicate a regression in computational

efficiency, reinforcing the need to review the changes made

and conduct more exhaustive performance tests before final

deployment [36].

In contrast, the OrderProcessingService (Figure 2) showed

more stability, with fewer outliers and a more uniform

handling of resources, indicating that its architecture is better

optimized to manage system demands under various load

conditions [34].

Recommendations for Managing and Optimizing

Outliers:

Effectively addressing outliers in performance data requires

targeted strategies that combine advanced monitoring,

algorithmic refinement, and architectural optimization. The

following best practices are proposed for developers and

operations teams:

Advanced Monitoring and Predictive Alerting:

Implement real-time monitoring tools such as Prometheus,

configured to track key performance indicators (KPIs) like

memory usage, CPU load, and request latency. Integrate these

systems with PromQL to set dynamic thresholds based on

historical patterns, enabling predictive alerting for potential

anomalies. Additionally, consider augmenting traditional

monitoring with AI-driven analytics to anticipate outliers

before they occur, reducing response time to critical issues.

Algorithm Optimization and In-Memory Caching:

Redesign high-demand processing algorithms to minimize

memory overhead and CPU consumption. For example,

replace iterative data processing loops with parallelized

computations to reduce latency. Introduce in-memory caching

solutions like Redis for frequently accessed data, thereby

avoiding redundant computations and mitigating memory

spikes. This is particularly effective in operations involving

real-time inventory updates or complex aggregations.

Dynamic and Scalable Resource Management:

Leverage Kubernetes' Horizontal Pod Autoscaler (HPA) to

dynamically adjust resource allocation based on real-time

metrics. Combine this with Vertical Pod Autoscaler (VPA) for

optimal memory and CPU limits, ensuring balanced utilization.

Employ workload-aware scheduling policies in Kubernetes to

distribute high-traffic requests across nodes, preventing

resource contention during peak demand.

Rigorous Performance Testing and Regression Analysis:

Conduct continuous integration (CI) pipelines with

performance testing stages, using tools like Apache JMeter or

Locust. Simulate high-demand scenarios to identify

bottlenecks and ensure the system can handle peak loads

without degradation. Integrate automated regression testing to

evaluate the impact of code changes on computational

efficiency, preventing the reintroduction of inefficiencies.

Service Architecture Optimization:

Apply actor-driven decomposition techniques to improve

modularity and workload isolation within microservices.

Optimize inter-service communication by implementing

lightweight protocols like gRPC instead of REST for latency-

sensitive tasks. Incorporate circuit breakers and rate-limiters

to prevent cascading failures caused by outliers.

Proactive Resource Usage Prediction:

Utilize machine learning frameworks such as TensorFlow

or PyTorch to build predictive models that analyze historical

resource usage patterns. These models can forecast resource

requirements and preemptively scale resources to handle

anticipated spikes, reducing the occurrence of outliers.

By adopting these best practices, teams can enhance the

resilience and scalability of microservices-based systems,

ensuring consistent performance even under unpredictable

workloads.

4.4 Performance comparison between microservices

The comparison between InventoryManagementService

and OrderProcessingService reveals significant differences in

performance, especially regarding memory and CPU usage.

As noted earlier, InventoryManagementService displayed

greater variability in both areas, suggesting less efficient

resource management compared to OrderProcessingService

[31].

In particular, Figure 1 shows that

InventoryManagementService is more prone to extreme

memory consumption, suggesting that it experiences

overloads more frequently. This behavior could be related to

intensive processing operations, such as handling large data

sets or concurrent requests that are not adequately controlled

[34].

On the other hand, OrderProcessingService (Figure 2)

demonstrated a more consistent distribution in resource usage,

indicating that it handles memory demands more efficiently.

This stability suggests that the microservice is better tuned to

handle various workloads without suffering performance

degradation [33].

4.5 Recommendations for system optimization

Based on the results obtained, it is clear that

InventoryManagementService presents the greatest challenges

in terms of performance stability. To improve its behavior,

optimization techniques should be implemented, such as

improving data handling algorithms and applying caching

strategies to reduce the need for repetitive processing [34].

Additionally, it would be beneficial to optimize dynamic

memory management and make improvements in processes

that handle concurrent requests [31].

