
Performance Analysis of Multiple Knapsack Problem Optimization Algorithms: A

Comparative Study for Retail and SME Applications

Dewi Agustini Santoso1* , Ifan Rizqa1 , Diana Aqmala1 , Farrikh Alzami1 , Nova Rijati1 , Aris Marjuni2

1 Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia
2 Faculty of Economic and Business, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

Corresponding Author Email: dewi@dsn.dinus.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300224 ABSTRACT

Received: 16 January 2025

Revised: 10 February 2025

Accepted: 14 February 2025

Available online: 27 February 2025

Multiple knapsack problem (MKP) optimization presents significant challenges in retail

resource allocation, particularly for product bundling scenarios with dual constraints. While

numerous algorithms exist for solving MKP, comprehensive comparisons focusing on real-

world retail applications remain limited. This study evaluates seven distinct algorithms:

Base Dynamic Programming (BDP), Numba-accelerated DP, parallel processing (P-P),

parallel rolling (P-R), genetic algorithm (GA), greedy algorithm, and Branch & Bound.

Using a real dataset of 88 Indonesian traditional products allocated across 7 knapsacks, we

analyze algorithm performance through solution quality, execution time, memory

utilization, and statistical validation. The algorithm evaluation employs a comprehensive

TOPSIS-based multi-criteria decision framework with systematically allocated weights:

solution quality (0.5), runtime efficiency (0.3), memory utilization (0.1), and resource

optimization (0.1). These weights were determined through analytical hierarchy process

considering practical implementation priorities in retail environments, where solution

optimality takes precedence while maintaining computational efficiency. The TOPSIS

analysis incorporates normalized performance metrics and validates ranking stability

through sensitivity analysis, ensuring reliable algorithm recommendations. Results

demonstrate that parallel rolling achieves optimal solutions (247.50 total value) with

99.66% resource utilization and 98.90% runtime improvement over traditional approaches.

For resource-constrained environments, Branch & Bound offers 90% utilization with

minimal computational overhead. Statistical analysis through TOPSIS confirms the

superior performance of parallel variants (scores > 0.880) compared to basic

implementations (scores < 0.800). Our findings provide evidence-based recommendations

for algorithm selection based on business scale and computational resources, contributing

to practical MKP implementation in retail product bundling scenarios.

Keywords:

multiple knapsack problem, optimization

algorithms, product bundling, parallel

processing, dynamic programming,

computational performance, metaheuristics,

algorithm comparison

1. INTRODUCTION

The multiple knapsack problem (MKP) represents a critical

optimization paradigm in modern retail operations,

particularly in the era of data-driven decision-making and

resource optimization [1, 2]. As an NP-hard combinatorial

optimization challenge, MKP extends beyond theoretical

computer science into practical retail applications, where it

addresses crucial business decisions in product bundling,

inventory allocation, and resource distribution [3-5]. The

complexity of contemporary retail operations, characterized

by dual constraints of physical limitations (weight) and

financial restrictions (budget), has elevated MKP from a

theoretical construct to an essential tool for operational

excellence [6, 7].

Recent developments in retail technology have highlighted

the growing significance of efficient resource allocation,

particularly in e-commerce and traditional retail bundling

scenarios [6, 8]. The inherent complexity of MKP, which

increases exponentially with the number of items and

knapsacks, necessitates sophisticated algorithmic solutions

that balance solution quality with computational feasibility [9,

10]. This balance becomes particularly crucial in retail

environments where decision-making often requires real-time

optimization under multiple constraints.

Dynamic programming emerges as a foundational

technique in this context, offering systematic approaches to

decompose complex optimization challenges into manageable

subproblems. In MKP applications, dynamic programming

facilitates the methodical exploration of item combinations

and their allocation across multiple knapsacks, creating a

robust framework for solution optimization [11-13]. This

approach has demonstrated particular efficacy in retail

scenarios where solution accuracy directly impacts operational

efficiency and profitability.

Schäfer and Zweers [14] stated that most research in MKP

at the moment, did not consider each knapsack have own

capacity restriction. Then, Babukarthik et al. [15] mentioned

that the multi-constraint Knapsack problem (KP) remains the

major challenge in weight and capacity to minimize energy

Ingénierie des Systèmes d’Information
Vol. 30, No. 2, February, 2025, pp. 533-550

Journal homepage: http://iieta.org/journals/isi

533

https://orcid.org/0009-0007-0974-6772
https://orcid.org/0009-0005-3809-4334
https://orcid.org/0000-0003-3220-6209
https://orcid.org/0000-0003-2669-3864
https://orcid.org/0000-0003-0870-4750
https://orcid.org/0000-0002-4072-3081
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300224&domain=pdf

consumption. Then, Dell'Amico et al. [1] used smaller

instances for MKP due to their computational complexity.

Moreover, some researchers have addressed dual-constraint

scenarios but lack comprehensive algorithmic comparison.

For instance, the studies [16, 17] compared ACO and

traditional ACO, and clustered orienteering problem families

respectively.

While extensive research exists on MKP algorithms [16-20],

three critical gaps persist in current literature: (1) Limited

comparative analysis of algorithm performance under retail-

specific dual constraints (weight and budget); (2) Insufficient

evaluation of implementation requirements across different

business scales (enterprise vs. SME); (3) Lack of

comprehensive statistical validation for algorithm selection in

practical retail applications. Recent algorithmic innovations,

including parallel processing architectures, metaheuristic

optimization, and hybrid methodologies, have shown

promising computational efficiency improvements [21-26].

However, existing research predominantly focuses on either

theoretical performance analysis or single-constraint

implementations, creating a significant knowledge gap in

understanding algorithmic behavior under dual-constraint

scenarios common in retail applications.

This knowledge gap becomes particularly significant when

considering the diverse computational infrastructure between

large retail enterprises and Small-Medium Enterprises (SMEs),

where resource availability drastically impacts algorithm

selection and implementation strategies [11, 27, 28]. The

practical implications of this gap are evidenced in recent

studies: Zhao et al. [6] highlighted the challenges in

optimizing case pack sizes in retail supply chains, while Gecili

and Parikh [7] demonstrate the complexity of shelf space

allocation under multiple constraints. These real-world

applications underscore the need for a comprehensive

understanding of algorithm performance under varying

resource constraints and business scales.

For instance, the work [29] on cooperative content caching

demonstrates the broader applicability of multi-constraint

optimization, particularly in resource-limited environments.

This is complemented research [2] on Modified Artificial Bee

Colony algorithms, which, while innovative, primarily focuses

on single-dimension performance metrics without

comprehensive comparative analysis under dual constraints.

Dell'Amico et al.'s [1] mathematical models provide valuable

theoretical foundations, but leave open questions about

practical implementation in retail scenarios. Similarly,

Boukhari et al.'s [22] hybrid algorithm shows promise in

solving MKP with setup costs, yet requires further validation

in real-world retail applications.

This research makes several novel contributions to address

these gaps: 1) Methodological advancement which consist of

development of a comprehensive evaluation framework

specifically designed for retail-oriented dual-constrained

MKP, introduction of a hybrid statistical validation approach

that combines traditional metrics with practical retail

performance indicators, creation of implementation guidelines

calibrated to different operational scales; 2) Practical

applications, which consists of evidence-based algorithm

selection criteria for retail scenarios, quantitative assessment

of resource requirements for various implementation scales,

performance benchmarks for different operational contexts; 3)

Theoretical extensions which consist of integration of parallel

processing techniques with traditional optimization

approaches, enhanced understanding of algorithm behavior

under dual constraints, and Novel insights into the relationship

between computational resources and solution quality.

The primary objectives of this study are to: 1) Evaluate and

compare eight distinct algorithms for solving dual-constrained

MKP in terms of solution quality, computational efficiency,

and resource utilization; 2) Analyze algorithm scalability and

performance stability through comprehensive statistical

testing; 3) Provide evidence-based recommendations for

algorithm selection based on business scale, computational

resources, and optimization requirements; 4) Establish a

framework for algorithm selection in retail product bundling

optimization.

Our methodological approach combines rigorous

algorithmic analysis with practical retail considerations. By

evaluating seven distinct algorithms—BDP, Numba-

accelerated DP, parallel processing, parallel rolling, genetic

algorithm, greedy algorithm, and Branch & Bound—we

provide a comprehensive performance analysis framework

that addresses both theoretical efficiency and practical

implementation requirements. The evaluation utilizes a

carefully constructed dataset of 88 Indonesian traditional

products allocated across 7 knapsacks, representing a realistic

retail bundling scenario while maintaining mathematical

tractability.

This study's significance extends beyond traditional

algorithm comparison, making substantial contributions to

both theory and practice, in matter of Theoretical

Contributions, we present development of a comprehensive

evaluation framework for dual-constrained MKP algorithms

that bridges theoretical performance and practical

implementation and establishment of implementation

guidelines that consider varying operational scales and

resource limitations. In matter of practical contributions, we

present evidence-based algorithm selection criteria tailored to

specific retail scenarios and business scales, detailed

quantification of resource requirements enabling informed

implementation planning, and clear performance expectations

and benchmarks for different operational scales.

These contributions directly address the identified research

gaps while providing actionable insights for both researchers

and practitioners in the retail sector. The findings are

particularly relevant for organizations navigating the balance

between computational efficiency and practical

implementation constraints.

The remainder of this paper is organized as follows: Section

II presents the formal mathematical formulation and

algorithmic implementations, incorporating both theoretical

foundations and practical considerations. Section III details

the experimental results and statistical analysis, providing

comprehensive performance comparisons across multiple

metrics. Section IV discusses implementation implications

and provides specific recommendations for different business

scales and computational environments. Finally, Section V

concludes the study and suggests promising directions for

future research.

2. MATERIAL AND METHODS

2.1 Problem formulation and mathematical model

The MKP with dual constraints presents a combinatorial

optimization challenge in which n heterogeneous items must

be optimally allocated across m distinct knapsacks [30]. This

534

study addresses a practical retail bundling scenario with the

following formal mathematical representation:

Given:

• Set of n items I={1,...,n}, where each item iI has: Value

(vi): representing item utility/desirability; Weight (wi):

physical weight in kilograms; Price (pi): monetary cost in

IDR

• Set of m knapsacks K = {1,...,m}, where each knapsack

jK has: Weight capacity (Cj): maximum allowable total

weight; Budget constraint (Bj): maximum allowable total

cost; Unique size-cost characteristics reflecting real retail

bundles

The experimental dataset was systematically constructed to

represent realistic retail bundling scenarios while ensuring

mathematical tractability. The study incorporates 88

traditional Indonesian products strategically segmented into

two primary categories: beverages (n=45) and snacks (n=43),

reflecting typical product mix ratios in traditional retail

operations. For each product, three key metrics were carefully

calibrated: value coefficients ranging from 1.0 to 10.0 units

derived from normalized customer preference data, weight

parameters between 0.11 and 1.0 kilograms aligned with

standard retail packaging constraints, and price variables from

6,000 to 60,000 IDR mapped to actual market price

distributions.

