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Multiple knapsack problem (MKP) optimization presents significant challenges in retail 

resource allocation, particularly for product bundling scenarios with dual constraints. While 

numerous algorithms exist for solving MKP, comprehensive comparisons focusing on real-

world retail applications remain limited. This study evaluates seven distinct algorithms: 

Base Dynamic Programming (BDP), Numba-accelerated DP, parallel processing (P-P), 

parallel rolling (P-R), genetic algorithm (GA), greedy algorithm, and Branch & Bound. 

Using a real dataset of 88 Indonesian traditional products allocated across 7 knapsacks, we 

analyze algorithm performance through solution quality, execution time, memory 

utilization, and statistical validation. The algorithm evaluation employs a comprehensive 

TOPSIS-based multi-criteria decision framework with systematically allocated weights: 

solution quality (0.5), runtime efficiency (0.3), memory utilization (0.1), and resource 

optimization (0.1). These weights were determined through analytical hierarchy process 

considering practical implementation priorities in retail environments, where solution 

optimality takes precedence while maintaining computational efficiency. The TOPSIS 

analysis incorporates normalized performance metrics and validates ranking stability 

through sensitivity analysis, ensuring reliable algorithm recommendations. Results 

demonstrate that parallel rolling achieves optimal solutions (247.50 total value) with 

99.66% resource utilization and 98.90% runtime improvement over traditional approaches. 

For resource-constrained environments, Branch & Bound offers 90% utilization with 

minimal computational overhead. Statistical analysis through TOPSIS confirms the 

superior performance of parallel variants (scores > 0.880) compared to basic 

implementations (scores < 0.800). Our findings provide evidence-based recommendations 

for algorithm selection based on business scale and computational resources, contributing 

to practical MKP implementation in retail product bundling scenarios.  
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1. INTRODUCTION

The multiple knapsack problem (MKP) represents a critical 

optimization paradigm in modern retail operations, 

particularly in the era of data-driven decision-making and 

resource optimization [1, 2]. As an NP-hard combinatorial 

optimization challenge, MKP extends beyond theoretical 

computer science into practical retail applications, where it 

addresses crucial business decisions in product bundling, 

inventory allocation, and resource distribution [3-5]. The 

complexity of contemporary retail operations, characterized 

by dual constraints of physical limitations (weight) and 

financial restrictions (budget), has elevated MKP from a 

theoretical construct to an essential tool for operational 

excellence [6, 7]. 

Recent developments in retail technology have highlighted 

the growing significance of efficient resource allocation, 

particularly in e-commerce and traditional retail bundling 

scenarios [6, 8]. The inherent complexity of MKP, which 

increases exponentially with the number of items and 

knapsacks, necessitates sophisticated algorithmic solutions 

that balance solution quality with computational feasibility [9, 

10]. This balance becomes particularly crucial in retail 

environments where decision-making often requires real-time 

optimization under multiple constraints. 

Dynamic programming emerges as a foundational 

technique in this context, offering systematic approaches to 

decompose complex optimization challenges into manageable 

subproblems. In MKP applications, dynamic programming 

facilitates the methodical exploration of item combinations 

and their allocation across multiple knapsacks, creating a 

robust framework for solution optimization [11-13]. This 

approach has demonstrated particular efficacy in retail 

scenarios where solution accuracy directly impacts operational 

efficiency and profitability. 

Schäfer and Zweers [14] stated that most research in MKP 

at the moment, did not consider each knapsack have own 

capacity restriction. Then, Babukarthik et al. [15] mentioned 

that the multi-constraint Knapsack problem (KP) remains the 

major challenge in weight and capacity to minimize energy 
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consumption. Then, Dell'Amico et al. [1] used smaller 

instances for MKP due to their computational complexity. 

Moreover, some researchers have addressed dual-constraint 

scenarios but lack comprehensive algorithmic comparison. 

For instance, the studies [16, 17] compared ACO and 

traditional ACO, and clustered orienteering problem families 

respectively. 

While extensive research exists on MKP algorithms [16-20], 

three critical gaps persist in current literature: (1) Limited 

comparative analysis of algorithm performance under retail-

specific dual constraints (weight and budget); (2) Insufficient 

evaluation of implementation requirements across different 

business scales (enterprise vs. SME); (3) Lack of 

comprehensive statistical validation for algorithm selection in 

practical retail applications. Recent algorithmic innovations, 

including parallel processing architectures, metaheuristic 

optimization, and hybrid methodologies, have shown 

promising computational efficiency improvements [21-26]. 

However, existing research predominantly focuses on either 

theoretical performance analysis or single-constraint 

implementations, creating a significant knowledge gap in 

understanding algorithmic behavior under dual-constraint 

scenarios common in retail applications. 

This knowledge gap becomes particularly significant when 

considering the diverse computational infrastructure between 

large retail enterprises and Small-Medium Enterprises (SMEs), 

where resource availability drastically impacts algorithm 

selection and implementation strategies [11, 27, 28]. The 

practical implications of this gap are evidenced in recent 

studies: Zhao et al. [6] highlighted the challenges in 

optimizing case pack sizes in retail supply chains, while Gecili 

and Parikh [7] demonstrate the complexity of shelf space 

allocation under multiple constraints. These real-world 

applications underscore the need for a comprehensive 

understanding of algorithm performance under varying 

resource constraints and business scales. 

For instance, the work [29] on cooperative content caching 

demonstrates the broader applicability of multi-constraint 

optimization, particularly in resource-limited environments. 

This is complemented research [2] on Modified Artificial Bee 

Colony algorithms, which, while innovative, primarily focuses 

on single-dimension performance metrics without 

comprehensive comparative analysis under dual constraints. 

Dell'Amico et al.'s [1] mathematical models provide valuable 

theoretical foundations, but leave open questions about 

practical implementation in retail scenarios. Similarly, 

Boukhari et al.'s [22] hybrid algorithm shows promise in 

solving MKP with setup costs, yet requires further validation 

in real-world retail applications. 

This research makes several novel contributions to address 

these gaps: 1) Methodological advancement which consist of 

development of a comprehensive evaluation framework 

specifically designed for retail-oriented dual-constrained 

MKP, introduction of a hybrid statistical validation approach 

that combines traditional metrics with practical retail 

performance indicators, creation of implementation guidelines 

calibrated to different operational scales; 2) Practical 

applications, which consists of evidence-based algorithm 

selection criteria for retail scenarios, quantitative assessment 

of resource requirements for various implementation scales, 

performance benchmarks for different operational contexts; 3) 

Theoretical extensions which consist of integration of parallel 

processing techniques with traditional optimization 

approaches, enhanced understanding of algorithm behavior 

under dual constraints, and Novel insights into the relationship 

between computational resources and solution quality. 

The primary objectives of this study are to: 1) Evaluate and 

compare eight distinct algorithms for solving dual-constrained 

MKP in terms of solution quality, computational efficiency, 

and resource utilization; 2) Analyze algorithm scalability and 

performance stability through comprehensive statistical 

testing; 3) Provide evidence-based recommendations for 

algorithm selection based on business scale, computational 

resources, and optimization requirements; 4) Establish a 

framework for algorithm selection in retail product bundling 

optimization. 

Our methodological approach combines rigorous 

algorithmic analysis with practical retail considerations. By 

evaluating seven distinct algorithms—BDP, Numba-

accelerated DP, parallel processing, parallel rolling, genetic 

algorithm, greedy algorithm, and Branch & Bound—we 

provide a comprehensive performance analysis framework 

that addresses both theoretical efficiency and practical 

implementation requirements. The evaluation utilizes a 

carefully constructed dataset of 88 Indonesian traditional 

products allocated across 7 knapsacks, representing a realistic 

retail bundling scenario while maintaining mathematical 

tractability. 

This study's significance extends beyond traditional 

algorithm comparison, making substantial contributions to 

both theory and practice, in matter of Theoretical 

Contributions, we present development of a comprehensive 

evaluation framework for dual-constrained MKP algorithms 

that bridges theoretical performance and practical 

implementation and establishment of implementation 

guidelines that consider varying operational scales and 

resource limitations. In matter of practical contributions, we 

present evidence-based algorithm selection criteria tailored to 

specific retail scenarios and business scales, detailed 

quantification of resource requirements enabling informed 

implementation planning, and clear performance expectations 

and benchmarks for different operational scales. 

These contributions directly address the identified research 

gaps while providing actionable insights for both researchers 

and practitioners in the retail sector. The findings are 

particularly relevant for organizations navigating the balance 

between computational efficiency and practical 

implementation constraints. 

The remainder of this paper is organized as follows: Section 

II presents the formal mathematical formulation and 

algorithmic implementations, incorporating both theoretical 

foundations and practical considerations. Section III details 

the experimental results and statistical analysis, providing 

comprehensive performance comparisons across multiple 

metrics. Section IV discusses implementation implications 

and provides specific recommendations for different business 

scales and computational environments. Finally, Section V 

concludes the study and suggests promising directions for 

future research. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Problem formulation and mathematical model 

 

The MKP with dual constraints presents a combinatorial 

optimization challenge in which n heterogeneous items must 

be optimally allocated across m distinct knapsacks [30]. This 
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study addresses a practical retail bundling scenario with the 

following formal mathematical representation: 

Given: 

• Set of n items I={1,...,n}, where each item iI has: Value 

(vi): representing item utility/desirability; Weight (wi): 

physical weight in kilograms; Price (pi): monetary cost in 

IDR 

• Set of m knapsacks K = {1,...,m}, where each knapsack 

jK has: Weight capacity (Cj): maximum allowable total 

weight; Budget constraint (Bj): maximum allowable total 

cost; Unique size-cost characteristics reflecting real retail 

bundles 

The experimental dataset was systematically constructed to 

represent realistic retail bundling scenarios while ensuring 

mathematical tractability. The study incorporates 88 

traditional Indonesian products strategically segmented into 

two primary categories: beverages (n=45) and snacks (n=43), 

reflecting typical product mix ratios in traditional retail 

operations. For each product, three key metrics were carefully 

calibrated: value coefficients ranging from 1.0 to 10.0 units 

derived from normalized customer preference data, weight 

parameters between 0.11 and 1.0 kilograms aligned with 

standard retail packaging constraints, and price variables from 

6,000 to 60,000 IDR mapped to actual market price 

distributions.  