Although OrderProcessingService has shown more stable

performance, continuous monitoring should be maintained to

ensure that it retains its efficiency as system demands evolve.

This microservice can serve as a model for optimizing other

system components [32].

To complement the initial recommendations, the following

specific measures are suggested to address identified

challenges and ensure actionable improvements:

Advanced Caching and Data Handling:

Implement in-memory caching systems such as Redis to

optimize repetitive queries and reduce processing times,

particularly in InventoryManagementService.

Prioritize selective caching policies for high-demand

operations, minimizing memory overhead and enhancing

responsiveness.

558

Dynamic Resource Management:

Employ Kubernetes' Horizontal Pod Autoscaler (HPA) for

real-time scaling during workload spikes, ensuring optimal

resource allocation.

Integrate Vertical Pod Autoscaler (VPA) to dynamically

adjust CPU and memory limits based on historical and real-

time usage patterns.

Comprehensive Monitoring and Predictive Analytics:

Expand existing monitoring tools with predictive analytics

models to forecast resource bottlenecks and mitigate

anomalies proactively.

Use distributed tracing tools like Jaeger to identify and

resolve inter-service communication inefficiencies.

Refinement of Concurrent Processing:

Optimize thread management in

InventoryManagementService to handle concurrent requests

more efficiently, reducing latency and memory contention.

Apply thread-safe data structures and asynchronous

processing to minimize resource contention.

Continuous Testing and Validation:

Incorporate regular load testing into the CI/CD pipeline to

simulate high-demand scenarios and ensure system resilience.

Perform regression testing to validate the impact of updates

and prevent reintroduction of inefficiencies.

Service Modularity and Communication Optimization:

Refactor InventoryManagementService using actor-driven

decomposition to isolate high-load tasks into separate services.

Optimize inter-service communication by adopting gRPC

protocols for latency-sensitive operations, improving overall

efficiency.

5. DISCUSSIONS

The analysis of the results obtained in monitoring the

performance of microservices-based applications has revealed

several key points essential for improving the efficiency and

stability of these systems. Although microservices provide

advantages in scalability and modularity, they also face

significant challenges in resource optimization, as

demonstrated by the memory and CPU usage graphs. Below,

we discuss the implications of these findings, connect them

with previous research, and propose recommendations for

future implementations and studies.

5.1 Implications of the results

The microservices InventoryManagementService and

OrderProcessingService exhibited contrasting behaviors

regarding their memory and CPU usage. While

InventoryManagementService showed significant variability

and high usage peaks (Figure 1), OrderProcessingService

demonstrated more efficient resource utilization (Figure 2).

These results reflect a common phenomenon in

microservice systems, where the heterogeneity in the design

and implementation of different components can lead to

disparate performance behaviors. Factors such as handling

concurrent requests, internal code structure, or resource

management strategies could influence this variability.

These results are consistent with prior research highlighting

the inherent unpredictability of microservice performance,

which stems from their reliance on communication between

components and the complexity of their interactions under

fluctuating workloads [35]. As suggested in the study [36], the

introduction of microservices brings increased complexity in

resource coordination and monitoring, which, if not properly

managed, can result in inefficiencies [37].

The performance differences observed between

InventoryManagementService and OrderProcessingService

can be attributed to specific design and implementation

choices. OrderProcessingService benefits from an optimized

concurrency model, utilizing asynchronous processing and

thread-safe data structures that minimize contention and

improve throughput under high-demand conditions. In

contrast, InventoryManagementService relies on synchronous

operations for critical tasks, which amplifies resource

contention and latency during peak loads. Additionally, the

absence of a robust caching mechanism in

InventoryManagementService forces repetitive data

processing, further increasing its memory and CPU

consumption. These implementation differences highlight the

need to apply solid design principles, such as implementing

caching for frequently accessed data and optimizing memory

management to reduce fragmentation. Addressing these

aspects will enable future versions of

InventoryManagementService to achieve a level of stability

and efficiency comparable to OrderProcessingService, thereby

improving the overall balance and performance of the system.