The allocation framework comprises seven knapsacks,

designed to represent distinct retail bundling strategies across

multiple market segments. These configurations include

premium bundles (4.0 kg, 250,000 IDR; 3.0 kg, 300,000 IDR),

standard bundles (3.0 kg with budgets of 180,000-250,000

IDR), and value bundles (2.0 kg, 150,000 IDR; 1.5 kg, 160,000

IDR). This empirically derived configuration from market

analysis of Indonesian retail operations balances operational

constraints with customer segment requirements. The

knapsack capacities and budget constraints were specifically

calibrated to reflect realistic handling limitations in retail

environments, accommodate diverse market segments'

purchasing power, enable meaningful algorithmic

performance comparison, and maintain computational

feasibility for systematic analysis.

Mathematical model:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ∑ ∑ 𝑣𝑖𝑥𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 (1)

Subject to:

1. Weight Constraint:

∑ 𝑤𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝐶𝑗∀𝑗 ∈ {1, … , 𝑚} (2)

2. Budget Constraints:

∑ 𝑝𝑖𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝐵𝑗∀𝑗 ∈ {1, … , 𝑚} (3)

3. Item Uniqueness:

∑ 𝑥𝑖𝑗

𝑚

𝑗=1

≤ 1∀𝑖 ∈ {1, … , 𝑛} (4)

4. Binary Decision Variables:

𝑥𝑖𝑗 ∈ {0,1}∀𝑖, 𝑗 (5)

where, 𝑥𝑖𝑗 is binary decision variable (1 if item i is assigned to

knapsack j, 0 otherwise); 𝑣𝑖 represents the value of item I; 𝑤𝑖

represents the weight of item i; 𝑝𝑖 represents the price of item

i; 𝐶𝑗 represents the weight capacity of knapsack j; 𝐵𝑗

represents the budget capacity of knapsack j.

2.2 Implementation

This section details eight algorithm implementations for

solving the dual-constrained MKP, ranging from exact

methods to heuristic approaches. Each implementation is

analyzed for theoretical complexity, memory requirements,

and optimization strategies.

2.2.1 BDP

BDP enhances the traditional approach through numpy

vectorization and improved memory management. This

implementation maintains optimality while introducing

several key optimizations for computational efficiency.

1. Core Architectural Improvements

1) Numpy-based array operations for vectorized

computation; 2) Efficient memory allocation through data type

optimization; 3) Decimal precision handling through integer

scaling; 4) Enhanced state transition management

2. Key Implementation Features can be seen in Algorithm 1

Algorithm 1: Snippet python code for BDP

1 def dp_solve(self, n, m, weights, prices, values,

capacities, budgets):

2 max_capacity = int(max(capacities) * 100)

3

4 dp = np.zeros((n + 1, m, max_capacity + 1,

max_budget + 1), dtype=np.float32)

5

6 for i in range(1, n + 1):

7 for j in range(m):

8 for w in range(int(capacities[j] * 100) + 1):

9 for b in range(int(budgets[j]) + 1):

10 if int(weights[i-1] * 100) <= w and

prices[i-1] <= b:

11 dp[i, j, w, b] = max(dp[i-1, j, w, b],

dp[i-1, j, w - int(weights[i-1] * 100),

int(b - prices[i-1])] + values[i-1])

12 else:

13 dp[i, j, w, b] = dp[i-1, j, w, b]

14 return dp

3. Technical Optimizations in Space Complexity

The technical optimizations in BDP implementation focus

on two critical areas: memory management and computational

enhancements. Memory management is implemented through

several sophisticated strategies that optimize resource

utilization. The implementation uses np.float32 instead of the

default float64 data type to reduce memory footprint while

maintaining numerical precision. Pre-allocated arrays with

optimal data types are employed to minimize memory

allocation overhead during computation. Integer-based

computations are implemented to improve numerical accuracy

and reduce floating-point errors, while efficient memory

access patterns optimize data retrieval and storage operations.

535

Computational enhancements are achieved through several

key mechanisms: vectorized operations for state updates

significantly improve processing speed by performing

operations on entire arrays simultaneously, integer scaling

techniques ensure decimal precision while maintaining

computational efficiency, improved array indexing strategies

optimize data access patterns, and better memory locality

exploitation enhances cache utilization and reduces memory

access latency. These technical optimizations able to create an

efficient implementation that balances memory usage with

computational performance while maintaining solution

accuracy.

In advanced matter, we could employ employs a Rolling

Array technique, significantly reducing space complexity

from O(n×m×W×B) to O(2×m×W×B) by adopting a two-

array approach instead of maintaining n+1 arrays. This

implementation enables more efficient memory utilization

without compromising computational accuracy in the

optimization process. Then, adopt bit-level state

representation using np.int8 for decision matrices, replacing

the more memory-intensive float32 implementation. This

approach achieves a 75% reduction in per-cell memory

requirements while maintaining efficient state tracking with

minimal overhead. The implementation is reinforced with

memory management mechanisms involving strategic garbage

collection post-knapsack processing and unused state clearing,

ensuring peak memory utilization remains below

O(2×m×W×B). As worth mentioning, the subsection 2.2.4 are

explanation using the optimized DP using parallel rolling.

2.2.2 Numba-accelerated DP

Numba-accelerated DP extends the BDP approach by

leveraging Just-In-Time (JIT) compilation for machine-level

optimization. This implementation achieves significant

performance improvements while maintaining solution

optimality.

1. Core Implementation Architecture as in Algorithm 2

Algorithm 2: Snippet code for Numbas-accelerated DP

1 @staticmethod

2 @njit

3 def dp_solve(n, m, weights, prices, values, capacities,

budgets):

4 max_capacity = int(max(capacities) * 100)

5 max_budget = int(max(budgets))

6 dp = np.zeros((n + 1, m, max_capacity + 1,

max_budget + 1), dtype=np.float32)

7 for i in range(1, n + 1):

8 for j in range(m):

9 for w in range(int(capacities[j] * 100) + 1):

10 for b in range(int(budgets[j]) + 1):

11 if int(weights[i-1] * 100) <= w and

prices[i-1] <= b:

12 dp[i, j, w, b] = max(dp[i-1, j, w, b],

dp[i-1, j, w - int(weights[i-1] *

100), int(b - prices[i-1])] +

values[i-1])

13 else:

14 dp[i, j, w, b] = dp[i-1, j, w, b]

15 return dp

2. Numba Optimization Features

The Numba optimization features leverage advanced JIT

compilation strategies and robust performance optimization

techniques to enhance computational efficiency. JIT

compilation strategies are implemented through sophisticated

function specialization for data types, enabling optimized

machine code generation. The implementation incorporates

loop optimization and unrolling techniques that maximize

execution efficiency, while SIMD instruction generation

capabilities harness modern processor architectures for

parallel computation. Cache-aware memory access patterns

are implemented to minimize memory latency and optimize

data retrieval. Performance optimizations are achieved

through several key mechanisms: machine code generation for

core computations significantly reduces execution overhead,

while the elimination of Python interpreter overhead enhances

raw computational speed. The implementation also employs

automatic vectorization of operations to leverage hardware-

specific capabilities, complemented by hardware-specific

optimizations that take advantage of available system

resources. These optimization features work in concert to

create a highly efficient implementation that significantly

outperforms traditional Python execution while maintaining

solution accuracy and reliability.

3. Technical Implementation Details

The technical implementation details of the Numba-

accelerated DP focus on two critical aspects: memory

management and computational enhancements. The memory

management system implements contiguous array allocation

strategies to optimize memory access patterns and enhance

cache utilization. This is supported by type-specific memory

layouts that maximize memory efficiency for different data

types, complemented by optimized cache utilization

mechanisms that reduce memory access latency. The

implementation also features reduced memory access latency

through careful memory organization and access pattern

optimization. On the computational side, the implementation

leverages compiled loop execution capabilities that

significantly enhance processing speed. This is supported by

optimized boundary checking mechanisms that minimize

computational overhead while maintaining solution validity.

The system employs efficient register allocation strategies to

maximize processor utilization, while reduced function call

overhead minimizes computational bottlenecks. These

technical features are carefully integrated to create a highly

optimized implementation that balances memory efficiency

with computational performance.

4. Key Improvements over BDP by Implementation

Considerations

We need consider for deployment requirement, such as

LLVM compiler infrastructure, CPU with SIMD support,

Sufficient memory capacity, Proper environment setup. Also

in matter of Optimization Guidelines can follows Function

signature type specification, Array contiguity maintenance,

Compiler directive optimization, Memory access pattern

design.

2.2.3 Parallel processing implementation

Parallel processing enhances the Numba-accelerated

approach by introducing multi-threaded computation and

parallel array operations. This implementation leverages both

thread-level parallelism and SIMD operations for maximum

performance.

1. Parallel Architecture Configuration as in Algorithm 3

Algorithm 3: Snippet code for parallel processing with

Numba

536

1 parallel.set_num_threads(4)

2 @staticmethod

3 @njit(parallel=True)

4 def dp_solve(n, m, weights, prices, values, capacities,

budgets):

5 max_capacity = int(max(capacities) * 100)

6 max_budget = int(max(budgets))

7 dp = np.zeros((n + 1, m, max_capacity + 1,

max_budget + 1), dtype=np.float32)

8 for i in prange(1, n + 1):

9 for j in range(m):

10 for w in range(int(capacities[j] * 100) + 1):

11 for b in range(int(budgets[j]) + 1):

12 if int(weights[i-1] * 100) <= w and

prices[i-1] <= b:

13 dp[i, j, w, b] = max(dp[i-1, j, w, b],

dp[i-1, j, w - int(weights[i-1] *

100), int(b - prices[i-1])] +

values[i-1])

14 else:

15 dp[i, j, w, b] = dp[i-1, j, w, b]

16 return dp

2. Parallelization Strategy

The parallel processing implementation employs a

sophisticated multi-level task distribution framework designed

to optimize computational efficiency while maintaining

solution integrity. Our approach incorporates three primary

optimization layers:

Layer 1: Thread-Level Parallelization. The implementation

utilizes Numba's parallel processing capabilities through the

@njit(parallel=True) decorator, enabling efficient thread

management (line code 2-9). This structure facilitates parallel

item processing while maintaining sequential knapsack

evaluation to prevent resource conflicts. Empirical analysis

demonstrates a significant reduction in processing time from

79.16 seconds (base implementation) to 1.21 seconds,

achieving an 80.47x speedup (more explanation in Results

Section)

Layer 2: Resource Distribution Optimization. Our

implementation incorporates dynamic workload balancing

through strategic task partitioning:

- Computation Distribution, which Parallel item evaluation

across available threads, Synchronized state updates for

solution consistency, Memory-aware task allocation

minimizing thread contention

- Memory Access Optimization, which Thread-local

storage for intermediate computations, Cache-aligned

data structures reducing memory latency, Optimized

memory access patterns enhancing cache utilization.

- Load Balancing Mechanism can be seen in line code 1 and

8.

Layer 3: Synchronization Control. The implementation

maintains solution consistency through carefully designed

synchronization mechanisms as State Management: Atomic

updates for shared resource modifications, Barrier

synchronization at critical computation points, and Efficient

thread coordination minimizing overhead.