The allocation framework comprises seven knapsacks, 

designed to represent distinct retail bundling strategies across 

multiple market segments. These configurations include 

premium bundles (4.0 kg, 250,000 IDR; 3.0 kg, 300,000 IDR), 

standard bundles (3.0 kg with budgets of 180,000-250,000 

IDR), and value bundles (2.0 kg, 150,000 IDR; 1.5 kg, 160,000 

IDR). This empirically derived configuration from market 

analysis of Indonesian retail operations balances operational 

constraints with customer segment requirements. The 

knapsack capacities and budget constraints were specifically 

calibrated to reflect realistic handling limitations in retail 

environments, accommodate diverse market segments' 

purchasing power, enable meaningful algorithmic 

performance comparison, and maintain computational 

feasibility for systematic analysis. 

Mathematical model: 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ∑ ∑ 𝑣𝑖𝑥𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 (1) 

 

Subject to: 

1. Weight Constraint: 

 

∑ 𝑤𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝐶𝑗∀𝑗 ∈ {1, … , 𝑚} (2) 

 

2. Budget Constraints: 

 

∑ 𝑝𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝐵𝑗∀𝑗 ∈ {1, … , 𝑚} (3) 

 

3. Item Uniqueness: 

 

∑ 𝑥𝑖𝑗

𝑚

𝑗=1

≤ 1∀𝑖 ∈ {1, … , 𝑛} (4) 

 

4. Binary Decision Variables: 

 

𝑥𝑖𝑗 ∈ {0,1}∀𝑖, 𝑗 (5) 

 

where, 𝑥𝑖𝑗  is binary decision variable (1 if item i is assigned to 

knapsack j, 0 otherwise); 𝑣𝑖 represents the value of item I; 𝑤𝑖  

represents the weight of item i; 𝑝𝑖  represents the price of item 

i; 𝐶𝑗  represents the weight capacity of knapsack j; 𝐵𝑗  

represents the budget capacity of knapsack j. 

 

2.2 Implementation 

 

This section details eight algorithm implementations for 

solving the dual-constrained MKP, ranging from exact 

methods to heuristic approaches. Each implementation is 

analyzed for theoretical complexity, memory requirements, 

and optimization strategies. 

 

2.2.1 BDP 

BDP enhances the traditional approach through numpy 

vectorization and improved memory management. This 

implementation maintains optimality while introducing 

several key optimizations for computational efficiency. 

1. Core Architectural Improvements 

1) Numpy-based array operations for vectorized 

computation; 2) Efficient memory allocation through data type 

optimization; 3) Decimal precision handling through integer 

scaling; 4) Enhanced state transition management 

2. Key Implementation Features can be seen in Algorithm 1 

 

Algorithm 1: Snippet python code for BDP 

1 def dp_solve(self, n, m, weights, prices, values, 

capacities, budgets): 

2  max_capacity = int(max(capacities) * 100) 

3   

4  dp = np.zeros((n + 1, m, max_capacity + 1, 

max_budget + 1), dtype=np.float32) 

5   

6  for i in range(1, n + 1): 

7   for j in range(m): 

8    for w in range(int(capacities[j] * 100) + 1): 

9     for b in range(int(budgets[j]) + 1): 

10      if int(weights[i-1] * 100) <= w and 

prices[i-1] <= b: 

11       dp[i, j, w, b] = max(dp[i-1, j, w, b], 

dp[i-1, j, w - int(weights[i-1] * 100), 

int(b - prices[i-1])] + values[i-1]) 

12      else: 

13       dp[i, j, w, b] = dp[i-1, j, w, b] 

14  return dp 

 

3. Technical Optimizations in Space Complexity 

The technical optimizations in BDP implementation focus 

on two critical areas: memory management and computational 

enhancements. Memory management is implemented through 

several sophisticated strategies that optimize resource 

utilization. The implementation uses np.float32 instead of the 

default float64 data type to reduce memory footprint while 

maintaining numerical precision. Pre-allocated arrays with 

optimal data types are employed to minimize memory 

allocation overhead during computation. Integer-based 

computations are implemented to improve numerical accuracy 

and reduce floating-point errors, while efficient memory 

access patterns optimize data retrieval and storage operations. 
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Computational enhancements are achieved through several 

key mechanisms: vectorized operations for state updates 

significantly improve processing speed by performing 

operations on entire arrays simultaneously, integer scaling 

techniques ensure decimal precision while maintaining 

computational efficiency, improved array indexing strategies 

optimize data access patterns, and better memory locality 

exploitation enhances cache utilization and reduces memory 

access latency. These technical optimizations able to create an 

efficient implementation that balances memory usage with 

computational performance while maintaining solution 

accuracy. 

In advanced matter, we could employ employs a Rolling 

Array technique, significantly reducing space complexity 

from O(n×m×W×B) to O(2×m×W×B) by adopting a two-

array approach instead of maintaining n+1 arrays. This 

implementation enables more efficient memory utilization 

without compromising computational accuracy in the 

optimization process. Then, adopt bit-level state 

representation using np.int8 for decision matrices, replacing 

the more memory-intensive float32 implementation. This 

approach achieves a 75% reduction in per-cell memory 

requirements while maintaining efficient state tracking with 

minimal overhead. The implementation is reinforced with 

memory management mechanisms involving strategic garbage 

collection post-knapsack processing and unused state clearing, 

ensuring peak memory utilization remains below 

O(2×m×W×B). As worth mentioning, the subsection 2.2.4 are 

explanation using the optimized DP using parallel rolling. 

 

2.2.2 Numba-accelerated DP 

Numba-accelerated DP extends the BDP approach by 

leveraging Just-In-Time (JIT) compilation for machine-level 

optimization. This implementation achieves significant 

performance improvements while maintaining solution 

optimality. 

1. Core Implementation Architecture as in Algorithm 2 

 

Algorithm 2: Snippet code for Numbas-accelerated DP 

1 @staticmethod 

2 @njit 

3 def dp_solve(n, m, weights, prices, values, capacities, 

budgets): 

4  max_capacity = int(max(capacities) * 100) 

5  max_budget = int(max(budgets)) 

6  dp = np.zeros((n + 1, m, max_capacity + 1, 

max_budget + 1), dtype=np.float32) 

7  for i in range(1, n + 1): 

8   for j in range(m): 

9    for w in range(int(capacities[j] * 100) + 1): 

10     for b in range(int(budgets[j]) + 1): 

11      if int(weights[i-1] * 100) <= w and 

prices[i-1] <= b: 

12       dp[i, j, w, b] = max(dp[i-1, j, w, b], 

dp[i-1, j, w - int(weights[i-1] * 

100), int(b - prices[i-1])] + 

values[i-1]) 

13      else: 

14       dp[i, j, w, b] = dp[i-1, j, w, b] 

15  return dp 

 

2. Numba Optimization Features 

The Numba optimization features leverage advanced JIT 

compilation strategies and robust performance optimization 

techniques to enhance computational efficiency. JIT 

compilation strategies are implemented through sophisticated 

function specialization for data types, enabling optimized 

machine code generation. The implementation incorporates 

loop optimization and unrolling techniques that maximize 

execution efficiency, while SIMD instruction generation 

capabilities harness modern processor architectures for 

parallel computation. Cache-aware memory access patterns 

are implemented to minimize memory latency and optimize 

data retrieval. Performance optimizations are achieved 

through several key mechanisms: machine code generation for 

core computations significantly reduces execution overhead, 

while the elimination of Python interpreter overhead enhances 

raw computational speed. The implementation also employs 

automatic vectorization of operations to leverage hardware-

specific capabilities, complemented by hardware-specific 

optimizations that take advantage of available system 

resources. These optimization features work in concert to 

create a highly efficient implementation that significantly 

outperforms traditional Python execution while maintaining 

solution accuracy and reliability. 

3. Technical Implementation Details 

The technical implementation details of the Numba-

accelerated DP focus on two critical aspects: memory 

management and computational enhancements. The memory 

management system implements contiguous array allocation 

strategies to optimize memory access patterns and enhance 

cache utilization. This is supported by type-specific memory 

layouts that maximize memory efficiency for different data 

types, complemented by optimized cache utilization 

mechanisms that reduce memory access latency. The 

implementation also features reduced memory access latency 

through careful memory organization and access pattern 

optimization. On the computational side, the implementation 

leverages compiled loop execution capabilities that 

significantly enhance processing speed. This is supported by 

optimized boundary checking mechanisms that minimize 

computational overhead while maintaining solution validity. 

The system employs efficient register allocation strategies to 

maximize processor utilization, while reduced function call 

overhead minimizes computational bottlenecks. These 

technical features are carefully integrated to create a highly 

optimized implementation that balances memory efficiency 

with computational performance. 

4. Key Improvements over BDP by Implementation 

Considerations 

We need consider for deployment requirement, such as 

LLVM compiler infrastructure, CPU with SIMD support, 

Sufficient memory capacity, Proper environment setup. Also 

in matter of Optimization Guidelines can follows Function 

signature type specification, Array contiguity maintenance, 

Compiler directive optimization, Memory access pattern 

design. 

 

2.2.3 Parallel processing implementation 

Parallel processing enhances the Numba-accelerated 

approach by introducing multi-threaded computation and 

parallel array operations. This implementation leverages both 

thread-level parallelism and SIMD operations for maximum 

performance. 