5.2 Comparison with previous studies

Several studies have demonstrated that the implementation

of microservices can improve overall system performance

when appropriate resource optimization is achieved [38]. In

this study, the behaviors of OrderProcessingService and

InventoryManagementService reflect this reality; however,

the lack of adjustment in the target version of the

InventoryManagementService microservice led to a

significant CPU usage regression (Figure 4). These findings

corroborate research emphasizing the importance of

continuous performance testing and optimization when

introducing new microservice versions [39].

Regarding CPU usage specifically, the presence of

regressions in the target version suggests that the changes

introduced were not thoroughly evaluated for performance

impact. Different studies emphasize the need for systematic

approaches to evaluate regressions in distributed systems, as

lack of coordination among components can lead to processing

bottlenecks [40].

5.3 Recommendations for optimization

Based on the results obtained, it is clear that a key strategy

for improving microservice performance in production

environments is the implementation of continuous monitoring

and thorough code review before deployment [39].

InventoryManagementService, which showed greater

variability and regressions, could benefit from optimizing its

internal algorithms to improve resource allocation and

implementing better memory management strategies. A

detailed review of the testing process in the target version

could have prevented the increase in CPU usage and the

emergence of outliers, which negatively impacted overall

system performance.

In line with the recommendations of Zhang et al. [36],

adopting advanced monitoring tools and predictive analysis

would allow earlier detection of performance regressions,

minimizing their impact on the system [41]. Additionally, the

559

optimization of memory usage observed in

OrderProcessingService could be replicated in other

microservices to ensure greater performance stability under

varying load conditions.

5.4 Study limitations and future research

Despite the results obtained, it is essential to highlight some

limitations in this study. First, the data analyzed pertain only

to two specific microservices, limiting the generalizability of

the findings across other components in similar architectures.

Future studies should include a broader analysis encompassing

more microservices and versions to provide a more holistic

view of performance in distributed systems.

Another limitation is the reliance on data normalization

during the filtering process (℃ 3). Although this technique

improved data quality for analysis, exploring alternative data

processing methods that do not depend so heavily on

normalization may be necessary to avoid losing relevant

information. Future research could focus on developing new

monitoring and data filtering methods that allow for more

precise real-time performance evaluation without intensive

preprocessing.

Finally, conducting longitudinal studies to evaluate the

impact of changes in microservice architecture over time

would be valuable. Analyzing how different system versions

respond to updates and infrastructure changes would provide

crucial insights for developing better practices in managing

performance in distributed architectures.

To address the identified limitations, future research should

broaden the scope of performance analysis to encompass

additional microservices and varied architectural

configurations. Expanding the dataset would provide a more

holistic understanding of resource management challenges and

uncover generalizable optimization strategies for distributed

systems. Moreover, investigating innovative monitoring

techniques, such as machine learning-based anomaly detection

models, could significantly enhance the accuracy and

responsiveness of real-time performance evaluations. These

models would reduce dependency on preprocessing steps,

enabling more precise and scalable monitoring of

microservices in dynamic environments.

Another promising avenue involves the development of

adaptive scaling and load-balancing strategies that leverage

historical performance data to dynamically predict and adjust

to resource demands. Such approaches would minimize

latency and improve system stability, especially under

fluctuating workloads. Comparative studies across cloud

platforms would also be beneficial in evaluating how different

infrastructure characteristics impact resource utilization and

scalability. Additionally, exploring the role of systematic code

refactoring could reveal how architectural refinements

improve microservices' performance, particularly in resolving

bottlenecks related to concurrency and memory management.

Together, these directions could provide a foundation for

optimizing distributed architectures, ensuring robustness and

scalability in diverse deployment scenarios.

6. CONCLUSIONS

This study presented a comprehensive approach to

optimizing the performance of microservices within an ERP

system through the implementation of an automated

monitoring system based on Kubernetes, Prometheus, Grafana,

and JMeter. The results show that automation in monitoring

not only allows for real-time detection of resource deviations

but also helps optimize CPU and memory usage, ensuring

operational stability under varying workloads.

The ERP system evaluated, composed of the

OrderProcessingService and InventoryManagementService

microservices, exhibited differing levels of efficiency.