3. Technical Implementation Features

The technical implementation features encompass two key

areas of focus: parallel processing components and memory

architecture. The parallel processing components are built

around a sophisticated thread pool management system that

efficiently handles task distribution across available

processors. This is supported by a work queue distribution

mechanism that optimizes task allocation and processing flow.

The implementation incorporates essential synchronization

primitives to maintain data consistency and prevent race

conditions during parallel execution. To ensure robust

concurrent processing, comprehensive race condition

prevention mechanisms are implemented throughout the

system. The memory architecture is designed with careful

consideration of thread-local storage capabilities to minimize

contention and maximize parallel efficiency. This is

complemented by shared memory management strategies that

optimize resource utilization across threads. The

implementation also employs cache line optimization

techniques to enhance memory access performance, supported

by memory fence implementation that ensures proper

synchronization of memory operations across multiple threads.

These technical features work in concert to create a highly

efficient parallel processing system that maintains both

performance and reliability.

4. Key Improvements over Numba DP

a. Implementation Benefits: Scalable with CPU cores,

better resource distribution, Improved cache utilization,

Reduced memory pressure.

b. Trade-off: Increased implementation complexity,

Hardware dependencies, Thread coordination overhead,

Non-linear scaling beyond 4 cores, System resource

requirements.

5. Implementation Requirements

a. Hardware Prerequisites: Multi-core processor.

Sufficient L3 cache, Adequate memory bandwidth,

NUMA architecture awareness.

b. Software Dependencies: Threading library support,

Numba parallel features, Memory management tools,

Synchronization primitives.

6. Optimization Guidelines

a. Thread Management: Optimal thread count selection,

Work distribution strategy, Synchronization

minimization, Cache coherency maintenance.

b. Memory Management: Thread-local allocation, Cache-

line alignment, Memory access patterns, False sharing

prevention.

The parallel implementation offers improved resource

utilization and memory efficiency compared to Numba-only

implementation, making it particularly suitable for large-scale

retail applications with multiple CPU cores available. The

slight increase in runtime is offset by better scalability and

resource management.

2.2.4 Parallel rolling

Parallel rolling combines multi-threaded computation with

memory optimization through state space rolling. This

implementation achieves memory efficiency while

maintaining parallel processing benefits through a three-state

matrix rotation technique.

1. Core Implementation Architecture as seen in Algorithm 4

Algorithm 4: Parallel rolling

1 @staticmethod

2 @njit(parallel=True)

3 def dp_solve(n, m, weights, prices, values, capacities,

budgets):

4 max_capacity = int(max(capacities) * 100)

5 max_budget = int(max(budgets))

6 # Three-state matrix instead of n+1 states

537

7 dp = np.zeros((3, m, max_capacity + 1,

max_budget + 1), dtype=np.float32)

8 decisions = np.zeros((n, m, max_capacity + 1,

max_budget + 1), dtype=np.int8)

9 for i in range(1, n + 1):

10 curr = i % 3 # Current state

11 prev = (i - 1) % 3 # Previous state

12 for j in prange(m):

13 for w in range(int(capacities[j] * 100) + 1):

14 for b in range(int(budgets[j]) + 1):

15 if int(weights[i-1] * 100) <= w and

prices[i-1] <= b:

16 if dp[prev, j, w - int(weights[i-1] *

100), int(b - prices[i-1])] +

values[i-1] > dp[prev, j, w, b]:

17 dp[curr, j, w, b] = dp[prev, j, w

- int(weights[i-1] * 100), int(b -

prices[i-1])] + values[i-1]

18 decisions[i-1, j, w, b] = 1

19 else:

20 dp[curr, j, w, b] = dp[prev, j, w,

b]

21 return dp[(n-1) % 3], decisions

2. Memory Optimization Strategy

The memory optimization strategy in parallel rolling

implementation centers around two critical components: state

space rolling and decision tracking. The state space rolling

mechanism employs an innovative three-state matrix rotation

approach that significantly reduces memory footprint while

maintaining computational efficiency. This system

implements current/previous state tracking to manage state

transitions effectively, coupled with efficient state transition

mechanisms that optimize memory usage during computation.

The implementation maintains a minimal memory footprint

through careful resource management, ensuring optimal

performance with reduced memory requirements.

Complementing this, the decision tracking component utilizes

a compact decision matrix design that efficiently stores

solution choices. This is supported by efficient backtracking

support mechanisms that enable solution reconstruction when

needed, while employing a binary state representation to

minimize memory usage. The implementation also features

memory-efficient solution reconstruction capabilities that

allow for detailed solution recovery without significant

memory overhead. These optimization strategies work

together to create a memory-efficient implementation that

maintains high performance while significantly reducing

memory requirements compared to traditional approaches.

3. Parallel Processing Features

The parallel processing features of the parallel rolling

implementation are structured around two fundamental

components: thread management and memory architecture.

The thread management system implements task

parallelization across knapsacks through an efficient

distribution mechanism that optimizes workload allocation.

This is supported by thread-safe state updates that ensure data

consistency during parallel execution, complemented by

synchronized memory access controls that prevent data

corruption. The implementation employs load-balanced work

distribution strategies to ensure optimal resource utilization

across all available processors. The memory architecture is

specifically designed to support parallel processing efficiency,

implementing cache-friendly state rotation mechanisms that

optimize memory access patterns. The system utilizes thread-

local computation capabilities to minimize contention between

threads, supported by optimized memory access patterns that

enhance overall performance. These features are further

strengthened by reduced memory contention mechanisms that

ensure smooth parallel execution. Together, these parallel

processing features create a highly efficient implementation

that maximizes computational throughput while maintaining

data consistency and solution accuracy.

4. Key Improvements

a. Performance Balance: Maintained parallel speedup,

Reduced memory pressure, Improved cache

performance, Efficient state management.

b. Trade-offs: Additional implementation complexity,

State rotation overhead, Decision tracking overhead,

Complex solution reconstruction, Synchronization

requirements.

5. Implementation Considerations

a. Technical Requirements: Multi-core processor support,

Cache-coherent architecture, Memory management

capabilities, Thread synchronization support.

b. Optimization Guidelines: State rotation timing,

Memory access patterns, Thread work distribution,

Cache line alignment.

The parallel rolling implementation represents an optimal

balance between computational efficiency and memory usage,

making it particularly suitable for memory-constrained

environments while maintaining parallel processing benefits.

2.2.5 Genetic algorithm

The genetic algorithm provides a metaheuristic approach to

MKP through evolutionary computation [3, 9, 11]. This

implementation balances exploration and exploitation while

handling dual constraints effectively.

1. Core Genetic Components as seen in Algorithm 5

Algorithm 5: Snippet code for genetic algorithm

1 @dataclass

2 class Individual:

3 chromosome: List[int] # Each gene represents

knapsack assignment (-1 = not selected)

4 fitness: float = 0.0

5 is_feasible: bool = True

6 class MultipleKnapsackGA:

7 def __init__(self, population_size=100,

generations=100, mutation_rate=0.1,

elite_size=10, tournament_size=5):

8 self.population_size = population_size

9 self.generations = generations

10 self.mutation_rate = mutation_rate

11 self.elite_size = elite_size

12 self.tournament_size = tournament_size

13

14 def evaluate_fitness(self, position: np.ndarray) ->

float:

15 total_value = 0

16 for j in range(self.m):

17 weight_sum = sum(position[i, j] *

self.items[i].weight for i in range(self.n))

18 price_sum = sum(position[i, j] *

self.items[i].price for i in range(self.n))

19 if (weight_sum > self.knapsacks[j].capacity

or price_sum > self.knapsacks[j].budget):

20 return -np.inf

538

21 total_value += sum(position[i, j] *

self.items[i].value

22 return total_value

2. Algorithmic Parameters

As seen in Table 1, The GA implementation utilizes

carefully tuned parameters to balance exploration and

exploitation. Population size of 150 individuals was chosen to

maintain sufficient genetic diversity while remaining

computationally manageable. The algorithm runs for 100

generations to allow adequate evolution time while preventing

excessive computational overhead. A moderate mutation rate

of 0.1 enables sufficient genetic variation without disrupting

beneficial gene combinations. Elite size of 10 preserves the

best solutions across generations while maintaining population

diversity. Tournament size of 5 provides appropriate selection

pressure - large enough to favor fitter individuals but small

enough to prevent premature convergence.

Table 1. Genetic algorithm parameters

GA Parameter Settings Values

Population Size 50,100,150,200

Number of Generations 100

Mutation Rate 0.1

Elite Size 10

Tournament Size 5

To validate the GA parameter settings, here we focus on

population size. The result can be seen in Table 2.

Table 2. Population size analysis

Population

Size

Total

Value

Time

(s)

Memory

(MB)

Price

Utilization

(%)

Weight

Utilization

(%)

50 232 0.7260 145.09 93.42 79.95

100 230 1.5822 132.45 92.62 83.90

150 232.5 2.4622 145.35 93.62 76.72

200 232 3.4238 135.25 93.42 80.72

Based on comprehensive parameter sensitivity analysis on

Table 2, comparing population sizes (50, 100, 150, 200) in the

genetic algorithm implementation for MKP, population size

100 emerges as the optimal configuration. This conclusion is

substantiated through rigorous empirical evaluation across

multiple performance metrics: solution quality (total value =

230.0), computational efficiency (execution time = 1.5822s),

resource utilization (memory = 132.45 MB), and optimization

effectiveness (weight utilization = 83.90%, price utilization =

92.62%). While population size 150 achieved marginally

higher solution quality (232.5), the minimal improvement of

1.09% does not justify the substantial increases in

computational overhead (55.6% longer execution time) and

memory consumption (9.74% higher), thus establishing

population size 100 as the most efficient parameter setting for

balancing solution quality and computational resources in this

specific multiple knapsack optimization context.

As seen in Table 3, the evolution process is governed by

four key control mechanisms. Selection Pressure utilizes an

adaptive approach that automatically adjusts based on

population diversity and convergence trends. Diversity

Maintenance actively monitors and maintains genetic

variation through strategic mutation and crossover operations.

Convergence Control implements dynamic adjustments to

prevent premature convergence while ensuring efficient

solution space exploration. Population Renewal mechanism

introduces new genetic material by replacing 20% of the

population with fresh individuals when diversity drops below

critical thresholds, helping escape local optima while

preserving good solutions.

Table 3. Genetic algorithm evolution controls

Evolution Controls Value

Selection Pressure Adaptive

Diversity Maintenance Active

Convergence Control Dynamic

Population Renewal 20%

3. Genetic Operators

Based on Table 4, the GA implementation incorporates

three essential genetic operators, each carefully designed to

ensure effective solution space exploration and exploitation:

1) Selection Mechanism employs a multi-faceted approach

combining tournament selection for parent choice, elite

preservation to maintain best solutions, fitness-based

ranking to guide selection pressure, and diversity-aware

selection to prevent premature convergence. Tournament

selection with size 5 provides balanced selection pressure,

while elitism preserves the top 10 solutions across

generations.

2) Crossover Strategy utilizes a sophisticated approach with

four key components. Two-Point Crossover enables

effective genetic material exchange between parents.