1. Parallel Architecture Configuration as in Algorithm 3 

 

Algorithm 3: Snippet code for parallel processing with 

Numba 
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1 parallel.set_num_threads(4)  

2 @staticmethod 

3 @njit(parallel=True) 

4 def dp_solve(n, m, weights, prices, values, capacities, 

budgets): 

5  max_capacity = int(max(capacities) * 100) 

6  max_budget = int(max(budgets)) 

7  dp = np.zeros((n + 1, m, max_capacity + 1, 

max_budget + 1), dtype=np.float32) 

8  for i in prange(1, n + 1): 

9   for j in range(m): 

10    for w in range(int(capacities[j] * 100) + 1): 

11     for b in range(int(budgets[j]) + 1): 

12      if int(weights[i-1] * 100) <= w and 

prices[i-1] <= b: 

13       dp[i, j, w, b] = max(dp[i-1, j, w, b], 

dp[i-1, j, w - int(weights[i-1] * 

100), int(b - prices[i-1])] + 

values[i-1]) 

14      else: 

15       dp[i, j, w, b] = dp[i-1, j, w, b] 

16  return dp 

 

2. Parallelization Strategy 

The parallel processing implementation employs a 

sophisticated multi-level task distribution framework designed 

to optimize computational efficiency while maintaining 

solution integrity. Our approach incorporates three primary 

optimization layers: 

Layer 1: Thread-Level Parallelization. The implementation 

utilizes Numba's parallel processing capabilities through the 

@njit(parallel=True) decorator, enabling efficient thread 

management (line code 2-9). This structure facilitates parallel 

item processing while maintaining sequential knapsack 

evaluation to prevent resource conflicts. Empirical analysis 

demonstrates a significant reduction in processing time from 

79.16 seconds (base implementation) to 1.21 seconds, 

achieving an 80.47x speedup (more explanation in Results 

Section) 

Layer 2: Resource Distribution Optimization. Our 

implementation incorporates dynamic workload balancing 

through strategic task partitioning: 

- Computation Distribution, which Parallel item evaluation 

across available threads, Synchronized state updates for 

solution consistency, Memory-aware task allocation 

minimizing thread contention 

- Memory Access Optimization, which Thread-local 

storage for intermediate computations, Cache-aligned 

data structures reducing memory latency, Optimized 

memory access patterns enhancing cache utilization. 

- Load Balancing Mechanism can be seen in line code 1 and 

8. 

Layer 3: Synchronization Control. The implementation 

maintains solution consistency through carefully designed 

synchronization mechanisms as State Management: Atomic 

updates for shared resource modifications, Barrier 

synchronization at critical computation points, and Efficient 

thread coordination minimizing overhead.  

3. Technical Implementation Features 

The technical implementation features encompass two key 

areas of focus: parallel processing components and memory 

architecture. The parallel processing components are built 

around a sophisticated thread pool management system that 

efficiently handles task distribution across available 

processors. This is supported by a work queue distribution 

mechanism that optimizes task allocation and processing flow. 

The implementation incorporates essential synchronization 

primitives to maintain data consistency and prevent race 

conditions during parallel execution. To ensure robust 

concurrent processing, comprehensive race condition 

prevention mechanisms are implemented throughout the 

system. The memory architecture is designed with careful 

consideration of thread-local storage capabilities to minimize 

contention and maximize parallel efficiency. This is 

complemented by shared memory management strategies that 

optimize resource utilization across threads. The 

implementation also employs cache line optimization 

techniques to enhance memory access performance, supported 

by memory fence implementation that ensures proper 

synchronization of memory operations across multiple threads. 

These technical features work in concert to create a highly 

efficient parallel processing system that maintains both 

performance and reliability. 

4. Key Improvements over Numba DP 

a. Implementation Benefits: Scalable with CPU cores, 

better resource distribution, Improved cache utilization, 

Reduced memory pressure. 

b. Trade-off: Increased implementation complexity, 

Hardware dependencies, Thread coordination overhead, 

Non-linear scaling beyond 4 cores, System resource 

requirements. 

5. Implementation Requirements 

a. Hardware Prerequisites: Multi-core processor. 

Sufficient L3 cache, Adequate memory bandwidth, 

NUMA architecture awareness. 

b. Software Dependencies: Threading library support, 

Numba parallel features, Memory management tools, 

Synchronization primitives. 

6. Optimization Guidelines 

a. Thread Management: Optimal thread count selection, 

Work distribution strategy, Synchronization 

minimization, Cache coherency maintenance. 

b. Memory Management: Thread-local allocation, Cache-

line alignment, Memory access patterns, False sharing 

prevention. 

The parallel implementation offers improved resource 

utilization and memory efficiency compared to Numba-only 

implementation, making it particularly suitable for large-scale 

retail applications with multiple CPU cores available. The 

slight increase in runtime is offset by better scalability and 

resource management. 

 

2.2.4 Parallel rolling 

Parallel rolling combines multi-threaded computation with 

memory optimization through state space rolling. This 

implementation achieves memory efficiency while 

maintaining parallel processing benefits through a three-state 

matrix rotation technique. 

1. Core Implementation Architecture as seen in Algorithm 4 

 

Algorithm 4: Parallel rolling 

1 @staticmethod 

2 @njit(parallel=True) 

3 def dp_solve(n, m, weights, prices, values, capacities, 

budgets): 

4  max_capacity = int(max(capacities) * 100) 

5  max_budget = int(max(budgets)) 

6  # Three-state matrix instead of n+1 states 
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7  dp = np.zeros((3, m, max_capacity + 1, 

max_budget + 1), dtype=np.float32) 

8  decisions = np.zeros((n, m, max_capacity + 1, 

max_budget + 1), dtype=np.int8) 

9  for i in range(1, n + 1): 

10   curr = i % 3        # Current state 

11   prev = (i - 1) % 3  # Previous state 

12    for j in prange(m): 

13     for w in range(int(capacities[j] * 100) + 1): 

14      for b in range(int(budgets[j]) + 1): 

15       if int(weights[i-1] * 100) <= w and 

prices[i-1] <= b: 

16        if dp[prev, j, w - int(weights[i-1] * 

100), int(b - prices[i-1])] + 

values[i-1] > dp[prev, j, w, b]: 

17         dp[curr, j, w, b] = dp[prev, j, w 

- int(weights[i-1] * 100), int(b - 

prices[i-1])] + values[i-1] 

18         decisions[i-1, j, w, b] = 1 

19        else: 

20         dp[curr, j, w, b] = dp[prev, j, w, 

b] 

21  return dp[(n-1) % 3], decisions 

 

2. Memory Optimization Strategy 

The memory optimization strategy in parallel rolling 

implementation centers around two critical components: state 

space rolling and decision tracking. The state space rolling 

mechanism employs an innovative three-state matrix rotation 

approach that significantly reduces memory footprint while 

maintaining computational efficiency. This system 

implements current/previous state tracking to manage state 

transitions effectively, coupled with efficient state transition 

mechanisms that optimize memory usage during computation. 

The implementation maintains a minimal memory footprint 

through careful resource management, ensuring optimal 

performance with reduced memory requirements. 

Complementing this, the decision tracking component utilizes 

a compact decision matrix design that efficiently stores 

solution choices. This is supported by efficient backtracking 

support mechanisms that enable solution reconstruction when 

needed, while employing a binary state representation to 

minimize memory usage. The implementation also features 

memory-efficient solution reconstruction capabilities that 

allow for detailed solution recovery without significant 

memory overhead. These optimization strategies work 

together to create a memory-efficient implementation that 

maintains high performance while significantly reducing 

memory requirements compared to traditional approaches. 

3. Parallel Processing Features 

The parallel processing features of the parallel rolling 

implementation are structured around two fundamental 

components: thread management and memory architecture. 

The thread management system implements task 

parallelization across knapsacks through an efficient 

distribution mechanism that optimizes workload allocation. 

This is supported by thread-safe state updates that ensure data 

consistency during parallel execution, complemented by 

synchronized memory access controls that prevent data 

corruption. The implementation employs load-balanced work 

distribution strategies to ensure optimal resource utilization 

across all available processors. The memory architecture is 

specifically designed to support parallel processing efficiency, 

implementing cache-friendly state rotation mechanisms that 

optimize memory access patterns. The system utilizes thread-

local computation capabilities to minimize contention between 

threads, supported by optimized memory access patterns that 

enhance overall performance. These features are further 

strengthened by reduced memory contention mechanisms that 

ensure smooth parallel execution. Together, these parallel 

processing features create a highly efficient implementation 

that maximizes computational throughput while maintaining 

data consistency and solution accuracy. 

4. Key Improvements 

a. Performance Balance: Maintained parallel speedup, 

Reduced memory pressure, Improved cache 

performance, Efficient state management. 

b. Trade-offs: Additional implementation complexity, 

State rotation overhead, Decision tracking overhead, 

Complex solution reconstruction, Synchronization 

requirements. 

5. Implementation Considerations 

a. Technical Requirements: Multi-core processor support, 

Cache-coherent architecture, Memory management 

capabilities, Thread synchronization support. 

b. Optimization Guidelines: State rotation timing, 

Memory access patterns, Thread work distribution, 

Cache line alignment. 

The parallel rolling implementation represents an optimal 

balance between computational efficiency and memory usage, 

making it particularly suitable for memory-constrained 

environments while maintaining parallel processing benefits. 

 

2.2.5 Genetic algorithm 

The genetic algorithm provides a metaheuristic approach to 

MKP through evolutionary computation [3, 9, 11]. This 

implementation balances exploration and exploitation while 

handling dual constraints effectively. 

1. Core Genetic Components as seen in Algorithm 5 

 

Algorithm 5: Snippet code for genetic algorithm 

1 @dataclass 

2 class Individual: 

3  chromosome: List[int] # Each gene represents 

knapsack assignment (-1 = not selected) 

4  fitness: float = 0.0 

5  is_feasible: bool = True 

6 class MultipleKnapsackGA: 

7  def __init__(self, population_size=100, 

generations=100, mutation_rate=0.1, 

elite_size=10, tournament_size=5):  

8   self.population_size = population_size 

9   self.generations = generations 

10   self.mutation_rate = mutation_rate 

11   self.elite_size = elite_size 

12   self.tournament_size = tournament_size 

13    

14  def evaluate_fitness(self, position: np.ndarray) -> 

float: 

15   total_value = 0 

16   for j in range(self.m): 

17    weight_sum = sum(position[i, j] * 

self.items[i].weight for i in range(self.n)) 

18    price_sum = sum(position[i, j] * 

self.items[i].price for i in range(self.n)) 

19    if (weight_sum > self.knapsacks[j].capacity 

or price_sum > self.knapsacks[j].budget): 

20        return -np.inf 
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21    total_value += sum(position[i, j] * 

self.items[i].value 

22   return total_value 

 

2. Algorithmic Parameters 

As seen in Table 1, The GA implementation utilizes 

carefully tuned parameters to balance exploration and 

exploitation. Population size of 150 individuals was chosen to 

maintain sufficient genetic diversity while remaining 

computationally manageable. The algorithm runs for 100 

generations to allow adequate evolution time while preventing 

excessive computational overhead. A moderate mutation rate 

of 0.1 enables sufficient genetic variation without disrupting 

beneficial gene combinations. Elite size of 10 preserves the 

best solutions across generations while maintaining population 

diversity. Tournament size of 5 provides appropriate selection 

pressure - large enough to favor fitter individuals but small 

enough to prevent premature convergence.  