OrderProcessingService maintained stable CPU usage, with

variations below 5% during high-demand scenarios, indicating

that the optimizations applied were effective. In contrast,

InventoryManagementService experienced CPU usage spikes

of up to 18%, suggesting opportunities for architectural

adjustments or further resource optimization. This variability

highlights the importance of analyzing each microservice

individually, as differences in design can lead to significant

performance disparities.

The use of Prometheus enabled continuous collection of key

metrics, such as CPU, memory consumption, and latency, for

each microservice. These metrics were visualized and

analyzed using Grafana, facilitating early anomaly detection.

Additionally, the load testing conducted with JMeter evaluated

system behavior under stress conditions, demonstrating the

system’s ability to handle traffic increases of up to 30%

without compromising service stability. These tests confirmed

that integrating the monitoring system with a continuous

delivery pipeline in Kubernetes accelerated problem detection

in preliminary versions, reducing the deployment time for new

functionalities by 25%.

The automated system also improved resource management

efficiency. Metrics indicate that average memory consumption

was reduced by 12% in the latest system version, thanks to

continuous monitoring and the elimination of redundant

processes. This reduction directly impacts the operational

costs of the ERP system by minimizing unnecessary horizontal

scaling in cloud environments. Furthermore, the ability to

monitor and dynamically adjust resources enabled the system

to maintain 99.9% availability, ensuring minimal interruptions

even during peak demand.

Despite these achievements, some challenges remain.

Managing latency in critical microservices such as

InventoryManagementService continues to be an area for

improvement. While the current tools effectively identify

issues, integrating machine learning techniques for fault

prediction could enable more proactive and precise solutions.

Furthermore, adopting predictive resource optimization

strategies tailored for distributed platforms could enhance

system performance even further.This study demonstrates the

importance of adopting a continuous monitoring architecture

in ERP systems based on microservices, particularly in

scenarios where scalability and operational efficiency are

critical. The system's ability to adapt to changes in demand and

ensure optimal resource usage represents a significant

competitive advantage for organizations that rely on ERP

systems to manage complex processes. The findings not only

reinforce the importance of automated monitoring in

distributed environments but also provide a solid foundation

for future implementations focused on continuous

improvement and system resilience.

In conclusion, the implementation of this automated

monitoring system has optimized resource usage and

improved the operational efficiency of the evaluated ERP

system. The combination of technologies such as Prometheus,

Grafana, JMeter, and Kubernetes has proven effective in

560

managing microservice performance, while also offering a

flexible framework for continuous improvements. This

approach ensures that organizations can quickly respond to

environmental changes and maintain high levels of availability

and performance, strengthening system robustness and

enhancing scalability.

Furthermore, the automated monitoring system not only

optimizes resource usage but also establishes a robust

framework for the continuous improvement and evolution of

microservices architectures. By delivering real-time

performance insights and enabling dynamic anomaly detection,

the system allows developers and operations teams to identify

inefficiencies, resource bottlenecks, and architectural

weaknesses at an early stage. This iterative feedback loop

facilitates data-driven decision-making for implementing

targeted optimizations, such as refining load-balancing

algorithms, enhancing caching strategies, and reconfiguring

resource allocation.

Additionally, the system supports the evolution of

microservices by adapting to the changing demands of modern

distributed environments. Through predictive analytics and

machine learning integration, it can anticipate workload

variations and proactively recommend architectural

adjustments, such as horizontal or vertical scaling and the

modularization of high-demand services. Over time, this

adaptability ensures that the architecture remains resilient to

evolving workload patterns and technological advancements,

aligning with emerging best practices in distributed system

design.

The long-term value of this monitoring system lies in its

ability to transform static architectures into dynamic, self-

optimizing systems capable of maintaining high performance

and reliability. By fostering an environment of continuous

learning and adaptation, the system not only addresses

immediate operational challenges but also sets a foundation

for sustained innovation and scalability in microservices-

based systems.

Future Research Directions

This study has provided an initial analysis of key issues in

microservice performance optimization, but it acknowledges

the need to further strengthen the analysis of the root causes of

these problems. For example, future research could focus on

examining the interdependencies between components in

distributed architectures, identifying how specific

communication or synchronization patterns contribute to

bottlenecks and resource variability. Additionally, developing

causal models to evaluate the relationships between design

decisions—such as the choice of communication protocols or

concurrency management strategies—and their impact on

performance would be valuable.