Constraint-Aware Recombination ensures offspring

validity by respecting knapsack capacity and budget

constraints. Solution Repair mechanisms correct any

constraint violations post-crossover. Feasibility

Preservation maintains solution validity throughout the

evolutionary process.

3) Mutation Operations implement four complementary

strategies. Random Gene Modification allows for

exploration of new solution spaces. Intelligent Mutation

applies problem-specific knowledge to guide

modifications. Adaptive Rate Adjustment dynamically

modifies mutation probability based on population

diversity. Constraint Satisfaction ensures all mutations

maintain solution feasibility within knapsack constraints.

Table 4. Genetic operators

Selection

Mechanism
Crossover Strategy

Mutation

Operations

- Tournament

Selection

- Elite Preservation

- Fitness-Based

Ranking

- Diversity-Aware

Selection

- Two-Point Crossover

- Constraint Aware

Recombination

- Solution Repair

- Feasibility

Preservation

- Random Gene

Modification

- Intelligent Mutation

- Adaptive Rate

Adjustment

- Constraint

Satisfaction

These genetic operators work synergistically to achieve the

observed performance metrics, including solution quality of

230.0 and resource utilization of 92.62% for price and 83.90%

for weight capacity. The operators' design particularly

emphasizes maintaining solution feasibility while enabling

effective search space exploration.

4. Implementation Enhancements

The implementation enhancements in the genetic algorithm

539

focus on two crucial areas: constraint handling and

performance optimization. In constraint handling, the

implementation employs a sophisticated repair mechanism

that corrects infeasible solutions while maintaining genetic

diversity. This is complemented by carefully designed penalty

functions that guide the search toward feasible regions of the

solution space. The system implements robust feasibility

preservation mechanisms to maintain solution validity

throughout the evolutionary process, supported by

comprehensive solution validation procedures that ensure all

constraints are satisfied. Performance optimization is achieved

through several key mechanisms: parallel fitness evaluation

capabilities that leverage multiple processors for increased

computational efficiency, sophisticated caching mechanisms

that reduce redundant calculations, and early stopping criteria

that prevent unnecessary computational overhead. The

implementation also features advanced population

management techniques that maintain genetic diversity while

focusing the search on promising regions of the solution space.

These enhancement features work synergistically to create an

efficient and reliable genetic algorithm implementation that

effectively balances solution quality with computational

performance while maintaining strict adherence to problem

constraints.

5. Implementation Trade-offs

a. Advantages: Low Memory Requirements, Anytime

Solution Availability, Population Diversity, Parallel

Potential.

b. Limitations: Non-Guaranteed Optimality, Parameter

Sensitivity, Convergence Variance, Solution

Variability.

6. Optimization Guidelines:

a. Parameter Tuning: Population Size Selection,

Generation Count Optimization, Mutation Rate

Adjustment, Tournament Size Calibration.

b. Implementation Focus: Constraint Satisfaction,

Diversity Maintenance, Convergence Control, Solution

Quality Balance.

The genetic algorithm implementation provides a robust

alternative when optimal solutions aren't strictly required,

offering good solution quality with moderate computational

resources [30, 31]. This makes it particularly suitable for larger

problem instances where exact methods become

computationally prohibitive.

2.2.6 Greedy algorithm

The greedy algorithm provides a fast, deterministic heuristic

approach by making locally optimal choices based on value

density metrics [32, 33]. This implementation achieves

efficient resource utilization through strategic item selection.

1. Core Implementation Architecture as in Algorithm 6

Algorithm 6: Snippet code for greedy algorithm

1 class GreedyCriteria(Enum):

2 VALUE = "value"

3 VALUE_PER_WEIGHT = "value_per_weight"

4 VALUE_PER_PRICE = "value_per_price"

5 VALUE_PER_RESOURCE =

"value_per_resource"

6

7 @dataclass

8 class Item:

9 def value_per_resource(self) -> float:

10 return self.value / (self.weight + self.price) if

(self.weight + self.price) > 0 else float('inf')

11

12 class MultipleKnapsackGreedy:

13 def solve(self):

14 sorted_knapsacks = sorted(self.knapsacks,

key=lambda k: k.capacity/k.budget if

k.budget > 0 else float('inf'), reverse=True)

15 available_items = self.items.copy()

16 results = []

17

18 for knapsack in sorted_knapsacks:

19 sorted_items =

self.sort_items(available_items)

20 selected_items = []

21 remaining_items = []

22 total_value = 0.0

23 # Greedy selection process

24 for item in sorted_items:

25 if knapsack.can_add_item(item):

26 if knapsack.add_item(item):

27 selected_items.append(item)

28 total_value += item.value

29 Else:

30 remaining_items.append(item)

31 available_items = remaining_items

2. Selection Strategy

a. Value Density Metrics

b. Sorting Criteria: Knapsack Efficiency Ratio, Item

Value Density, Resource Consumption Rate,

Combined Utility Measure

3. Implementation Features

a. Core Components: Single-pass item selection, Greedy

choice function, Constraint validation, Resource

tracking

b. Optimization Elements: Efficient sorting, Early

termination, Resource monitoring, Solution

construction

4. Implementation Advantages

a. Computational Benefits: Minimal runtime overhead,

Linear memory scaling, Deterministic behavior,

Simple implementation

b. Practical Benefits: No parameter tuning, Immediate

solutions, Predictable performance, Easy maintenance

5. Solution Characteristics

a. Resource Utilization: Memory Efficiency: high; CPU

Utilization: minimal; I/O Requirements: negligible;

Storage Needs: constant

6. Implementation Trade-offs

a. Advantages: Extremely fast execution, Simple

implementation, Deterministic results, Low resource

requirements

b. Limitations: Sub-optimal solutions, Local decision

making, No solution refinement, Fixed selection

criteria

7. Key Improvements over Previous Approaches

a. Performance Gains: Fastest execution time, Minimal

memory overhead, Simple computation model,

Immediate results.

b. Resource Efficiency: Constant memory usage, Single-

pass processing, No iteration required, Linear scaling

8. Implementation Guidelines

a. Selection Criteria: Value density metric choice, Sorting

strategy selection, Constraint handling, Resource

540

balancing

b. Optimization Focus: Sort efficiency, Memory

management, Constraint checking, Solution

construction

The Greedy approach provides an extremely fast solution

with reasonable quality, making it particularly suitable for

real-time applications or when computational resources are

severely constrained. Its performance characteristics make it

an excellent choice for initial solution generation or when

quick approximations are acceptable.

2.2.7 Branch & Bound algorithm

Branch & Bound provides a systematic approach to finding

optimal or near-optimal solutions through intelligent search

space exploration and pruning [3, 29, 34]. This

implementation utilizes priority-based searching with efficient

bounding mechanisms.

1. Core Data Structures as in Algorithm 7

Algorithm 7: Snippet code for Branch & Bound

1 @dataclass(order=True)

2 class PrioritizedNode:

3 priority: float

4 level: int = field(compare=False)

5 value: float = field(compare=False)

6 weight: Dict[int, float] = field(compare=False)

7 price: Dict[int, float] = field(compare=False)

8 assigned_items: Dict[int, List[Item]] =

field(compare=False)

9 bound: float = field(compare=False)

10

11 class MultipleBranchAndBoundSolver:

12 def solve(self):

13 pq = PriorityQueue()

14 # Initialize root node

15 initial_weights = {i: k.capacity for i, k in

enumerate(self.knapsacks)}

16 initial_budgets = {i: k.budget for i, k in

enumerate(self.knapsacks)}

17 root_bound = self.calculate_bound(0, 0,

initial_weights, initial_budgets)

18 root_node = PrioritizedNode(

19 priority=-root_bound, # Negative for max-

heap behavior

20 level=0,

21 value=0,

22 weight=initial_weights,

23 price=initial_budgets,

24 assigned_items={i: [] for i in range(self.m)},

25 bound=root_bound)

26 pq.put(root_node)

2. Bounding Strategy

Algorithm 8: Snippet code for calculate_bound

1 def calculate_bound(self, level: int, curr_value: float,

remaining_weights: Dict[int, float],

remaining_budgets: Dict[int, float]) -> float:

2 bound = curr_value

3 remaining_items = self.items[level:]

4

5 for item in remaining_items:

6 min_fraction = 1.0

7 selected_knapsack = -1

8 for k_id, remaining_weight in

remaining_weights.items():

9 if remaining_weight >= item.weight and

remaining_budgets[k_id] >= item.price:

10 fraction = min(remaining_weight /

item.weight, remaining_budgets[k_id] /

item.price, 1.0)

11 if fraction > min_fraction:

12 min_fraction = fraction

13 selected_knapsack = k_id

3. Search Space Management

The search space management in the Branch & Bound

implementation is structured around two key components:

node exploration strategy and pruning mechanisms. The node

exploration strategy employs a best-first search approach

using a priority queue system to efficiently navigate the

solution space. This is supported by depth-based exploration

control that manages the search depth to balance between

exploration and exploitation. The implementation features

efficient node pruning techniques that eliminate unpromising

branches of the search tree, complemented by solution space

partitioning strategies that effectively divide the problem into

manageable subproblems. The pruning mechanisms are

implemented through several sophisticated approaches: upper

bound comparison techniques that quickly identify and

eliminate suboptimal branches, rigorous feasibility checking

procedures that maintain solution validity, comprehensive

resource constraint validation that ensures all solutions meet

problem constraints, and dominated solution elimination

strategies that remove redundant search paths. These search

space management features work together to create an

efficient implementation that effectively explores the solution

space while minimizing computational overhead through

strategic pruning and exploration control.

4. Implementation Features

The implementation features of the Branch & Bound

algorithm encompass two primary aspects: search

optimization and memory management. The search

optimization process is built around priority-based exploration

that efficiently guides the search toward promising regions of

the solution space. This is enhanced by efficient bound

computation mechanisms that quickly evaluate the potential of

each branch, complemented by early termination capabilities

that prevent unnecessary exploration of unpromising paths.

The system maintains comprehensive solution tracking

procedures that record the best solutions found during the

search process. Memory management is implemented through

several sophisticated strategies: compact node representation

techniques minimize memory usage while maintaining all

necessary information, efficient state storage mechanisms

optimize memory utilization during the search process, and

memory-aware pruning strategies remove unnecessary nodes

to conserve memory resources. The implementation also

features comprehensive resource tracking capabilities that

monitor and optimize resource usage throughout the execution.

These implementation features are carefully integrated to

create a highly efficient Branch & Bound algorithm that

effectively balances search effectiveness with memory

efficiency.

5. Key Advantages

a. Computational Benefits: fast convergence, efficient

pruning, limited memory usage, anytime solutions

b. Solution Quality: Near-optimal results, Guaranteed

541

bounds, Solution certificates, Quality guarantees

6. Implementation Trade-offs

a. Advantages: Efficient search space exploration, Strong

pruning capabilities, Quality guarantees, Memory

efficiency

b. Limitations: Complex implementation, Variable

runtime, Search space dependency, Branch selection

impact

7. Performance Optimization

a. Search Strategy: Node selection heuristics, Pruning

criteria optimization, Bound computation efficiency,

State space management

b. Memory Optimization: Node compression, State reuse,

Pruning effectiveness, Resource utilization.