 

Table 1. Genetic algorithm parameters 

 
GA Parameter Settings Values 

Population Size 50,100,150,200 

Number of Generations 100 

Mutation Rate 0.1 

Elite Size 10 

Tournament Size 5 

 

To validate the GA parameter settings, here we focus on 

population size. The result can be seen in Table 2. 

 

Table 2. Population size analysis 

 

Population 

Size 

Total 

Value 

Time 

(s) 

Memory 

(MB) 

Price 

Utilization 

(%) 

Weight 

Utilization 

(%) 

50 232 0.7260 145.09 93.42 79.95 

100 230 1.5822 132.45 92.62 83.90 

150 232.5 2.4622 145.35 93.62 76.72 

200 232 3.4238 135.25 93.42 80.72 

 

Based on comprehensive parameter sensitivity analysis on 

Table 2, comparing population sizes (50, 100, 150, 200) in the 

genetic algorithm implementation for MKP, population size 

100 emerges as the optimal configuration. This conclusion is 

substantiated through rigorous empirical evaluation across 

multiple performance metrics: solution quality (total value = 

230.0), computational efficiency (execution time = 1.5822s), 

resource utilization (memory = 132.45 MB), and optimization 

effectiveness (weight utilization = 83.90%, price utilization = 

92.62%). While population size 150 achieved marginally 

higher solution quality (232.5), the minimal improvement of 

1.09% does not justify the substantial increases in 

computational overhead (55.6% longer execution time) and 

memory consumption (9.74% higher), thus establishing 

population size 100 as the most efficient parameter setting for 

balancing solution quality and computational resources in this 

specific multiple knapsack optimization context. 

As seen in Table 3, the evolution process is governed by 

four key control mechanisms. Selection Pressure utilizes an 

adaptive approach that automatically adjusts based on 

population diversity and convergence trends. Diversity 

Maintenance actively monitors and maintains genetic 

variation through strategic mutation and crossover operations. 

Convergence Control implements dynamic adjustments to 

prevent premature convergence while ensuring efficient 

solution space exploration. Population Renewal mechanism 

introduces new genetic material by replacing 20% of the 

population with fresh individuals when diversity drops below 

critical thresholds, helping escape local optima while 

preserving good solutions. 

 

Table 3. Genetic algorithm evolution controls 

 
Evolution Controls Value 

Selection Pressure  Adaptive 

Diversity Maintenance Active 

Convergence Control Dynamic 

Population Renewal 20% 

 

3. Genetic Operators 

Based on Table 4, the GA implementation incorporates 

three essential genetic operators, each carefully designed to 

ensure effective solution space exploration and exploitation: 

1) Selection Mechanism employs a multi-faceted approach 

combining tournament selection for parent choice, elite 

preservation to maintain best solutions, fitness-based 

ranking to guide selection pressure, and diversity-aware 

selection to prevent premature convergence. Tournament 

selection with size 5 provides balanced selection pressure, 

while elitism preserves the top 10 solutions across 

generations. 

2) Crossover Strategy utilizes a sophisticated approach with 

four key components. Two-Point Crossover enables 

effective genetic material exchange between parents. 

Constraint-Aware Recombination ensures offspring 

validity by respecting knapsack capacity and budget 

constraints. Solution Repair mechanisms correct any 

constraint violations post-crossover. Feasibility 

Preservation maintains solution validity throughout the 

evolutionary process. 

3) Mutation Operations implement four complementary 

strategies. Random Gene Modification allows for 

exploration of new solution spaces. Intelligent Mutation 

applies problem-specific knowledge to guide 

modifications. Adaptive Rate Adjustment dynamically 

modifies mutation probability based on population 

diversity. Constraint Satisfaction ensures all mutations 

maintain solution feasibility within knapsack constraints. 

 

Table 4. Genetic operators 

 
Selection 

Mechanism 
Crossover Strategy 

Mutation 

Operations 

- Tournament 

Selection 

- Elite Preservation 

- Fitness-Based 

Ranking 

- Diversity-Aware 

Selection 

- Two-Point Crossover 

- Constraint Aware 

Recombination 

- Solution Repair 

- Feasibility 

Preservation 

- Random Gene 

Modification 

- Intelligent Mutation 

- Adaptive Rate 

Adjustment 

- Constraint 

Satisfaction 

 

These genetic operators work synergistically to achieve the 

observed performance metrics, including solution quality of 

230.0 and resource utilization of 92.62% for price and 83.90% 

for weight capacity. The operators' design particularly 

emphasizes maintaining solution feasibility while enabling 

effective search space exploration. 

4. Implementation Enhancements 

The implementation enhancements in the genetic algorithm 
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focus on two crucial areas: constraint handling and 

performance optimization. In constraint handling, the 

implementation employs a sophisticated repair mechanism 

that corrects infeasible solutions while maintaining genetic 

diversity. This is complemented by carefully designed penalty 

functions that guide the search toward feasible regions of the 

solution space. The system implements robust feasibility 

preservation mechanisms to maintain solution validity 

throughout the evolutionary process, supported by 

comprehensive solution validation procedures that ensure all 

constraints are satisfied. Performance optimization is achieved 

through several key mechanisms: parallel fitness evaluation 

capabilities that leverage multiple processors for increased 

computational efficiency, sophisticated caching mechanisms 

that reduce redundant calculations, and early stopping criteria 

that prevent unnecessary computational overhead. The 

implementation also features advanced population 

management techniques that maintain genetic diversity while 

focusing the search on promising regions of the solution space. 

These enhancement features work synergistically to create an 

efficient and reliable genetic algorithm implementation that 

effectively balances solution quality with computational 

performance while maintaining strict adherence to problem 

constraints. 

5. Implementation Trade-offs 

a. Advantages: Low Memory Requirements, Anytime 

Solution Availability, Population Diversity, Parallel 

Potential. 

b. Limitations: Non-Guaranteed Optimality, Parameter 

Sensitivity, Convergence Variance, Solution 

Variability. 

6. Optimization Guidelines: 

a. Parameter Tuning: Population Size Selection, 

Generation Count Optimization, Mutation Rate 

Adjustment, Tournament Size Calibration. 

b. Implementation Focus: Constraint Satisfaction, 

Diversity Maintenance, Convergence Control, Solution 

Quality Balance. 

The genetic algorithm implementation provides a robust 

alternative when optimal solutions aren't strictly required, 

offering good solution quality with moderate computational 

resources [30, 31]. This makes it particularly suitable for larger 

problem instances where exact methods become 

computationally prohibitive. 

 

2.2.6 Greedy algorithm 

The greedy algorithm provides a fast, deterministic heuristic 

approach by making locally optimal choices based on value 

density metrics [32, 33]. This implementation achieves 

efficient resource utilization through strategic item selection. 

1. Core Implementation Architecture as in Algorithm 6 

 

Algorithm 6: Snippet code for greedy algorithm 

1 class GreedyCriteria(Enum): 

2  VALUE = "value" 

3  VALUE_PER_WEIGHT = "value_per_weight" 

4  VALUE_PER_PRICE = "value_per_price" 

5  VALUE_PER_RESOURCE = 

"value_per_resource" 

6  

7 @dataclass 

8 class Item: 

9  def value_per_resource(self) -> float: 

10   return self.value / (self.weight + self.price) if 

(self.weight + self.price) > 0 else float('inf') 

11  

12 class MultipleKnapsackGreedy: 

13  def solve(self): 

14   sorted_knapsacks = sorted(self.knapsacks, 

key=lambda k: k.capacity/k.budget if 

k.budget > 0 else float('inf'), reverse=True) 

15   available_items = self.items.copy() 

16   results = [] 

17    

18   for knapsack in sorted_knapsacks: 

19    sorted_items = 

self.sort_items(available_items) 

20    selected_items = [] 

21    remaining_items = [] 

22    total_value = 0.0 

23    # Greedy selection process 

24    for item in sorted_items: 

25     if knapsack.can_add_item(item): 

26      if knapsack.add_item(item): 

27       selected_items.append(item) 

28       total_value += item.value 

29     Else: 

30      remaining_items.append(item) 

31    available_items = remaining_items 

 

2. Selection Strategy 

a. Value Density Metrics 

b. Sorting Criteria: Knapsack Efficiency Ratio, Item 

Value Density, Resource Consumption Rate, 

Combined Utility Measure 

3. Implementation Features 

a. Core Components: Single-pass item selection, Greedy 

choice function, Constraint validation, Resource 

tracking 

b. Optimization Elements: Efficient sorting, Early 

termination, Resource monitoring, Solution 

construction  

4. Implementation Advantages 

a. Computational Benefits: Minimal runtime overhead, 

Linear memory scaling, Deterministic behavior, 

Simple implementation 

b. Practical Benefits: No parameter tuning, Immediate 

solutions, Predictable performance, Easy maintenance 

5. Solution Characteristics 

a. Resource Utilization: Memory Efficiency: high; CPU 

Utilization: minimal; I/O Requirements: negligible; 

Storage Needs: constant 

6. Implementation Trade-offs 

a. Advantages: Extremely fast execution, Simple 

implementation, Deterministic results, Low resource 

requirements 

b. Limitations: Sub-optimal solutions, Local decision 

making, No solution refinement, Fixed selection 

criteria 

7. Key Improvements over Previous Approaches 

a. Performance Gains: Fastest execution time, Minimal 

memory overhead, Simple computation model, 

Immediate results. 

b. Resource Efficiency: Constant memory usage, Single-

pass processing, No iteration required, Linear scaling 

8. Implementation Guidelines 

a. Selection Criteria: Value density metric choice, Sorting 

strategy selection, Constraint handling, Resource 
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balancing 

b. Optimization Focus: Sort efficiency, Memory 

management, Constraint checking, Solution 

construction 

The Greedy approach provides an extremely fast solution 

with reasonable quality, making it particularly suitable for 

real-time applications or when computational resources are 

severely constrained. Its performance characteristics make it 

an excellent choice for initial solution generation or when 

quick approximations are acceptable. 

 

2.2.7 Branch & Bound algorithm 

Branch & Bound provides a systematic approach to finding 

optimal or near-optimal solutions through intelligent search 

space exploration and pruning [3, 29, 34]. This 

implementation utilizes priority-based searching with efficient 

bounding mechanisms. 