Regarding the relevance of solutions, future studies could

include controlled experiments comparing different

optimization approaches in heterogeneous scenarios. This

would not only validate the solutions proposed in this work but

also identify the conditions under which they are most

effective. Integrating techniques such as machine learning for

predicting microservice behavior and simulating large-scale

workloads could provide a more robust foundation for the

development of resilient and scalable systems.

REFERENCES

[1] Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara,

M., Montesi, F., Mustafin, R., Safina, L. (2017).

Microservices: Yesterday, today, and tomorrow. Present

and Ulterior Software Engineering, 195-216.

https://doi.org/10.1007/978-3-319-67425-4_12

[2] Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.

(2019). Microservices in industry: Insights into

technologies, characteristics, and software quality. In

2019 IEEE international conference on software

architecture companion (ICSA-C), Hamburg, Germany,

pp. 187-195. https://doi.org/10.1109/ICSA-

C.2019.00041

[3] Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.

(2018). The pains and gains of microservices: A

systematic grey literature review. Journal of Systems and

Software, 146: 215-232.

https://doi.org/10.1016/j.jss.2018.09.082

[4] Guo, X., Peng, X., Wang, H., Li, W., Jiang, H., Ding, D.,

Su, L. (2020). Graph-based trace analysis for

microservice architecture understanding and problem

diagnosis. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering, pp. 1387-1397.

https://doi.org/10.1145/3368089.3417066

[5] Nishiura, Y., Asano, M., Nakanishi, T. (2018). Migration

to software product line development of automotive body

parts by architectural refinement with feature analysis. In

2018 25th Asia-Pacific Software Engineering

Conference (APSEC), Nara, Japan, pp. 522-531.

https://doi.org/10.1109/APSEC.2018.00067

[6] Viggiato, M., Terra, R., Rocha, H., Valente, M.T.,

Figueiredo, E. (2018). Microservices in practice: A

survey study. arXiv preprint arXiv:1808.04836.

https://doi.org/10.48550/arXiv.1808.04836

[7] Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S.,

Malavolta, I., Islam, T., Panojo, F.S. (2023). Monitoring

tools for DevOps and microservices: A systematic grey

literature review. Journal of Systems and Software, 208:

111906. https://doi.org/10.1016/j.jss.2023.111906

[8] Gao, X., Liu, R., Lin, X. (2023). API gateway

optimization architecture based on heterogeneous

hardware acceleration. In 2023 IEEE 3rd International

Conference on Information Technology, Big Data and

Artificial Intelligence (ICIBA), Chongqing, China, pp.

863-868.

https://doi.org/10.1109/ICIBA56860.2023.10165387

[9] Krause, L. (2015). Microservices: Patterns and

Applications: Designing Fine-Grained Services by

Applying Patterns 1st Edition.

[10] Rossetto, A.G.D.M., Noetzold, D., Silva, L.A., Leithardt,

V.R.Q. (2024). Enhancing monitoring performance: A

microservices approach to monitoring with spyware

techniques and prediction models. Sensors, 24(13): 4212.

https://doi.org/10.3390/s24134212

[11] Somashekar, G., Gandhi, A. (2021). Towards optimal

configuration of microservices. In Proceedings of the 1st

Workshop on Machine Learning and Systems, pp. 7-14.

https://doi.org/10.1145/3437984.3458828

[12] Taibi, D., Lenarduzzi, V., Pahl, C. (2018). Architectural

patterns for microservices: A systematic mapping study.

In Proceedings of the 8th International Conference on

Cloud Computing and Services Science CLOSER,

Funchal, Madeira, Portugal, pp. 221-232.

https://doi.org/10.5220/0006798302210232

561

[13] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding,

D. (2018). Fault analysis and debugging of microservice

systems: Industrial survey, benchmark system, and

empirical study. IEEE Transactions on Software

Engineering, 47(2): 243-260.

https://doi.org/10.1109/TSE.2018.2887384

[14] Zuo, X., Su, Y., Wang, Q., Xie, Y. (2020). An API

gateway design strategy optimized for persistence and

coupling. Advances in Engineering Software, 148:

102878.

https://doi.org/10.1016/j.advengsoft.2020.102878

[15] Newman, S. (2015). Building Microservices: Designing

Fine-Grained Systems. O'Reilly Media, Inc.