2.3 Theoretical complexity analysis

Table 5 presents the theoretical complexity analysis for all

implemented algorithms, providing critical insights into their

scalability and resource requirements. The complexity is

expressed in terms of key problem parameters: n (number of

items), m (number of knapsacks), W (maximum weight

capacity), B (maximum budget), and p (number of processors

for parallel variants).

Table 5. Algorithm complexity comparison

Algorithm Time Complexity Space Complexity

BDP O(n×m×W×B) O(n×m×W×B)

Numba O(n×m×W×B) O(n×m×W×B)

Parallel O(n×m×W×B)/p O(n×m×W×B)

P-Rolling O(n×m×W×B) O(3×m×W×B)

GA O(population_size×n) O(population_size)

Greedy O(n) O(1)

Branch & Bound O(2n)* O(n)
Note: *worst case

Numba-accelerated implementations maintain the same

theoretical complexity O(n×m×W×B) as their traditional

counterparts, but achieve significant practical speedup through

JIT compilation and hardware optimization. Similarly, the

Parallel variant reduces actual runtime by a factor of p through

parallel processing, resulting in O(n×m×W×B)/p time

complexity, while maintaining the same space requirements.

The parallel rolling variant innovatively reduces space

complexity to O(3×m×W×B) through state space rolling,

while maintaining the same time complexity as other DP

variants. This represents a significant memory optimization

without compromising solution quality.

Genetic algorithm exhibits significantly lower complexity

of O(population_size×n), making it more scalable for larger

problem instances, though without optimality guarantees. The

Greedy approach achieves the lowest complexity of O(n) in

both time and O(1) in space, offering extremely fast execution

at the cost of solution quality.

Branch & Bound, while having worst-case time complexity

of O(2^n), often performs significantly better in practice due

to effective pruning strategies. Its space complexity remains

linear at O(n), making it memory-efficient for larger problems.

The theoretical complexity analysis provides insights into

algorithm scalability and resource requirements. Notably,

while Branch & Bound shows exponential worst-case

complexity, its practical performance can be significantly

better due to effective pruning strategies. The parallel variants

maintain the same theoretical complexity as BDP but achieve

practical speedup through concurrent execution.

2.4 Evaluation framework

2.4.1 Experimental setup

All experiments were conducted on Intel Core Ultra 7 22

threads with 32 GB memory running Python 3.8. For

reproducibility, random seeds were set to 42 where applicable.

The implementation utilized NumPy 1.19 for numerical

computations and Pandas 1.2 for data management. Tests were

executed with a time limit of 3600 seconds per algorithm.

Test Dataset Characteristics as follows: 88 products (45

beverages, 43 snacks); 7 knapsacks with varying constraints;

Value range: 1.0-10.0 units; Weight range: 0.11-1.0 kg; Price

range: 6,000-60,000 IDR.

The knapsack constraints were designed to reflect real-

world retail bundling scenarios, with capacities ranging from

1.5kg to 4.0kg and budgets from 150,000 to 300,000 IDR.

2.4.2 Performance metrics

The performance evaluation framework incorporates

multiple metric categories to ensure comprehensive

assessment of each algorithm. For solution quality assessment,

we employ Total Value Achievement (TVA) to measure

absolute solution value, alongside Relative Value

Achievement (RVA) which contextualizes solution value

against theoretical optimum. Resource Utilization Efficiency

(RUE – denoted as price utilization ratio) evaluates how

effectively each algorithm utilizes available constraints, while

Constraint Violation Rate (CVR) monitors the frequency of

constraint breaches during solution construction.

In terms of computational efficiency, we track Execution

Time (ET) measured in CPU seconds, alongside detailed

memory profiling through Peak Memory Usage (PMU) and

Average Memory Consumption (AMC) metrics measured in

megabytes. The framework also considers Scaling Efficiency

to evaluate performance changes with increasing problem size,

and employs a Resource Efficiency Ratio (RER) to provide a

balanced measure of solution quality versus computational

cost. These metrics collectively provide a multi-dimensional

view of algorithm performance, enabling thorough

comparative analysis.

𝑅𝑉𝐴 =
𝑇𝑉𝐴

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙_𝑀𝑎𝑥𝑖𝑚𝑢𝑚
 (6)

𝑃𝑟𝑖𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑢𝑠𝑒𝑑 𝑝𝑟𝑖𝑐𝑒

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑏𝑢𝑑𝑔𝑒𝑡
 (7)

𝑅𝐸𝑅 =
𝑇𝑉𝐴

(𝐸𝑇 × 𝑃𝑀𝑈)
 (8)

Additionally, we incorporate algorithm-specific metrics to

capture unique characteristics of each implementation. These

include convergence rate analysis to measure solution

improvement over time, solution stability assessment to

evaluate result consistency across multiple runs, and

population diversity metrics specifically for the genetic

algorithm implementation to monitor solution space

exploration.

2.4.3 Statistical analysis framework

To facilitate objective comparison, we implement a Multi-

criteria Decision Analysis using the TOPSIS method for

542

algorithm ranking. The criteria weights are carefully

distributed to reflect practical importance: solution quality

(0.5), runtime efficiency (0.3), memory usage (0.1), and

resource utilization (0.1). This weighting scheme prioritizes

solution quality while maintaining balanced consideration of

computational efficiency and resource utilization aspects.

Moreover, we are using 10% weight perturbation in matter of

stability verification.

3. RESULTS AND ANALYSIS

3.1 Solution quality assessment

Our comprehensive analysis demonstrates that five

algorithms consistently achieve optimal solutions, while three

algorithms provide high-quality approximate solutions. Table

6 presents the detailed performance comparison across all

implementations.

Table 7 presents a detailed comparison of solution quality

metrics across eight implemented algorithms for the MKP.

The Total Value Achievement (TVA) metric shows that four

algorithms - Parallel, P-Rolling, Numba, and BDP -

consistently achieved the optimal solution value of 247.50. In

contrast, GA, Greedy, and Branch & Bound algorithms

produced slightly lower values of 230.00, 232.50, and 223.50

respectively.

Price utilization performance demonstrates remarkable

efficiency among most algorithms. Parallel and P-Rolling

implementations led with 99.66% utilization, followed closely

by BDP and Numba with identical utilization rates. The GA

and Branch & Bound algorithms maintained respectable

utilization rates above 90%.

Weight utilization varied significantly across

implementations. Parallel achieved the highest weight

utilization at 94.46%. Other algorithms showed varying

degrees of efficiency, with Greedy demonstrating the lowest

weight utilization at 58.05%.

Table 6. Solution quality comparison

Algorithm TVA Price Util (%) Weight Util (%) RER Memory Eff.(%) Overall Score* Constraint Violations

Parallel 247.50 99.66 94.46 204.58 46.86 0.890 0

P-Rolling 247.50 99.66 81.08 221.73 82.59 0.928 0

Numba 247.50 99.66 81.08 609.91 29.05 0.683 0

BDP 247.50 99.66 81.08 3.13 64.35 0.262 0

GA 230 92.62 83.90 142.73 172.39 0.883 0

Greedy 232.50 93.62 58.05 232500 157.67 0.880 0

Branch & Bound 223.50 90.00 71.64 5359.71 189.26 0.845 0
* Overall score based on TOPSIS analysis incorporating all metrics

Table 7. Computational efficiency

Algorithm Runtime (s) Peak Memory (MB)

Parallel 1.2098 528.11

P-Rolling 1.1162 299.68

Numba 0.4058 852.08

BDP 79.1570 384.63

GA 1.6823 133.46

Greedy 0.0000 147.46

Branch & Bound 0.0417 118.09

The Resource Efficiency Ratio (RER) reveals interesting

performance patterns. The greedy algorithm achieved an

exceptionally high RER of 232500, primarily due to its

negligible runtime. Branch & Bound also showed strong

efficiency with an RER of 5359.71. Numba demonstrated

good balance with an RER of 609.91, while BDP showed

lower ratios of 3.13 respectively.

Memory efficiency varied across implementations, with

Branch & Bound showing the highest efficiency at 189.26%,

followed by GA at 172.39%. The Numba implementation

demonstrated the lowest memory efficiency at 29.05%.

The Overall Score, based on TOPSIS analysis incorporating

all metrics, ranks P-Rolling highest at 0.928, followed by

parallel processing at 0.890. BDP ranked lowest with a score

of 0.262. Notably, no algorithm recorded any constraint

violations, indicating robust implementation of feasibility

checks across all approaches. This comprehensive comparison

demonstrates the trade-offs between solution quality, resource

utilization, and computational efficiency across different

algorithmic approaches to the MKP.

Table 7 presents a comprehensive analysis of computational

performance across eight algorithm implementations, focusing

on two critical metrics: Runtime (in seconds) and Peak

Memory Usage (in MB). The results reveal distinct patterns in

computational efficiency and resource utilization.

Runtime Performance: (1) The greedy algorithm

demonstrates exceptional speed with a negligible runtime of

0.0000 seconds; (2) Branch & Bound shows remarkable

efficiency with just 0.0417 seconds; (3) Numba-accelerated

implementation achieves impressive performance at 0.4058

seconds; (4) Parallel and P-Rolling variants maintain good

efficiency at 1.2098 and 1.1162 seconds respectively; (5) The

genetic algorithm (GA) requires slightly more time at 1.6823

seconds; (6) BDP approaches show significantly longer

execution times requires 79.1570.

Peak Memory Usage: (1) Branch & Bound demonstrates the

most efficient memory utilization at 118.09 MB; (2) GA, and

Greedy show moderate memory consumption as GA: 133.46

MB, and Greedy: 147.46 MB; (3) P-Rolling achieves balanced

memory usage at 299.68 MB; (4) BDP requires increased

memory at 384.63 MB; (5) Higher memory requirements are

seen in Parallel: 528.11 MB and Numba: 852.08 MB.

Thus, Memory consumption patterns revealed three distinct

tiers:

1. Low Memory Tier (<150MB)

a. Branch & Bound: 118.09MB

b. GA: 133.46MB

c. Greedy: 147.46MB

2. Medium Memory Tier (150-400MB)

a. P-Rolling: 299.68MB

b. BDP: 384.63MB

3. High Memory Tier (>400MB)

a. Parallel: 528.11MB

b. Numba: 852.08MB

The results highlight clear trade-offs between execution

speed and memory consumption. While some algorithms

543

achieve faster runtimes, they may require more memory

resources, exemplifying the classic space-time trade-off in

algorithm design. This comparison provides crucial insights

for implementation decisions based on available

computational resources and performance requirements.

3.2 Computational performance

Table 8 provides a detailed comparison of runtime

performance across seven algorithms, using BDP as the

baseline for speedup calculations.

Table 8. Runtime performance summary

Algorithm Runtime(s) Speedup vs Base

BDP 79.1570 1.00x (baseline)

Numba 0.4058 240.14x

Parallel 1.2098 80.47x

P-Rolling 1.1162 87.21x

GA 1.6823 57.87x

Greedy 0.0000* N/A

Branch & Bound 0.0417 2334.53x
*Below measurable threshold

The results demonstrate significant variations in

computational efficiency:

Baseline Performance: BDP establishes the baseline with a

runtime of 79.1570 seconds, this serves as the reference point

(1.00x speedup) for comparing other implementations.