1. Core Data Structures as in Algorithm 7 

 

Algorithm 7: Snippet code for Branch & Bound 

1 @dataclass(order=True) 

2 class PrioritizedNode: 

3  priority: float 

4  level: int = field(compare=False) 

5  value: float = field(compare=False) 

6  weight: Dict[int, float] = field(compare=False) 

7  price: Dict[int, float] = field(compare=False) 

8  assigned_items: Dict[int, List[Item]] = 

field(compare=False) 

9  bound: float = field(compare=False) 

10  

11 class MultipleBranchAndBoundSolver: 

12  def solve(self): 

13   pq = PriorityQueue() 

14   # Initialize root node 

15   initial_weights = {i: k.capacity for i, k in 

enumerate(self.knapsacks)} 

16   initial_budgets = {i: k.budget for i, k in 

enumerate(self.knapsacks)} 

17   root_bound = self.calculate_bound(0, 0, 

initial_weights, initial_budgets) 

18   root_node = PrioritizedNode( 

19    priority=-root_bound, # Negative for max-

heap behavior 

20    level=0, 

21    value=0, 

22    weight=initial_weights, 

23    price=initial_budgets, 

24    assigned_items={i: [] for i in range(self.m)}, 

25    bound=root_bound) 

26   pq.put(root_node) 

 

2. Bounding Strategy 

 

Algorithm 8: Snippet code for calculate_bound 

1 def calculate_bound(self, level: int, curr_value: float, 

remaining_weights: Dict[int, float], 

remaining_budgets: Dict[int, float]) -> float: 

2  bound = curr_value 

3  remaining_items = self.items[level:] 

4   

5  for item in remaining_items: 

6   min_fraction = 1.0 

7   selected_knapsack = -1 

8   for k_id, remaining_weight in 

remaining_weights.items(): 

9    if remaining_weight >= item.weight and 

remaining_budgets[k_id] >= item.price: 

10     fraction = min(remaining_weight / 

item.weight, remaining_budgets[k_id] / 

item.price, 1.0) 

11     if fraction > min_fraction: 

12      min_fraction = fraction 

13      selected_knapsack = k_id 

 

3. Search Space Management 

The search space management in the Branch & Bound 

implementation is structured around two key components: 

node exploration strategy and pruning mechanisms. The node 

exploration strategy employs a best-first search approach 

using a priority queue system to efficiently navigate the 

solution space. This is supported by depth-based exploration 

control that manages the search depth to balance between 

exploration and exploitation. The implementation features 

efficient node pruning techniques that eliminate unpromising 

branches of the search tree, complemented by solution space 

partitioning strategies that effectively divide the problem into 

manageable subproblems. The pruning mechanisms are 

implemented through several sophisticated approaches: upper 

bound comparison techniques that quickly identify and 

eliminate suboptimal branches, rigorous feasibility checking 

procedures that maintain solution validity, comprehensive 

resource constraint validation that ensures all solutions meet 

problem constraints, and dominated solution elimination 

strategies that remove redundant search paths. These search 

space management features work together to create an 

efficient implementation that effectively explores the solution 

space while minimizing computational overhead through 

strategic pruning and exploration control. 

4. Implementation Features 

The implementation features of the Branch & Bound 

algorithm encompass two primary aspects: search 

optimization and memory management. The search 

optimization process is built around priority-based exploration 

that efficiently guides the search toward promising regions of 

the solution space. This is enhanced by efficient bound 

computation mechanisms that quickly evaluate the potential of 

each branch, complemented by early termination capabilities 

that prevent unnecessary exploration of unpromising paths. 

The system maintains comprehensive solution tracking 

procedures that record the best solutions found during the 

search process. Memory management is implemented through 

several sophisticated strategies: compact node representation 

techniques minimize memory usage while maintaining all 

necessary information, efficient state storage mechanisms 

optimize memory utilization during the search process, and 

memory-aware pruning strategies remove unnecessary nodes 

to conserve memory resources. The implementation also 

features comprehensive resource tracking capabilities that 

monitor and optimize resource usage throughout the execution. 

These implementation features are carefully integrated to 

create a highly efficient Branch & Bound algorithm that 

effectively balances search effectiveness with memory 

efficiency. 

5. Key Advantages  

a. Computational Benefits: fast convergence, efficient 

pruning, limited memory usage, anytime solutions 

b. Solution Quality: Near-optimal results, Guaranteed 

541



 

bounds, Solution certificates, Quality guarantees 

6. Implementation Trade-offs 

a. Advantages: Efficient search space exploration, Strong 

pruning capabilities, Quality guarantees, Memory 

efficiency 

b. Limitations: Complex implementation, Variable 

runtime, Search space dependency, Branch selection 

impact  

7. Performance Optimization 

a. Search Strategy: Node selection heuristics, Pruning 

criteria optimization, Bound computation efficiency, 

State space management 

b. Memory Optimization: Node compression, State reuse, 

Pruning effectiveness, Resource utilization. 

 

2.3 Theoretical complexity analysis 

 

Table 5 presents the theoretical complexity analysis for all 

implemented algorithms, providing critical insights into their 

scalability and resource requirements. The complexity is 

expressed in terms of key problem parameters: n (number of 

items), m (number of knapsacks), W (maximum weight 

capacity), B (maximum budget), and p (number of processors 

for parallel variants). 

 

Table 5. Algorithm complexity comparison 

 
Algorithm Time Complexity Space Complexity 

BDP O(n×m×W×B) O(n×m×W×B) 

Numba O(n×m×W×B) O(n×m×W×B) 

Parallel O(n×m×W×B)/p O(n×m×W×B) 

P-Rolling O(n×m×W×B) O(3×m×W×B) 

GA O(population_size×n) O(population_size) 

Greedy O(n) O(1) 

Branch & Bound O(2n)* O(n) 
Note: *worst case 

 

Numba-accelerated implementations maintain the same 

theoretical complexity O(n×m×W×B) as their traditional 

counterparts, but achieve significant practical speedup through 

JIT compilation and hardware optimization. Similarly, the 

Parallel variant reduces actual runtime by a factor of p through 

parallel processing, resulting in O(n×m×W×B)/p time 

complexity, while maintaining the same space requirements. 

The parallel rolling variant innovatively reduces space 

complexity to O(3×m×W×B) through state space rolling, 

while maintaining the same time complexity as other DP 

variants. This represents a significant memory optimization 

without compromising solution quality. 

Genetic algorithm exhibits significantly lower complexity 

of O(population_size×n), making it more scalable for larger 

problem instances, though without optimality guarantees. The 

Greedy approach achieves the lowest complexity of O(n) in 

both time and O(1) in space, offering extremely fast execution 

at the cost of solution quality. 

Branch & Bound, while having worst-case time complexity 

of O(2^n), often performs significantly better in practice due 

to effective pruning strategies. Its space complexity remains 

linear at O(n), making it memory-efficient for larger problems. 

The theoretical complexity analysis provides insights into 

algorithm scalability and resource requirements. Notably, 

while Branch & Bound shows exponential worst-case 

complexity, its practical performance can be significantly 

better due to effective pruning strategies. The parallel variants 

maintain the same theoretical complexity as BDP but achieve 

practical speedup through concurrent execution. 

 

2.4 Evaluation framework 

 

2.4.1 Experimental setup 

All experiments were conducted on Intel Core Ultra 7 22 

threads with 32 GB memory running Python 3.8. For 

reproducibility, random seeds were set to 42 where applicable. 

The implementation utilized NumPy 1.19 for numerical 

computations and Pandas 1.2 for data management. Tests were 

executed with a time limit of 3600 seconds per algorithm. 

Test Dataset Characteristics as follows: 88 products (45 

beverages, 43 snacks); 7 knapsacks with varying constraints; 

Value range: 1.0-10.0 units; Weight range: 0.11-1.0 kg; Price 

range: 6,000-60,000 IDR. 

The knapsack constraints were designed to reflect real-

world retail bundling scenarios, with capacities ranging from 

1.5kg to 4.0kg and budgets from 150,000 to 300,000 IDR. 

 

2.4.2 Performance metrics 

The performance evaluation framework incorporates 

multiple metric categories to ensure comprehensive 

assessment of each algorithm. For solution quality assessment, 

we employ Total Value Achievement (TVA) to measure 

absolute solution value, alongside Relative Value 

Achievement (RVA) which contextualizes solution value 

against theoretical optimum. Resource Utilization Efficiency 

(RUE – denoted as price utilization ratio) evaluates how 

effectively each algorithm utilizes available constraints, while 

Constraint Violation Rate (CVR) monitors the frequency of 

constraint breaches during solution construction. 

In terms of computational efficiency, we track Execution 

Time (ET) measured in CPU seconds, alongside detailed 

memory profiling through Peak Memory Usage (PMU) and 

Average Memory Consumption (AMC) metrics measured in 

megabytes. The framework also considers Scaling Efficiency 

to evaluate performance changes with increasing problem size, 

and employs a Resource Efficiency Ratio (RER) to provide a 

balanced measure of solution quality versus computational 

cost. These metrics collectively provide a multi-dimensional 

view of algorithm performance, enabling thorough 

comparative analysis. 

 

𝑅𝑉𝐴 =
𝑇𝑉𝐴

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙_𝑀𝑎𝑥𝑖𝑚𝑢𝑚
 (6) 

 

𝑃𝑟𝑖𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑢𝑠𝑒𝑑 𝑝𝑟𝑖𝑐𝑒

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑏𝑢𝑑𝑔𝑒𝑡
 (7) 

 

𝑅𝐸𝑅 =
𝑇𝑉𝐴

(𝐸𝑇 × 𝑃𝑀𝑈)
 (8) 

 

Additionally, we incorporate algorithm-specific metrics to 

capture unique characteristics of each implementation. These 

include convergence rate analysis to measure solution 

improvement over time, solution stability assessment to 

evaluate result consistency across multiple runs, and 

population diversity metrics specifically for the genetic 

algorithm implementation to monitor solution space 

exploration. 

 

2.4.3 Statistical analysis framework 

To facilitate objective comparison, we implement a Multi-

criteria Decision Analysis using the TOPSIS method for 
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algorithm ranking. The criteria weights are carefully 

distributed to reflect practical importance: solution quality 

(0.5), runtime efficiency (0.3), memory usage (0.1), and 

resource utilization (0.1). This weighting scheme prioritizes 

solution quality while maintaining balanced consideration of 

computational efficiency and resource utilization aspects. 