[16] Fernando, R., Wickramaarachchi, D. (2022).

Performance optimization of microservice applications

under resource constrained environments. In 2022

International Research Conference on Smart Computing

and Systems Engineering (SCSE), Colombo, Sri Lanka,

pp. 309-313.

https://doi.org/10.1109/SCSE56529.2022.9905155

[17] Mummana, S., Sambana, B., Ramanababu, B., Gandreti,

P., Rani, P.P., Mishra, P., Narasimha Raju, K. (2022). A

microservice architecture with load balancing

mechanism in cloud environment. In International

Conference on Machine Learning and Big Data

Analytics, pp. 75-91. https://doi.org/10.1007/978-3-031-

15175-0_7

[18] Blinowski, G., Ojdowska, A., Przybyłek, A. (2022).

Monolithic vs. microservice architecture: A performance

and scalability evaluation. IEEE Access, 10: 20357-

20374. https://doi.org/10.1109/ACCESS.2022.3152803

[19] Camilli, M., Colarusso, C., Russo, B., Zimeo, E. (2023).

Actor-driven decomposition of microservices through

multi-level scalability assessment. ACM Transactions on

Software Engineering and Methodology, 32(5): 1-46.

https://doi.org/10.1145/3583563

[20] Meng, L., Sun, Y., Zhang, S. (2020). Midiag: A

sequential trace-based fault diagnosis framework for

microservices. In Services Computing–SCC 2020: 17th

International Conference, Held as Part of the Services

Conference Federation, SCF 2020, Honolulu, HI, USA,

pp. 137-144. https://doi.org/10.1007/978-3-030-59592-

0_9

[21] Guerrero, C., Lera, I., Juiz, C. (2018). Resource

optimization of container orchestration: A case study in

multi-cloud microservices-based applications. The

Journal of Supercomputing, 74(7): 2956-2983.

https://doi.org/10.1007/s11227-018-2345-2

[22] Yu, Y., Yang, J., Guo, C., Zheng, H., He, J. (2019). Joint

optimization of service request routing and instance

placement in the microservice system. Journal of

Network and Computer Applications, 147: 102441.

https://doi.org/10.1016/j.jnca.2019.102441

[23] Khazaei, H., Mahmoudi, N., Barna, C., Litoiu, M. (2020).

Performance modeling of microservice platforms. IEEE

Transactions on Cloud Computing, 10(4): 2848-2862.

https://doi.org/10.1109/TCC.2020.3029092

[24] Waseem, M., Liang, P., Shahin, M., Di Salle, A.,

Márquez, G. (2021). Design, monitoring, and testing of

microservices systems: The practitioners’ perspective.

Journal of Systems and Software, 182: 111061.

https://doi.org/10.1016/j.jss.2021.111061

[25] Niño-Martínez, V. M., Ocharán-Hernández, J.O., Limón,

X., Pérez-Arriaga, J.C. (2022). A microservice

deployment guide. Programming and Computer

Software, 48(8): 632-645.

https://doi.org/10.1134/S0361768822080151

[26] Saeed, Z., Abbas, A.S. (2024). Evaluating software

quality metrics for enhanced software management and

engineering. Ingenierie des Systemes d'Information,

29(4): 1423-1440. https://doi.org/10.18280/isi.290416

[27] Nieman, K., Sajal, S. (2023). A comparative analysis on

load balancing and gRPC microservices in Kubernetes.

In 2023 Intermountain Engineering, Technology and

Computing (IETC), Provo, UT, USA, pp. 322-327.

https://doi.org/10.1109/IETC57902.2023.10152023

[28] Sun, Y., Xiang, H., Ye, Q., Yang, J., Xian, M., Wang, H.

(2023). A review of Kubernetes scheduling and load

balancing methods. In 2023 4th International Conference

on Information Science, Parallel and Distributed Systems

(ISPDS), pp. 284-290.

https://doi.org/10.1109/ISPDS58840.2023.10235497

[29] Hu, Y., de Laat, C., Zhao, Z. (2019). Optimizing service

placement for microservice architecture in clouds.