Relative Performance Improvements: (1) Numba: Runtime:

0.4058 seconds, Achieves remarkable 240.14x speedup,

Demonstrates the effectiveness of JIT compilation

optimization; (2) Parallel: Runtime: 1.2098 seconds, Achieves

80.47x speedup, Shows significant benefits of parallel

processing; (3) P-Rolling: Runtime: 1.1162 seconds, Achieves

87.21x speedup, Indicates efficiency of combined parallel and

memory optimization; (4) GA: Runtime: 1.6823 seconds,

Achieves 57.87x speedup, Shows competitive performance for

a metaheuristic approach; (5) Greedy: Runtime: 0.0000*

seconds, Speedup: Not applicable due to negligible runtime,

Demonstrates exceptional computational efficiency; (6)

Branch & Bound: Runtime: 0.0417 seconds, Achieves

impressive 2334.53x speedup, Shows remarkable efficiency

for an exact method.

This comparison reveals a clear hierarchy in computational

efficiency, with modern optimization techniques (Branch &

Bound, Numba) significantly outperforming base approaches.

The results highlight the substantial impact of algorithm

choice on runtime performance in solving the MKP.

Then, we utilized TOPSIS rankings as seen in Table 9.

Table 9. TOPSIS rankings with detailed scores

Algorithm
Topsis

Score

Performance Breakdown

Solution

Quality

Runtime

Efficiency

Memory

Usage

Resource

Utilization

Parallel 0.890 1.000 0.987 0.620 0.971

P-Rolling 0.928 1.000 0.989 0.716 0.903

Numba 0.683 1.000 0.996 0.000 0.903

BDP 0.262 1.000 0.187 0.549 0.903

GA 0.883 0.930 0.983 0.842 0.883

Greedy 0.880 0.940 1.000 0.825 0.758

Branch &

Bound
0.845 0.903 0.999 0.858 0.808

Note: All scores normalized to [0,1] range where 1.0 represents best

performance

As seen in Table 9, The TOPSIS analysis, incorporating

multiple performance criteria weighted according to practical

importance, clearly identifies P-Rolling as the superior

approach (score: 0.928). This ranking considers not only

solution quality but also runtime efficiency, memory usage,

and resource utilization patterns. Notably, while some

algorithms achieved perfect scores in individual categories

(e.g., Greedy for runtime efficiency), the parallel variants

demonstrated the best overall balance of performance metrics.

Particularly noteworthy is the clustering of scores, with

parallel variants (Parallel and P-Rolling) forming a high-

performance tier (scores > 0.880), followed by a middle tier of

optimized implementations (scores 0.800-0.880), and a lower

tier of basic implementations (scores < 0.800). This tiering

suggests clear implementation strategy recommendations for

different use cases. To justify the TOPSIS, analysis, Table 10

represent 10% perturbation as follows:

Table 10. TOPSIS stability verification

Algorithm Ori_Score Scenario1 Scenario2 Scenario3 Scenario4 Scenario 5 Mean Std CV

Parallel 0.890 0.886 0.898 0.892 0.885 0.897 0.891 0.005 0.006

P-Rolling 0.928 0.925 0.933 0.929 0.925 0.931 0.929 0.003 0.003

Numba 0.683 0.673 0.704 0.689 0.670 0.701 0.687 0.013 0.019

BDP 0.262 0.270 0.241 0.254 0.273 0.243 0.257 0.012 0.048

GA 0.883 0.881 0.895 0.891 0.880 0.896 0.888 0.006 0.007

Greedy 0.880 0.880 0.891 0.885 0.878 0.887 0.884 0.005 0.005

Branch & Bound 0.845 0.843 0.861 0.885 0.842 0.861 0.851 0.008 0.009
* Average CV: 0.014 and Maximum score variation: ±0.013

From Table 10, we can observe that the P-Rolling and

Parallel obtain high score than other algorithm. Moreover, the

empirical results largely align with theoretical complexity

predictions:

1. Memory Usage Patterns: P-Rolling achieved constant

memory scaling (O(3×m×W×B)) as predicted; Parallel

variants showed linear scaling with problem size; GA

maintained population-size bounded memory usage

2. Runtime Behavior: Greedy's linear complexity reflected

in fastest execution; Parallel variants achieved near-linear

speedup with processor count; Branch & Bound

performed better than worst-case bounds suggest

The correlation between theoretical and observed performance

validates the implementation efficiency of each algorithm.

3.3 Scalability analysis

To assess the practical applicability of our algorithms across

different operational scales, we conducted a systematic

scalability analysis using subsets of our dataset. Starting from

the base dataset of 88 items, we created controlled test

scenarios with 17, 41, 65, and 88 items while maintaining the

544

original data characteristics and knapsack constraints. This

approach allows us to evaluate performance scaling patterns

and resource utilization trends across different problem sizes,

providing insights into each algorithm's behavior as

computational demands increase. Our analysis focuses on

three critical metrics: execution time, memory consumption,

and solution quality maintenance.

Table 11. Execution time scalability analysis

Size BDP Numba Parallel P-Rolling GA Greedy Branch & Bound

17 48.97 0.19 0.88 0.76 0.04 0000 0.01

41 23.57 0.25 0.89 0.81 0.44 0.00 0.01

65 29.35 0.27 0.79 0.93 0.72 0.00 0.01

88 79.15 0.40 1.21 1.12 1.68 0.00 0.04

Table 12. Memory consuption scalability analysis

Size BDP Numba Parallel P-Rolling GA Greedy Branch & Bound

17 365.97 286.30 234.96 266.67 173.49 158.44 167.07

41 240.08 364.96 364.92 283.37 183.51 172.08 167.07

65 290.67 439.83 428.48 292.91 171.93 164.37 160.52

88 384.63 852.08 528.11 299.68 133.46 147.46 118.09

Table 13. Solution quality maintenance analysis

Size BDP Numba Parallel P-Rolling GA Greedy Branch & Bound

17 247.5 247.5 242.5 247.5 99 99 195

41 247.5 247.5 247.5 247.5 198.5 193.5 195.0

65 247 247.0 247.5 247.5 227.5 222 226.5

88 247.5 247.5 247.5 247.5 230 232.5 223.5

The scalability analysis reveals distinct performance

patterns across different problem sizes, providing crucial

insights into algorithm behavior under varying computational

demands. Our systematic evaluation examined four dataset

scales (17, 41, 65, and 88 items) while maintaining consistent

knapsack constraints and data characteristics.

Execution time analysis (Table 11) demonstrates notable

scaling patterns: 1) Parallel variants (Parallel and P-Rolling)

maintain relatively stable performance across different

problem sizes, with execution times ranging from 0.76-1.21

seconds, demonstrating efficient resource utilization even as

problem complexity increases; 2) The BDP implementation

shows significant performance degradation with increased

problem size, with execution time increasing from 48.97 to

79.15 seconds; 3) Numba-accelerated implementation

maintains impressive efficiency, showing only modest

increases in execution time (0.19 to 0.40 seconds) despite

problem size quadrupling; 4) Branch & Bound and greedy

algorithms demonstrate remarkable stability, with execution

times remaining consistently low across all problem sizes.

Memory consumption patterns (Table 12) reveal important

resource utilization characteristics: 1) Parallel rolling

demonstrates superior memory efficiency, maintaining

relatively stable memory usage (266.67-299.68 MB) across

problem sizes; 2) BDP and Numba show more pronounced

memory scaling, with Numba's consumption increasing

significantly from 286.30 MB to 852.08 MB for the largest

problem size; 3) GA and Branch & Bound maintain

conservative memory profiles, actually showing slight

decreases in memory usage for larger problem sizes,

suggesting effective memory management strategies.

Solution quality maintenance (Table 13) provides critical

insights into algorithm reliability: 1) Exact methods (BDP,

Numba, Parallel, P-Rolling) consistently achieve optimal

solutions (247.5) across all problem sizes; 2) Metaheuristic

approaches (GA) show improving solution quality with

increased problem size, from 99.0 to 230.0; 3) Branch &

Bound maintains relatively stable solution quality (195.0-

223.5) despite increasing problem complexity; 4) Greedy

algorithm demonstrates improving solution quality with larger

problem sizes, reaching 232.5 for the 88-item case.

This comprehensive scalability analysis validates the

practical applicability of our implementations across different

operational scales, with parallel variants demonstrating

particularly robust performance characteristics. The analysis

confirms that algorithm selection should consider not only

absolute performance metrics but also scaling behavior

relative to expected problem sizes and available computational

resources.

These findings extend our understanding of algorithmic

behavior beyond theoretical complexity analysis, providing

practical insights for implementation decisions across

different operational scales. The observed patterns support our

implementation recommendations, particularly the adoption of

parallel variants for large-scale operations and Branch &

Bound or Greedy approaches for resource-constrained

environments.

4. DISCUSSION

4.1 Algorithm performance insights

The comprehensive evaluation of eight MKP algorithms

reveals distinct performance tiers and implementation trade-

offs. The parallel rolling (P-R) achieved optimal solution

quality (247.50) with resource utilization (99.66% price, 81.08%

weight). Followed by the parallel processing (P-P) variants

consistently demonstrated superior performance across

multiple metrics, achieving optimal solution quality (247.50)

while maintaining high resource utilization (99.66% price,

94.46% weight). Even though, P-R obtain lower in weigth

545

utilization, it does outperform in matter of TOPSIS analysis

followed by P-P. Thus, P-R and P-P is interchangeable

according to the user needs.

4.1.1 Performance-resource trade-offs

Our analysis reveals distinct performance tiers among the

implemented algorithms. The High-Performance Tier,

dominated by parallel rolling and parallel processing variants,

demonstrates exceptional capabilities with optimal solution

quality achieving 99.66% price utilization and 94.46% weight

utilization. These implementations deliver significant

performance improvements, showing 80.47x speedup

compared to BDP. While they incur higher memory overhead,

the performance gains justify this trade-off, making them: 1)

ideal for large-scale retail operations handling multiple

product lines; 2) Supports real-time decision making in

dynamic pricing scenarios; 3) Enables efficient resource

allocation in complex bundling strategies. However, these

implementations require specific infrastructure considerations,

including multi-core processor capabilities, substantial

memory allocation, and careful thread management overhead

handling.

The Balanced Performance Tier, represented by Numba and

Branch & Bound implementations, offers a compelling

compromise between performance and resource requirements.

These algorithms consistently achieve near-optimal solutions

exceeding 90% of optimal value, while delivering excellent

runtime efficiency with over 240x speedup. Their moderate

memory requirements, ranging from 118.09 to 852.08 MB,

coupled with predictable performance characteristics and

stable resource utilization, make them 1) Suitable for medium-

scale retail operations; 2) Enables quick response to market

changes; 3) Supports efficient inventory management.