Moreover, we are using 10% weight perturbation in matter of 

stability verification. 

 

 

3. RESULTS AND ANALYSIS 

 

3.1 Solution quality assessment 

 

Our comprehensive analysis demonstrates that five 

algorithms consistently achieve optimal solutions, while three 

algorithms provide high-quality approximate solutions. Table 

6 presents the detailed performance comparison across all 

implementations. 

Table 7 presents a detailed comparison of solution quality 

metrics across eight implemented algorithms for the MKP. 

The Total Value Achievement (TVA) metric shows that four 

algorithms - Parallel, P-Rolling, Numba, and BDP - 

consistently achieved the optimal solution value of 247.50. In 

contrast, GA, Greedy, and Branch & Bound algorithms 

produced slightly lower values of 230.00, 232.50, and 223.50 

respectively. 

Price utilization performance demonstrates remarkable 

efficiency among most algorithms. Parallel and P-Rolling 

implementations led with 99.66% utilization, followed closely 

by BDP and Numba with identical utilization rates. The GA 

and Branch & Bound algorithms maintained respectable 

utilization rates above 90%. 

Weight utilization varied significantly across 

implementations. Parallel achieved the highest weight 

utilization at 94.46%. Other algorithms showed varying 

degrees of efficiency, with Greedy demonstrating the lowest 

weight utilization at 58.05%. 

 

Table 6. Solution quality comparison 

 
Algorithm TVA Price Util (%) Weight Util (%) RER Memory Eff.(%) Overall Score* Constraint Violations 

Parallel 247.50 99.66 94.46 204.58 46.86 0.890 0 

P-Rolling 247.50 99.66 81.08 221.73 82.59 0.928 0 

Numba 247.50 99.66 81.08 609.91 29.05 0.683 0 

BDP 247.50 99.66 81.08 3.13 64.35 0.262 0 

GA 230 92.62 83.90 142.73 172.39 0.883 0 

Greedy 232.50 93.62 58.05 232500 157.67 0.880 0 

Branch & Bound 223.50 90.00 71.64 5359.71 189.26 0.845 0 
* Overall score based on TOPSIS analysis incorporating all metrics 

 

Table 7. Computational efficiency 

 
Algorithm Runtime (s) Peak Memory (MB) 

Parallel 1.2098 528.11 

P-Rolling  1.1162 299.68 

Numba 0.4058 852.08 

BDP 79.1570 384.63 

GA 1.6823 133.46 

Greedy 0.0000 147.46 

Branch & Bound 0.0417 118.09 

 

The Resource Efficiency Ratio (RER) reveals interesting 

performance patterns. The greedy algorithm achieved an 

exceptionally high RER of 232500, primarily due to its 

negligible runtime. Branch & Bound also showed strong 

efficiency with an RER of 5359.71. Numba demonstrated 

good balance with an RER of 609.91, while BDP showed 

lower ratios of 3.13 respectively. 

Memory efficiency varied across implementations, with 

Branch & Bound showing the highest efficiency at 189.26%, 

followed by GA at 172.39%. The Numba implementation 

demonstrated the lowest memory efficiency at 29.05%. 

The Overall Score, based on TOPSIS analysis incorporating 

all metrics, ranks P-Rolling highest at 0.928, followed by 

parallel processing at 0.890. BDP ranked lowest with a score 

of 0.262. Notably, no algorithm recorded any constraint 

violations, indicating robust implementation of feasibility 

checks across all approaches. This comprehensive comparison 

demonstrates the trade-offs between solution quality, resource 

utilization, and computational efficiency across different 

algorithmic approaches to the MKP. 

Table 7 presents a comprehensive analysis of computational 

performance across eight algorithm implementations, focusing 

on two critical metrics: Runtime (in seconds) and Peak 

Memory Usage (in MB). The results reveal distinct patterns in 

computational efficiency and resource utilization.  

Runtime Performance: (1) The greedy algorithm 

demonstrates exceptional speed with a negligible runtime of 

0.0000 seconds; (2) Branch & Bound shows remarkable 

efficiency with just 0.0417 seconds; (3) Numba-accelerated 

implementation achieves impressive performance at 0.4058 

seconds; (4) Parallel and P-Rolling variants maintain good 

efficiency at 1.2098 and 1.1162 seconds respectively; (5) The 

genetic algorithm (GA) requires slightly more time at 1.6823 

seconds; (6) BDP approaches show significantly longer 

execution times requires 79.1570. 

Peak Memory Usage: (1) Branch & Bound demonstrates the 

most efficient memory utilization at 118.09 MB; (2) GA, and 

Greedy show moderate memory consumption as GA: 133.46 

MB, and Greedy: 147.46 MB; (3) P-Rolling achieves balanced 

memory usage at 299.68 MB; (4) BDP requires increased 

memory at 384.63 MB; (5) Higher memory requirements are 

seen in Parallel: 528.11 MB and Numba: 852.08 MB. 

Thus, Memory consumption patterns revealed three distinct 

tiers: 

1. Low Memory Tier (<150MB) 

a. Branch & Bound: 118.09MB 

b. GA: 133.46MB 

c. Greedy: 147.46MB 

2. Medium Memory Tier (150-400MB) 

a. P-Rolling: 299.68MB 

b. BDP: 384.63MB 

3. High Memory Tier (>400MB) 

a. Parallel: 528.11MB 

b. Numba: 852.08MB 

The results highlight clear trade-offs between execution 

speed and memory consumption. While some algorithms 

543



 

achieve faster runtimes, they may require more memory 

resources, exemplifying the classic space-time trade-off in 

algorithm design. This comparison provides crucial insights 

for implementation decisions based on available 

computational resources and performance requirements. 

 

3.2 Computational performance 

 

Table 8 provides a detailed comparison of runtime 

performance across seven algorithms, using BDP as the 

baseline for speedup calculations. 

 

Table 8. Runtime performance summary 

 
Algorithm Runtime(s) Speedup vs Base 

BDP 79.1570 1.00x (baseline) 

Numba  0.4058  240.14x 

Parallel  1.2098 80.47x 

P-Rolling  1.1162 87.21x 

GA  1.6823 57.87x 

Greedy  0.0000* N/A 

Branch & Bound  0.0417 2334.53x 
*Below measurable threshold 

 

The results demonstrate significant variations in 

computational efficiency: 

Baseline Performance: BDP establishes the baseline with a 

runtime of 79.1570 seconds, this serves as the reference point 

(1.00x speedup) for comparing other implementations. 

Relative Performance Improvements: (1) Numba: Runtime: 

0.4058 seconds, Achieves remarkable 240.14x speedup, 

Demonstrates the effectiveness of JIT compilation 

optimization; (2) Parallel: Runtime: 1.2098 seconds, Achieves 

80.47x speedup, Shows significant benefits of parallel 

processing; (3) P-Rolling: Runtime: 1.1162 seconds, Achieves 

87.21x speedup, Indicates efficiency of combined parallel and 

memory optimization; (4) GA: Runtime: 1.6823 seconds, 

Achieves 57.87x speedup, Shows competitive performance for 

a metaheuristic approach; (5) Greedy: Runtime: 0.0000* 

seconds, Speedup: Not applicable due to negligible runtime, 

Demonstrates exceptional computational efficiency; (6) 

Branch & Bound: Runtime: 0.0417 seconds, Achieves 

impressive 2334.53x speedup, Shows remarkable efficiency 

for an exact method. 

This comparison reveals a clear hierarchy in computational 

efficiency, with modern optimization techniques (Branch & 

Bound, Numba) significantly outperforming base approaches. 

The results highlight the substantial impact of algorithm 

choice on runtime performance in solving the MKP. 

Then, we utilized TOPSIS rankings as seen in Table 9. 

 

Table 9. TOPSIS rankings with detailed scores 

 

Algorithm 
Topsis 

Score 

Performance Breakdown 

Solution 

Quality 

Runtime 

Efficiency 

Memory 

Usage 

Resource 

Utilization 

Parallel 0.890 1.000 0.987 0.620 0.971 

P-Rolling 0.928 1.000 0.989 0.716 0.903 

Numba 0.683 1.000 0.996 0.000 0.903 

BDP 0.262 1.000 0.187 0.549 0.903 

GA 0.883 0.930 0.983 0.842 0.883 

Greedy 0.880 0.940 1.000 0.825 0.758 

Branch & 

Bound 
0.845 0.903 0.999 0.858 0.808 

Note: All scores normalized to [0,1] range where 1.0 represents best 

performance 

 

As seen in Table 9, The TOPSIS analysis, incorporating 

multiple performance criteria weighted according to practical 

importance, clearly identifies P-Rolling as the superior 

approach (score: 0.928). This ranking considers not only 

solution quality but also runtime efficiency, memory usage, 

and resource utilization patterns. Notably, while some 

algorithms achieved perfect scores in individual categories 

(e.g., Greedy for runtime efficiency), the parallel variants 

demonstrated the best overall balance of performance metrics. 

Particularly noteworthy is the clustering of scores, with 

parallel variants (Parallel and P-Rolling) forming a high-

performance tier (scores > 0.880), followed by a middle tier of 

optimized implementations (scores 0.800-0.880), and a lower 

tier of basic implementations (scores < 0.800). This tiering 

suggests clear implementation strategy recommendations for 

different use cases. To justify the TOPSIS, analysis, Table 10 

represent 10% perturbation as follows: 

 

Table 10. TOPSIS stability verification 

 
Algorithm Ori_Score Scenario1 Scenario2 Scenario3 Scenario4 Scenario 5 Mean Std CV 

Parallel 0.890 0.886 0.898 0.892 0.885 0.897 0.891 0.005 0.006 

P-Rolling 0.928 0.925 0.933 0.929 0.925 0.931 0.929 0.003 0.003 

Numba 0.683 0.673 0.704 0.689 0.670 0.701 0.687 0.013 0.019 

BDP 0.262 0.270 0.241 0.254 0.273 0.243 0.257 0.012 0.048 

GA 0.883 0.881 0.895 0.891 0.880 0.896 0.888 0.006 0.007 

Greedy 0.880 0.880 0.891 0.885 0.878 0.887 0.884 0.005 0.005 

Branch & Bound 0.845 0.843 0.861 0.885 0.842 0.861 0.851 0.008 0.009 
* Average CV: 0.014 and Maximum score variation: ±0.013 

 

From Table 10, we can observe that the P-Rolling and 

Parallel obtain high score than other algorithm. Moreover, the 

empirical results largely align with theoretical complexity 

predictions: 

1. Memory Usage Patterns: P-Rolling achieved constant 

memory scaling (O(3×m×W×B)) as predicted; Parallel 

variants showed linear scaling with problem size; GA 

maintained population-size bounded memory usage 

2. Runtime Behavior: Greedy's linear complexity reflected 

in fastest execution; Parallel variants achieved near-linear 

speedup with processor count; Branch & Bound 

performed better than worst-case bounds suggest 

The correlation between theoretical and observed performance 

validates the implementation efficiency of each algorithm. 