Applied Sciences, 9(21): 4663.

https://doi.org/10.3390/app9214663

[30] Dinh-Tuan, H., Katsarou, K., Herbke, P. (2021).

Optimizing microservices with hyperparameter

optimization. In 2021 17th International Conference on

Mobility, Sensing and Networking (MSN), Exeter,

United Kingdom, pp. 685-686.

https://doi.org/10.1109/MSN53354.2021.00105

[31] Bogner, J., Schlinger, S., Wagner, S., Zimmermann, A.

(2019). A modular approach to calculate service-based

maintainability metrics from runtime data of

microservices. In International Conference on Product-

Focused Software Process Improvement, pp. 489-496.

https://doi.org/10.1007/978-3-030-35333-9_34

[32] Samardžić, M., Šajina, R., Tanković, N., Grbac, T.G.

(2020). Microservice performance degradation

correlation. In 2020 43rd International Convention on

Information, Communication and Electronic Technology

(MIPRO), Opatija, Croatia, pp. 1623-1626.

https://doi.org/10.23919/MIPRO48935.2020.9245234

[33] Fadda, E., Plebani, P., Vitali, M. (2019). Monitoring-

aware optimal deployment for applications based on

microservices. IEEE Transactions on Services

Computing, 14(6): 1849-1863.

https://doi.org/10.1109/TSC.2019.2910069

[34] Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I.,

Zavattaro, G. (2019). Optimal and automated

deployment for microservices. In Fundamental

Approaches to Software Engineering: 22nd International

Conference, FASE 2019, Held as Part of the European

Joint Conferences on Theory and Practice of Software,

ETAPS 2019, Prague, Czech Republic, pp. 351-368.

https://doi.org/10.1007/978-3-030-16722-6_21

[35] Lin, M., Xi, J., Bai, W., Wu, J. (2019). Ant colony

algorithm for multi-objective optimization of container-

based microservice scheduling in cloud. IEEE Access, 7:

83088-83100.

https://doi.org/10.1109/ACCESS.2019.2924414

[36] Zhang, H., Xu, Y., Cao, W., Xu, X., Zhou, C., Liu, Y.

(2019). Application and practice of microservice

architecture in multidimensional electronic channel

construction. Journal of Physics: Conference Series,

1168(2): 022023. https://doi.org/10.1088/1742-

6596/1168/2/022023

562

[37] Gulenko, A., Wallschläger, M., Tappe, J., Pfeiffer, C.

(2016). Towards quantifiable boundaries for elastic

horizontal scaling of microservices. In UCC '17: 10th

International Conference on Utility and Cloud

Computing, Austin, TX, USA pp. 1-13.

https://doi.org/10.1145/3147234.3148111

[38] Yu, W., Jia, M., Fang, X., Lu, Y., Xu, J. (2020).

Modeling and analysis of medical resource allocation

based on Timed Colored Petri net. Future Generation

Computer Systems, 111: 368-374.

https://doi.org/10.1016/j.future.2020.05.010

[39] Mostofi, V.M., Krishnamurthy, D., Arlitt, M. (2021).

Fast and efficient performance tuning of microservices.

In 2021 IEEE 14th International Conference on Cloud

Computing (CLOUD), Chicago, IL, USA, pp. 515-520.

https://doi.org/10.1109/CLOUD53861.2021.00067

[40] Somashekar, G., Suresh, A., Tyagi, S., Dhyani, V.,

Donkada, K., Pradhan, A., Gandhi, A. (2022). Reducing

the tail latency of microservices applications via optimal

configuration tuning. In 2022 IEEE International

Conference on Autonomic Computing and Self-

Organizing Systems (ACSOS), CA, USA, pp. 111-120.

https://doi.org/10.1109/ACSOS55765.2022.00029

[41] Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I.,

Zavattaro, G. (2019). Optimal and automated

deployment for microservices. In Fundamental

Approaches to Software Engineering: 22nd International

Conference, FASE 2019, Held as Part of the European

Joint Conferences on Theory and Practice of Software,

ETAPS 2019, Prague, Czech Republic, pp. 351-368.

https://doi.org/10.1007/978-3-030-16722-6

563

https://doi.org/10.1145/3147234.3148111