In the resource-efficient tier, the greedy and genetic

algorithm implementations provide practical solutions for

resource-constrained environments. These algorithms

maintain good solution quality exceeding 93% of optimal

value while operating with minimal memory footprint below

150MB. Their linear scaling characteristics make them 1)

Ideal for small retailers with limited IT infrastructure; 2)

Supports rapid decision-making in straightforward bundling

scenarios; 3) Cost-effective implementation.

4.1.2 Implementation considerations

The choice of algorithm significantly impacts both solution

quality and resource requirements. Memory usage varies from

118.09MB (Branch & Bound) to 852.08MB (Numba), while

runtime ranges from negligible (Greedy) to 79.1570 seconds

(BDP).

4.2 Business context analysis

4.2.1 Enterprise retail applications

For large retail operations, our findings support the adoption

of parallel processing solutions based on: (1) Consistent

achievement of optimal solutions; (2) High resource

utilization (>94% for both constraints); (3) Linear scaling with

processor count; (4) Robust performance across problem

variations.

Alternatively, enterprise retail applications can adopt

parallel rolling based on: memory-constrained environments,

similar performance benefits, reduced memory footprint

(299.68 MB).

4.2.2 SME implementation considerations

Small-medium enterprises benefit from lighter-weight

implementations: (1) Branch & Bound provides 90%

utilization with minimal resources; (2) Greedy algorithm

offers immediate results for time-critical decisions; (3)

Memory efficiency crucial for limited infrastructure; (4)

Acceptable solution quality for smaller scale operations.

Alternatively, SME could use Greedy Algorithm where

Time-critical operations, Limited computational resources,

Straightforward implementation.

4.2.3 Implementation strategy framework

Our Implementation Strategy Framework provides

comprehensive guidelines tailored to different operational

scales, based on empirical evidence from our algorithmic

analysis. For enterprise-scale implementations, we

recommend deploying parallel variants, particularly parallel

rolling, which demonstrated superior performance (TOPSIS

score: 0.928) and optimal resource utilization (99.66% price,

81.08% weight utilization). The implementation requires

specific technical infrastructure including multi-core

processors, minimum 16GB RAM, and appropriate storage

systems. The deployment process follows a structured three-

phase approach: infrastructure assessment and setup,

algorithm deployment with parallel processing configuration,

and performance optimization through thread allocation

tuning and cache optimization.

For SME implementations, we propose a resource-

conscious approach centered on Branch & Bound algorithm,

which achieved exceptional efficiency (0.0417 seconds

runtime) while maintaining minimal resource requirements

(118.09 MB memory footprint). This implementation pathway

requires standard computing infrastructure and follows a

simplified three-phase deployment: basic setup verification,

streamlined algorithm implementation, and targeted

performance tuning. Both frameworks are supported by

empirical evidence from our experimental results, ensuring

practical applicability while maintaining solution quality

across different operational scales. The implementation

guidelines incorporate specific technical requirements,

algorithmic selection criteria based on TOPSIS analysis, and

detailed deployment phases, providing a comprehensive

roadmap for successful implementation across varying

business contexts.

4.3 Theoretical, algorithm adaptability and practical

implications

Our study reveals several significant insights into algorithm

design and implementation. The analysis demonstrates that

memory-performance trade-offs play a crucial role in

determining practical utility, while parallel processing

approaches effectively address computational bottlenecks in

large-scale implementations. Notably, simple heuristic

approaches have shown remarkable capability in providing

competitive solutions for practical applications, challenging

the notion that complex algorithms are always necessary for

effective problem-solving.

Our analysis reveals critical insights into algorithm

adaptability across dynamic operational environments. The

parallel variants demonstrate exceptional resilience under

parameter variations, maintaining solution quality within 98.5%

of optimal values during price fluctuations (±20%) and

achieving >95% resource utilization efficiency under weight

546

variations (±15%). These implementations maintain consistent

runtime performance (1.1162-1.2098 seconds) and stable

memory utilization (<5% variation), validating their suitability

for enterprise-scale deployments where parameter stability

cannot be guaranteed. Similarly, the Branch & Bound

algorithm exhibits robust adaptability characteristics

particularly valuable for resource-constrained environments,

maintaining >90% solution quality under price variations

while preserving efficient execution time (0.0417 seconds

±8%) and stable memory consumption (118.09 MB ±5%),

with Greedy and GA implementations showing predictable

performance patterns under dynamic conditions.

This empirical evidence substantiates our implementation

recommendations across varying operational scenarios, with

parallel variants demonstrating superior adaptability for

enterprise deployments and Branch & Bound emerging as a

reliable choice for SME applications. The observed

performance stability under dynamic parameter changes

validates both the theoretical robustness of our algorithmic

approaches and their practical applicability in real-world retail

environments where price and weight variations are common

operational challenges. These findings significantly enhance

our understanding of algorithm behavior under dynamic

conditions, providing crucial insights for implementation

decisions while maintaining optimal resource utilization and

solution quality across different operational scales.

The implementation patterns identified through this

research highlight the importance of sophisticated resource

allocation strategies. Successful implementations require

careful attention to dynamic memory management for large

problem instances, optimization of processor allocation, and

implementation of cache-aware data structures. These

technical considerations are complemented by robust solution

quality management approaches, including the establishment

of early termination criteria based on solution quality

thresholds, careful balancing of resource utilization, and

comprehensive monitoring of constraint satisfaction

throughout the solution process.

This research contributes significantly to the theoretical

understanding and practical application of MKP algorithms.

By quantifying performance-resource trade-offs across

different implementation scenarios, validating the benefits of

parallel processing approaches in MKP solutions, and

establishing clear implementation guidelines for varying

operational scales, our findings provide valuable insights for

both academic research and practical implementations. These

implications extend beyond the immediate context of retail

applications, offering broader perspectives on algorithm

selection and implementation strategies for complex

optimization problems.

4.4 Limitations and considerations

This study acknowledges several limitations that provide

context for result interpretation and future research directions.

The dataset characteristics present certain constraints, as our

analysis is based on a specific set of 88 items distributed across

7 knapsacks, with fixed constraint ranges tailored to retail

product bundling scenarios. While this dataset effectively

represents typical retail bundling problems, it may not capture

all possible real-world scenarios. The categorical distribution

(45 beverages, 43 snacks) and value ranges (1.0-10.0 units for

value coefficients, 0.11-1.0 kilograms for weights, 6,000-

60,000 IDR for prices) provide comprehensive coverage for

traditional retail scenarios but may require validation for

extreme price points or highly specialized product categories,

such as: seasonal variations in product availability, regional

price fluctuations, dynamic inventory patterns, and extreme

price point products.

Performance evaluation boundaries are defined by our

experimental setup, including memory measurements

conducted on specific hardware configurations, the use of

single-node parallel processing architectures, and

implementation-specific optimizations. These boundaries,

while providing consistent comparative analysis, may

influence the direct applicability of results to different

hardware environments. The generalization of our findings is

most relevant to retail product bundling scenarios, particularly

those involving dual-constraint knapsack problems of similar

scale and complexity. While our scalability analysis

demonstrates consistent performance across different problem

sizes (17-88 items) and our statistical validation shows

solution stability (±0.013 TOPSIS score variation under 10%

weight perturbation), the applicability to significantly larger

retail operations (>1000 items) or different market segments

may require additional validation.

4.5 Implementation performance and complexity analysis

Our comprehensive analysis of implementation

performance reveals distinct patterns across algorithmic

approaches. The theoretical complexity analysis demonstrates

clear efficiency tiers: parallel variants achieve

O(n×m×W×B)/p time complexity with processor count p,

while maintaining O(3×m×W×B) space complexity through

rolling optimization; metaheuristic approaches show

O(population_size×n) time and O(population_size) space

complexity; and resource-efficient methods like Greedy

maintain O(n) time with O(1) space requirements. These

theoretical bounds are validated by empirical results showing

parallel variants achieving 80.47x-87.21x speedup over BDP,

Numba demonstrating 240.14x improvement, and Branch &

Bound exhibiting exceptional efficiency with 2334.53x

speedup, while maintaining solution quality above 90% of

optimal value across implementations.

Resource utilization patterns further support these findings,

with price utilization ranging from 90.00% to 99.66% and

weight utilization varying from 58.05% to 94.46%. Memory

consumption remains well-controlled, particularly in resource-

efficient implementations like Branch & Bound (118.09 MB)

and GA (<150 MB), while parallel variants demonstrate

predictable scaling with problem size. These empirical results,

combined with consistent solution quality maintenance,

validate our implementation strategies and provide robust

criteria for deployment decisions across different operational

scales, eliminating the need for extensive cross-platform

testing while maintaining rigorous performance validation.

4.6 Future research opportunities

Looking forward, several promising research opportunities

emerge from this work. In terms of algorithm enhancement,

there is significant potential for developing hybrid approaches

that combine the strengths of multiple algorithms,

implementing dynamic parameter adaptation mechanisms for

improved performance, and exploring advanced resource

optimization strategies. The implementation domain could be

expanded through investigation of distributed processing

547

architectures, exploration of cloud-based deployment options,

and development of real-time optimization capabilities. These

future directions could significantly advance the practical

application of MKP solutions in retail and beyond.

5. CONCLUSION

This comprehensive study of MKP algorithms reveals

significant findings regarding algorithm effectiveness and

implementation considerations. Our analysis demonstrates

that parallel variant implementations achieve optimal

solutions with a value of 247.50 and exceptional resource

utilization of 99.66%, setting a new benchmark for

performance. Notably, Branch & Bound and Greedy

algorithms emerge as efficient alternatives for resource-

constrained environments, offering practical solutions with

reduced computational requirements.

The performance-resource trade-offs observed across

implementations provide valuable insights for practical

deployment. Memory requirements vary substantially, ranging

from 118.09MB to 852.08MB across different

implementations, while runtime optimizations achieve

impressive improvements of up to 240x compared to baseline

approaches. Significantly, top-performing algorithms

consistently maintain resource utilization above 90%,

demonstrating robust efficiency in constraint satisfaction.

Our TOPSIS analysis reveals a clear tiering of

implementations based on performance characteristics. High-

performance solutions, led by P-Rolling (0.928) and parallel

processing (0.890), deliver optimal results with superior

resource utilization. Resource-efficient options, comprising

GA/Greedy (0.883/0.880) and Branch & Bound (0.845),

provide practical solutions for environments with limited

computational resources.

This study makes several significant contributions: (1)

Methodological Advances presents Comprehensive evaluation

framework for dual-constrained MKP, Statistical validation

approach for algorithm comparison, Implementation

guidelines for different operational scales; (2) Practical

Applications for Enterprise Solutions are Evidence-based

algorithm selection criteria for retail applications, Resource

requirement quantification for implementation planning,

Performance expectations for different operational scales; (3)

Practical Applications for SME solutions are Resource-

efficient algorithm recommendations, Scalable solution

pathways, Cost-effective deployment strategies.

Several promising areas for future investigation emerge: (1)

Algorithm Enhancement such as Hybrid approaches

combining metaheuristic and exact methods, Advanced

parallelization strategies for distributed systems, Adaptive

parameter tuning for metaheuristic algorithms; (2)

Implementation Extensions such as Cloud-based deployment

strategies, Real-time optimization capabilities, Integration

with inventory management systems; (3) Scalability Analysis

such as Investigation of larger problem instances, Multi-node

parallel processing evaluation, Dynamic constraint handling

mechanisms.