 

3.3 Scalability analysis 

 

To assess the practical applicability of our algorithms across 

different operational scales, we conducted a systematic 

scalability analysis using subsets of our dataset. Starting from 

the base dataset of 88 items, we created controlled test 

scenarios with 17, 41, 65, and 88 items while maintaining the 
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original data characteristics and knapsack constraints. This 

approach allows us to evaluate performance scaling patterns 

and resource utilization trends across different problem sizes, 

providing insights into each algorithm's behavior as 

computational demands increase. Our analysis focuses on 

three critical metrics: execution time, memory consumption, 

and solution quality maintenance. 

 

Table 11. Execution time scalability analysis 

 
Size BDP Numba Parallel P-Rolling GA Greedy Branch & Bound 

17 48.97 0.19 0.88 0.76 0.04 0000 0.01 

41 23.57 0.25 0.89 0.81 0.44 0.00 0.01 

65 29.35 0.27 0.79 0.93 0.72 0.00 0.01 

88 79.15 0.40 1.21 1.12 1.68 0.00 0.04 

 

Table 12. Memory consuption scalability analysis 

 
Size BDP Numba Parallel P-Rolling GA Greedy Branch & Bound 

17 365.97 286.30 234.96 266.67 173.49 158.44 167.07 

41 240.08 364.96 364.92 283.37 183.51 172.08 167.07 

65 290.67 439.83 428.48 292.91 171.93 164.37 160.52 

88 384.63 852.08 528.11 299.68 133.46 147.46 118.09 

 

Table 13. Solution quality maintenance analysis 

 
Size BDP Numba Parallel P-Rolling GA Greedy Branch & Bound 

17 247.5 247.5 242.5 247.5 99 99 195 

41 247.5 247.5 247.5 247.5 198.5 193.5 195.0 

65 247 247.0 247.5 247.5 227.5 222 226.5 

88 247.5 247.5 247.5 247.5 230 232.5 223.5 

 

The scalability analysis reveals distinct performance 

patterns across different problem sizes, providing crucial 

insights into algorithm behavior under varying computational 

demands. Our systematic evaluation examined four dataset 

scales (17, 41, 65, and 88 items) while maintaining consistent 

knapsack constraints and data characteristics. 

Execution time analysis (Table 11) demonstrates notable 

scaling patterns: 1) Parallel variants (Parallel and P-Rolling) 

maintain relatively stable performance across different 

problem sizes, with execution times ranging from 0.76-1.21 

seconds, demonstrating efficient resource utilization even as 

problem complexity increases; 2) The BDP implementation 

shows significant performance degradation with increased 

problem size, with execution time increasing from 48.97 to 

79.15 seconds; 3) Numba-accelerated implementation 

maintains impressive efficiency, showing only modest 

increases in execution time (0.19 to 0.40 seconds) despite 

problem size quadrupling; 4) Branch & Bound and greedy 

algorithms demonstrate remarkable stability, with execution 

times remaining consistently low across all problem sizes. 

Memory consumption patterns (Table 12) reveal important 

resource utilization characteristics: 1) Parallel rolling 

demonstrates superior memory efficiency, maintaining 

relatively stable memory usage (266.67-299.68 MB) across 

problem sizes; 2) BDP and Numba show more pronounced 

memory scaling, with Numba's consumption increasing 

significantly from 286.30 MB to 852.08 MB for the largest 

problem size; 3) GA and Branch & Bound maintain 

conservative memory profiles, actually showing slight 

decreases in memory usage for larger problem sizes, 

suggesting effective memory management strategies. 

Solution quality maintenance (Table 13) provides critical 

insights into algorithm reliability: 1) Exact methods (BDP, 

Numba, Parallel, P-Rolling) consistently achieve optimal 

solutions (247.5) across all problem sizes; 2) Metaheuristic 

approaches (GA) show improving solution quality with 

increased problem size, from 99.0 to 230.0; 3) Branch & 

Bound maintains relatively stable solution quality (195.0-

223.5) despite increasing problem complexity; 4) Greedy 

algorithm demonstrates improving solution quality with larger 

problem sizes, reaching 232.5 for the 88-item case. 

This comprehensive scalability analysis validates the 

practical applicability of our implementations across different 

operational scales, with parallel variants demonstrating 

particularly robust performance characteristics. The analysis 

confirms that algorithm selection should consider not only 

absolute performance metrics but also scaling behavior 

relative to expected problem sizes and available computational 

resources.  

These findings extend our understanding of algorithmic 

behavior beyond theoretical complexity analysis, providing 

practical insights for implementation decisions across 

different operational scales. The observed patterns support our 

implementation recommendations, particularly the adoption of 

parallel variants for large-scale operations and Branch & 

Bound or Greedy approaches for resource-constrained 

environments. 

 

 

4. DISCUSSION 

 

4.1 Algorithm performance insights 

 

The comprehensive evaluation of eight MKP algorithms 

reveals distinct performance tiers and implementation trade-

offs. The parallel rolling (P-R) achieved optimal solution 

quality (247.50) with resource utilization (99.66% price, 81.08% 

weight). Followed by the parallel processing (P-P) variants 

consistently demonstrated superior performance across 

multiple metrics, achieving optimal solution quality (247.50) 

while maintaining high resource utilization (99.66% price, 

94.46% weight). Even though, P-R obtain lower in weigth 
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utilization, it does outperform in matter of TOPSIS analysis 

followed by P-P. Thus, P-R and P-P is interchangeable 

according to the user needs.  

 

4.1.1 Performance-resource trade-offs 

Our analysis reveals distinct performance tiers among the 

implemented algorithms. The High-Performance Tier, 

dominated by parallel rolling and parallel processing variants, 

demonstrates exceptional capabilities with optimal solution 

quality achieving 99.66% price utilization and 94.46% weight 

utilization. These implementations deliver significant 

performance improvements, showing 80.47x speedup 

compared to BDP. While they incur higher memory overhead, 

the performance gains justify this trade-off, making them: 1) 

ideal for large-scale retail operations handling multiple 

product lines; 2) Supports real-time decision making in 

dynamic pricing scenarios; 3) Enables efficient resource 

allocation in complex bundling strategies. However, these 

implementations require specific infrastructure considerations, 

including multi-core processor capabilities, substantial 

memory allocation, and careful thread management overhead 

handling. 

The Balanced Performance Tier, represented by Numba and 

Branch & Bound implementations, offers a compelling 

compromise between performance and resource requirements. 

These algorithms consistently achieve near-optimal solutions 

exceeding 90% of optimal value, while delivering excellent 

runtime efficiency with over 240x speedup. Their moderate 

memory requirements, ranging from 118.09 to 852.08 MB, 

coupled with predictable performance characteristics and 

stable resource utilization, make them 1) Suitable for medium-

scale retail operations; 2) Enables quick response to market 

changes; 3) Supports efficient inventory management. 

In the resource-efficient tier, the greedy and genetic 

algorithm implementations provide practical solutions for 

resource-constrained environments. These algorithms 

maintain good solution quality exceeding 93% of optimal 

value while operating with minimal memory footprint below 

150MB. Their linear scaling characteristics make them 1) 

Ideal for small retailers with limited IT infrastructure; 2) 

Supports rapid decision-making in straightforward bundling 

scenarios; 3) Cost-effective implementation. 

 

4.1.2 Implementation considerations 

The choice of algorithm significantly impacts both solution 

quality and resource requirements. Memory usage varies from 

118.09MB (Branch & Bound) to 852.08MB (Numba), while 

runtime ranges from negligible (Greedy) to 79.1570 seconds 

(BDP). 

 

4.2 Business context analysis 

 

4.2.1 Enterprise retail applications 

For large retail operations, our findings support the adoption 

of parallel processing solutions based on: (1) Consistent 

achievement of optimal solutions; (2) High resource 

utilization (>94% for both constraints); (3) Linear scaling with 

processor count; (4) Robust performance across problem 

variations. 

Alternatively, enterprise retail applications can adopt 

parallel rolling based on: memory-constrained environments, 

similar performance benefits, reduced memory footprint 

(299.68 MB). 

 

4.2.2 SME implementation considerations 

Small-medium enterprises benefit from lighter-weight 

implementations: (1) Branch & Bound provides 90% 

utilization with minimal resources; (2) Greedy algorithm 

offers immediate results for time-critical decisions; (3) 

Memory efficiency crucial for limited infrastructure; (4) 

Acceptable solution quality for smaller scale operations. 

Alternatively, SME could use Greedy Algorithm where 

Time-critical operations, Limited computational resources, 

Straightforward implementation. 

 

4.2.3 Implementation strategy framework 

Our Implementation Strategy Framework provides 

comprehensive guidelines tailored to different operational 

scales, based on empirical evidence from our algorithmic 

analysis. For enterprise-scale implementations, we 

recommend deploying parallel variants, particularly parallel 

rolling, which demonstrated superior performance (TOPSIS 

score: 0.928) and optimal resource utilization (99.66% price, 

81.08% weight utilization). The implementation requires 

specific technical infrastructure including multi-core 

processors, minimum 16GB RAM, and appropriate storage 

systems. The deployment process follows a structured three-

phase approach: infrastructure assessment and setup, 

algorithm deployment with parallel processing configuration, 

and performance optimization through thread allocation 

tuning and cache optimization. 

For SME implementations, we propose a resource-

conscious approach centered on Branch & Bound algorithm, 

which achieved exceptional efficiency (0.0417 seconds 

runtime) while maintaining minimal resource requirements 

(118.09 MB memory footprint). This implementation pathway 

requires standard computing infrastructure and follows a 

simplified three-phase deployment: basic setup verification, 

streamlined algorithm implementation, and targeted 

performance tuning. Both frameworks are supported by 

empirical evidence from our experimental results, ensuring 

practical applicability while maintaining solution quality 

across different operational scales. The implementation 

guidelines incorporate specific technical requirements, 

algorithmic selection criteria based on TOPSIS analysis, and 

detailed deployment phases, providing a comprehensive 

roadmap for successful implementation across varying 

business contexts. 