The findings support specific recommendations for

implementation: (1) for Enterprise Scale, Implement parallel

processing solutions for optimal performance, Utilize multi-

core architectures for computational efficiency, Focus on high

resource utilization capabilities; (2) for SME Applications,

Deploy Branch & Bound for balanced performance, Consider

Greedy algorithms for time-critical decisions, Optimize for

minimal resource requirements; (3) for General Guidelines,

Match algorithm selection to available computational

resources, Consider scaling requirements in implementation

planning, Balance solution quality with operational constraints.

This research demonstrates the effectiveness of parallel

processing approaches for solving dual-constrained MKP in

retail contexts. While parallel variants achieve optimal

solutions with high resource utilization, simpler algorithms

provide viable alternatives for resource-constrained

environments. The findings provide a foundation for

implementing MKP solutions across different operational

scales while considering practical constraints and

requirements.

The established evaluation framework and implementation

guidelines contribute to both theoretical understanding and

practical application of MKP algorithms in retail product

bundling. Future research can build on these findings to

develop more sophisticated solutions for larger-scale problems

and specialized retail applications.

ACKNOWLEDGMENT

This work was supported by the Kemdikbud Research Grant

on Penelitian Fundamental-Reguler with grant number

108/E5/PG.02.00.PL/2024 and 027/LL6/PB/AL.04/2024;

061/A38-04/UDN-09/VI/2024.

REFERENCES

[1] Dell’Amico, M., Delorme, M., Iori, M., Martello, S.

(2019). Mathematical models and decomposition

methods for the multiple knapsack problem. European

Journal of Operational Research, 274(3): 886-899.

https://doi.org/10.1016/j.ejor.2018.10.043

[2] Mkaouar, A., Htiouech, S., Chabchoub, H. (2023).

Modified artificial bee colony algorithm for multiple-

choice multidimensional knapsack problem. IEEE

Access, 11: 45255-45269.

https://doi.org/10.1109/ACCESS.2023.3264966

[3] Lalonde, O., Côté, J.F., Gendron, B. (2022). A branch-

and-price algorithm for the multiple knapsack problem.

INFORMS Journal on Computing, 34(6): 3134-3150.

https://doi.org/10.1287/ijoc.2022.1223

[4] Caserta, M., Voß, S. (2019). The robust multiple-choice

multidimensional knapsack problem. Omega, 86: 16-27.

https://doi.org/10.1016/j.omega.2018.06.014

[5] Bansal, S., Patvardhan, C. (2018). An improved

generalized quantum-inspired evolutionary algorithm for

multiple knapsack problem. International Journal of

Applied Evolutionary Computation (IJAEC), 9(1): 17-51.

https://doi.org/10.4018/978-1-7998-8593-1.ch002

[6] Zhao, Q., Tan, K., Du, J., Van Woensel, T. (2023). Joint

case pack size and unpacking location optimization in a

retail supply chain including product returns. Computers

& Industrial Engineering, 182: 109415.

https://doi.org/10.1016/j.cie.2023.109415

[7] Gecili, H., Parikh, P.J. (2022). Joint shelf design and

shelf space allocation problem for retailers. Omega, 111:

102634. https://doi.org/10.1016/j.omega.2022.102634

[8] Deza, A., Huang, K., Liang, H., Wang, X.J. (2020). On

inventory allocation for periodic review assemble-to-

548

order systems. Discrete Applied Mathematics, 275: 29-

41. https://doi.org/10.1016/j.dam.2019.04.004

[9] Ortega, F.A., Mesa, J.A., Piedra-De-La-Cuadra, R., Pozo,

M.A. (2019). A matheuristic for optimizing skip–stop

operation strategies in rail transit lines. International

Journal of Transport Development and Integration, 3(4):

306-316. https://doi.org/10.2495/TDI-V3-N4-306-316

[10] Ikhelef, A., Saidi, M.Y., Li, S., Chen, K. (2022). A

knapsack-based optimization algorithm for VNF

placement and chaining problem. In 2022 IEEE 47th

Conference on Local Computer Networks (LCN),

Edmonton, AB, Canada, pp. 430-437.

https://doi.org/10.1109/LCN53696.2022.9843566

[11] Simon, J., Apte, A., Regnier, E. (2017). An application

of the multiple knapsack problem: The self-sufficient

marine. European Journal of Operational Research,

256(3): 868-876.

https://doi.org/10.1016/j.ejor.2016.06.049

[12] Gu, Z., Lu, H., Zhu, D., Lu, Y. (2018). Joint power

allocation and caching optimization in fiber-wireless

access networks. In 2018 IEEE Global Communications

Conference (GLOBECOM), Abu Dhabi, United Arab

Emirates, pp. 1-7.

https://doi.org/10.1109/GLOCOM.2018.8647800

[13] Jiang, Q., Zhang, Y., Yan, J. (2020). Neural

combinatorial optimization for energy-efficient

offloading in mobile edge computing. IEEE Access, 8:

35077-35089.

https://doi.org/10.1109/ACCESS.2020.2974484

[14] Schäfer, G., Zweers, B.G. (2021). Maximum coverage

with cluster constraints: An LP-based approximation

technique. In Approximation and Online Algorithms:

18th International Workshop, WAOA 2020, Virtual

Event, pp. 63-80. https://doi.org/10.1007/978-3-030-

80879-2_5

[15] Babukarthik, R.G., Dhasarathan, C., Kumar, M., Shankar,

A., Thakur, S., Cheng, X. (2021). A novel approach for

multi-constraints knapsack problem using cluster particle

swarm optimization. Computers & Electrical

Engineering, 96: 107399.

https://doi.org/10.1016/j.compeleceng.2021.107399

[16] Fidanova, S., Atanassov, K.T. (2021). ACO with

intuitionistic fuzzy pheromone updating applied on

multiple-constraint knapsack problem. Mathematics,

9(13): 1456. https://doi.org/10.3390/math9131456

[17] Wu, Q., He, M., Hao, J.K., Lu, Y. (2024). An effective

hybrid evolutionary algorithm for the clustered

orienteering problem. European Journal of Operational

Research, 313(2): 418-434.

https://doi.org/10.1016/j.ejor.2023.08.006

[18] Lai, X., Hao, J.K., Fu, Z.H., Yue, D. (2020). Diversity-

preserving quantum particle swarm optimization for the

multidimensional knapsack problem. Expert Systems

with Applications, 149: 113310.

https://doi.org/10.1016/j.eswa.2020.113310

[19] Chen, Y., Hao, J.K., Glover, F. (2016). An evolutionary

path relinking approach for the quadratic multiple

knapsack problem. Knowledge-Based Systems, 92: 23-

34. https://doi.org/10.1016/j.knosys.2015.10.004

[20] Areias, M., Rocha, R. (2017). On scaling dynamic

programming problems with a multithreaded tabling

Prolog system. Journal of Systems and Software, 125:

417-426. https://doi.org/10.1016/j.jss.2016.06.060

[21] Salhab, N., Rahim, R., Langar, R. (2018). Throughput-

aware RRHs clustering in cloud radio access networks.

In 2018 Global Information Infrastructure and

Networking Symposium (GIIS), Thessaloniki, Greece,

pp. 1-5. https://doi.org/10.1109/GIIS.2018.8635647

[22] Boukhari, S., Dahmani, I., Hifi, M. (2022).

Computational power of a hybrid algorithm for solving

the multiple knapsack problem with setup. In Intelligent

Computing: Proceedings of the 2021 Computing

Conference, pp. 154-168. https://doi.org/10.1007/978-3-

030-80119-9_7

[23] Fidanova, S. (2020). Hybrid ant colony optimization

algorithm for multiple knapsack problem. In 2020 5th

IEEE International Conference on Recent Advances and

Innovations in Engineering (ICRAIE), Jaipur, India, pp.

1-5.

https://doi.org/10.1109/ICRAIE51050.2020.9358351

[24] Zulfa, M.I., Hartanto, R., Permanasari, A.E., Ali, W.

(2022). Improving cached data offloading optimization

based on enhanced hybrid ant colony genetic algorithm.

IEEE Access, 10: 84558-84568.

https://doi.org/10.1109/ACCESS.2022.3197205

[25] Li, X., Liu, S., Wang, J., Chen, X., Ong, Y.S., Tang, K.

(2024). Chance-constrained multiple-choice knapsack

problem: Model, algorithms, and applications. IEEE

Transactions on Cybernetics, 54(12): 7969-7980.

https://doi.org/10.1109/TCYB.2024.3402395

[26] Jovanovic, R., Voß, S. (2024). Matheuristic fixed set

search applied to the multidimensional knapsack

problem and the knapsack problem with forfeit sets. OR

Spectrum, 46: 13229-1365.

https://doi.org/10.1007/s00291-024-00746-2

[27] Paul, J., Agatz, N., Spliet, R., De Koster, R. (2019).

Shared capacity routing problem—An omni-channel

retail study. European Journal of Operational Research,

273(2): 731-739.

https://doi.org/10.1016/j.ejor.2018.08.027

[28] Wang, J., Liu, T., Liu, K., Kim, B., Xie, J., Han, Z. (2018).

Computation offloading over fog and cloud using multi-

dimensional multiple knapsack problem. In 2018 IEEE

Global Communications Conference (GLOBECOM),

Abu Dhabi, United Arab Emirates, pp. 1-7.

https://doi.org/10.1109/GLOCOM.2018.8647854

[29] Ayenew, T.M., Xenakis, D., Passas, N., Merakos, L.

(2021). Cooperative content caching in MEC-enabled

heterogeneous cellular networks. IEEE Access, 9:

98883-98903.

https://doi.org/10.1109/ACCESS.2021.3095356

[30] Moryadee, C., Aunyawong, W., Shaharudin, M.R.

(2019). Congestion and pollution, vehicle routing

problem of a logistics provider in Thailand. The Open

Transportation Journal, 13(1): 203-212.

https://doi.org/10.2174/1874447801913010203

[31] Cerulli, R., D’Ambrosio, C., Raiconi, A. (2024). A

biased random-key genetic algorithm for the knapsack

problem with forfeit sets. Soft Computing, 28(20):

12021–12041. https://doi.org/10.1007/s00500-024-

09948-w

[32] Chen, Y.Y., Zhang, L.B., Hu, J.Q., Liu, Z.Y. (2021).

Optimization of distribution of emergency resources for

emergency rescue points of oil and gas pipelines. In E3S

Web of Conferences, 266: 01016.

https://doi.org/10.1051/e3sconf/202126601016

[33] Wang, L., Li, C., Dai, W., Zou, J., Xiong, H. (2021).

QoE-driven and tile-based adaptive streaming for point

549

clouds. In ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), Toronto, ON, Canada, pp. 1930-1934.

https://doi.org/10.1109/ICASSP39728.2021.9414121

[34] Fleszar, K. (2022). A branch-and-bound algorithm for

the quadratic multiple knapsack problem. European

Journal of Operational Research, 298(1): 89-98.

https://doi.org/10.1016/j.ejor.2021.06.018

550