 

4.3 Theoretical, algorithm adaptability and practical 

implications 

 

Our study reveals several significant insights into algorithm 

design and implementation. The analysis demonstrates that 

memory-performance trade-offs play a crucial role in 

determining practical utility, while parallel processing 

approaches effectively address computational bottlenecks in 

large-scale implementations. Notably, simple heuristic 

approaches have shown remarkable capability in providing 

competitive solutions for practical applications, challenging 

the notion that complex algorithms are always necessary for 

effective problem-solving. 

Our analysis reveals critical insights into algorithm 

adaptability across dynamic operational environments. The 

parallel variants demonstrate exceptional resilience under 

parameter variations, maintaining solution quality within 98.5% 

of optimal values during price fluctuations (±20%) and 

achieving >95% resource utilization efficiency under weight 
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variations (±15%). These implementations maintain consistent 

runtime performance (1.1162-1.2098 seconds) and stable 

memory utilization (<5% variation), validating their suitability 

for enterprise-scale deployments where parameter stability 

cannot be guaranteed. Similarly, the Branch & Bound 

algorithm exhibits robust adaptability characteristics 

particularly valuable for resource-constrained environments, 

maintaining >90% solution quality under price variations 

while preserving efficient execution time (0.0417 seconds 

±8%) and stable memory consumption (118.09 MB ±5%), 

with Greedy and GA implementations showing predictable 

performance patterns under dynamic conditions. 

This empirical evidence substantiates our implementation 

recommendations across varying operational scenarios, with 

parallel variants demonstrating superior adaptability for 

enterprise deployments and Branch & Bound emerging as a 

reliable choice for SME applications. The observed 

performance stability under dynamic parameter changes 

validates both the theoretical robustness of our algorithmic 

approaches and their practical applicability in real-world retail 

environments where price and weight variations are common 

operational challenges. These findings significantly enhance 

our understanding of algorithm behavior under dynamic 

conditions, providing crucial insights for implementation 

decisions while maintaining optimal resource utilization and 

solution quality across different operational scales. 

The implementation patterns identified through this 

research highlight the importance of sophisticated resource 

allocation strategies. Successful implementations require 

careful attention to dynamic memory management for large 

problem instances, optimization of processor allocation, and 

implementation of cache-aware data structures. These 

technical considerations are complemented by robust solution 

quality management approaches, including the establishment 

of early termination criteria based on solution quality 

thresholds, careful balancing of resource utilization, and 

comprehensive monitoring of constraint satisfaction 

throughout the solution process. 

This research contributes significantly to the theoretical 

understanding and practical application of MKP algorithms. 

By quantifying performance-resource trade-offs across 

different implementation scenarios, validating the benefits of 

parallel processing approaches in MKP solutions, and 

establishing clear implementation guidelines for varying 

operational scales, our findings provide valuable insights for 

both academic research and practical implementations. These 

implications extend beyond the immediate context of retail 

applications, offering broader perspectives on algorithm 

selection and implementation strategies for complex 

optimization problems. 

 

4.4 Limitations and considerations 

 

This study acknowledges several limitations that provide 

context for result interpretation and future research directions. 

The dataset characteristics present certain constraints, as our 

analysis is based on a specific set of 88 items distributed across 

7 knapsacks, with fixed constraint ranges tailored to retail 

product bundling scenarios. While this dataset effectively 

represents typical retail bundling problems, it may not capture 

all possible real-world scenarios. The categorical distribution 

(45 beverages, 43 snacks) and value ranges (1.0-10.0 units for 

value coefficients, 0.11-1.0 kilograms for weights, 6,000-

60,000 IDR for prices) provide comprehensive coverage for 

traditional retail scenarios but may require validation for 

extreme price points or highly specialized product categories, 

such as: seasonal variations in product availability, regional 

price fluctuations, dynamic inventory patterns, and extreme 

price point products. 

Performance evaluation boundaries are defined by our 

experimental setup, including memory measurements 

conducted on specific hardware configurations, the use of 

single-node parallel processing architectures, and 

implementation-specific optimizations. These boundaries, 

while providing consistent comparative analysis, may 

influence the direct applicability of results to different 

hardware environments. The generalization of our findings is 

most relevant to retail product bundling scenarios, particularly 

those involving dual-constraint knapsack problems of similar 

scale and complexity. While our scalability analysis 

demonstrates consistent performance across different problem 

sizes (17-88 items) and our statistical validation shows 

solution stability (±0.013 TOPSIS score variation under 10% 

weight perturbation), the applicability to significantly larger 

retail operations (>1000 items) or different market segments 

may require additional validation.  

 

4.5 Implementation performance and complexity analysis 

 

Our comprehensive analysis of implementation 

performance reveals distinct patterns across algorithmic 

approaches. The theoretical complexity analysis demonstrates 

clear efficiency tiers: parallel variants achieve 

O(n×m×W×B)/p time complexity with processor count p, 

while maintaining O(3×m×W×B) space complexity through 

rolling optimization; metaheuristic approaches show 

O(population_size×n) time and O(population_size) space 

complexity; and resource-efficient methods like Greedy 

maintain O(n) time with O(1) space requirements. These 

theoretical bounds are validated by empirical results showing 

parallel variants achieving 80.47x-87.21x speedup over BDP, 

Numba demonstrating 240.14x improvement, and Branch & 

Bound exhibiting exceptional efficiency with 2334.53x 

speedup, while maintaining solution quality above 90% of 

optimal value across implementations. 

Resource utilization patterns further support these findings, 

with price utilization ranging from 90.00% to 99.66% and 

weight utilization varying from 58.05% to 94.46%. Memory 

consumption remains well-controlled, particularly in resource-

efficient implementations like Branch & Bound (118.09 MB) 

and GA (<150 MB), while parallel variants demonstrate 

predictable scaling with problem size. These empirical results, 

combined with consistent solution quality maintenance, 

validate our implementation strategies and provide robust 

criteria for deployment decisions across different operational 

scales, eliminating the need for extensive cross-platform 

testing while maintaining rigorous performance validation. 

 

4.6 Future research opportunities 

 

Looking forward, several promising research opportunities 

emerge from this work. In terms of algorithm enhancement, 

there is significant potential for developing hybrid approaches 

that combine the strengths of multiple algorithms, 

implementing dynamic parameter adaptation mechanisms for 

improved performance, and exploring advanced resource 

optimization strategies. The implementation domain could be 

expanded through investigation of distributed processing 

547



 

architectures, exploration of cloud-based deployment options, 

and development of real-time optimization capabilities. These 

future directions could significantly advance the practical 

application of MKP solutions in retail and beyond. 

 

 

5. CONCLUSION 

 

This comprehensive study of MKP algorithms reveals 

significant findings regarding algorithm effectiveness and 

implementation considerations. Our analysis demonstrates 

that parallel variant implementations achieve optimal 

solutions with a value of 247.50 and exceptional resource 

utilization of 99.66%, setting a new benchmark for 

performance. Notably, Branch & Bound and Greedy 

algorithms emerge as efficient alternatives for resource-

constrained environments, offering practical solutions with 

reduced computational requirements. 

The performance-resource trade-offs observed across 

implementations provide valuable insights for practical 

deployment. Memory requirements vary substantially, ranging 

from 118.09MB to 852.08MB across different 

implementations, while runtime optimizations achieve 

impressive improvements of up to 240x compared to baseline 

approaches. Significantly, top-performing algorithms 

consistently maintain resource utilization above 90%, 

demonstrating robust efficiency in constraint satisfaction. 

Our TOPSIS analysis reveals a clear tiering of 

implementations based on performance characteristics. High-

performance solutions, led by P-Rolling (0.928) and parallel 

processing (0.890), deliver optimal results with superior 

resource utilization. Resource-efficient options, comprising 

GA/Greedy (0.883/0.880) and Branch & Bound (0.845), 

provide practical solutions for environments with limited 

computational resources. 

This study makes several significant contributions: (1) 

Methodological Advances presents Comprehensive evaluation 

framework for dual-constrained MKP, Statistical validation 

approach for algorithm comparison, Implementation 

guidelines for different operational scales; (2) Practical 

Applications for Enterprise Solutions are Evidence-based 

algorithm selection criteria for retail applications, Resource 

requirement quantification for implementation planning, 

Performance expectations for different operational scales; (3) 

Practical Applications for SME solutions are Resource-

efficient algorithm recommendations, Scalable solution 

pathways, Cost-effective deployment strategies. 

Several promising areas for future investigation emerge: (1) 

Algorithm Enhancement such as Hybrid approaches 

combining metaheuristic and exact methods, Advanced 

parallelization strategies for distributed systems, Adaptive 

parameter tuning for metaheuristic algorithms; (2) 

Implementation Extensions such as Cloud-based deployment 

strategies, Real-time optimization capabilities, Integration 

with inventory management systems; (3) Scalability Analysis 

such as Investigation of larger problem instances, Multi-node 

parallel processing evaluation, Dynamic constraint handling 

mechanisms. 

The findings support specific recommendations for 

implementation: (1) for Enterprise Scale, Implement parallel 

processing solutions for optimal performance, Utilize multi-

core architectures for computational efficiency, Focus on high 

resource utilization capabilities; (2) for SME Applications, 

Deploy Branch & Bound for balanced performance, Consider 

Greedy algorithms for time-critical decisions, Optimize for 

minimal resource requirements; (3) for General Guidelines, 

Match algorithm selection to available computational 

resources, Consider scaling requirements in implementation 

planning, Balance solution quality with operational constraints. 

This research demonstrates the effectiveness of parallel 

processing approaches for solving dual-constrained MKP in 

retail contexts. While parallel variants achieve optimal 

solutions with high resource utilization, simpler algorithms 

provide viable alternatives for resource-constrained 

environments. The findings provide a foundation for 

implementing MKP solutions across different operational 

scales while considering practical constraints and 

requirements. 

The established evaluation framework and implementation 

guidelines contribute to both theoretical understanding and 

practical application of MKP algorithms in retail product 

bundling. Future research can build on these findings to 

develop more sophisticated solutions for larger-scale problems 

and specialized retail applications. 
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