
Encoder-Decoder Architectures for Crack Detection on Surfaces: A Deep Learning

Approach

Sakshi1 , Richa Vijay2 , Sachin Lodhi3 , Ajit Noonia4* , Gagandeep Berar5 , Ajay Kumar4

1 Amity Institute of Information and Technology, Amity University, Noida 201313, India
2 School of Computer Science and Engineering, IILM University, Greater Noida 201306, India
3 Department of Computer Science and Engineering, California State University, Fullerton, CA 92821, USA
4 Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur 303007, India
5 Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chitkara

University, Rajpura 140401, India

Corresponding Author Email: ajit.noonia@jaipur.manipal.edu

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300221 ABSTRACT

Received: 23 December 2024

Revised: 15 January 2025

Accepted: 14 February 2025

Available online: 27 February 2025

The building and maintenance of structures like roads, expressways, buildings, skyscrapers,

and so forth requires a sizable workforce as well as a sizable financial investment in the

fields of civil engineering and construction. Following completion, it is necessary to

regularly check for deformations such as fractures, the structure's outermost layer peeling

off, rusting, etc. To maintain the safety of both human life and the building itself, such

deformations must therefore be continuously monitored and repaired. We present a neural

network-based method to find cracks in such structures in addition to physical inspection.

Using 2500 images as training data, the model had an accuracy of 95.0%; on the validation

set, it had a mean IoU score of 83%. The proposed method also demonstrates superior

performance, achieving a 15% increase in prediction accuracy when compared to state-of-

the-art methods, thereby illustrating its worth in real-time applications.

Keywords:

crack detection, neural networks, civil

engineering, image segmentation, deep

learning, innovative technology

1. INTRODUCTION

This decade has seen the fastest rate of progress out of all

those studied. Numerous buildings have been built and

continue to be built. By building things like roads, buildings,

dams, and other infrastructure, emerging countries are

catching up to the rest of the globe [1]. Each of these structures

took a great deal of capital and pure human labor to create.

Pumping such resources would only secure the successful

completion of the building projects for these structures;

however, upkeep is a critical area in which resources should

be expanded [2].

These built structures are vulnerable to a variety of variables,

including the environment, chemicals, and man-made causes,

and they could sustain harm as a result. Damage to these

constructions includes not only the loss of previously

expended time and money but, in some situations, the loss of

lives if the structure suddenly falls and fractures [3]. Therefore,

it is necessary to continually find and fix such defects in these

structures. The most typical defects in a cement-based

structure may be termed the cracks. In most situations, the

cracks get wider with time, which makes the structures weaker

in the long run and increases the risk of collapse if the cracks

are not fixed.

There are manual methods that require labor to find and

repair such cracks. Human eyesight is limited in its ability to

detect objects or areas of interest (ROI), and its detection range,

which ranges from the lower constraint of 25 cm to the upper

bound of infinity, is very constrained (depends on various

factors like size of the objects) [4]. If the range of deformity

extends well beyond these boundaries at both ends, the manual

approaches will not work [5].

Crack detection is a critical task in infrastructure

maintenance, where early identification of structural damages

can prevent catastrophic failures and reduce maintenance costs.

Traditional methods, such as manual inspections and rule-

based algorithms, often suffer from low accuracy,

inconsistency, and inefficiency in large-scale applications.

Recent advances in deep learning have revolutionized image-

based analysis by providing robust feature extraction and

pattern recognition capabilities, making it a promising solution

for crack detection. Moreover, deep learning techniques can

handle diverse and complex crack patterns while offering real-

time processing capabilities, addressing the limitations of

existing approaches [6]. As opposed to human vision, which is

limited by characteristics like speed, duration, and range of

vision, automatic detection systems are relatively resilient to

such restrictions [7]. Deep learning has shown promise in

crack detection, but it often requires extensive labeled data.

The proposed SS-CCDN utilizes a semi-supervised approach

with a multi-task model and memory module, enhancing

efficiency and accuracy in detecting concrete cracks [8].

Thus, this study contributes to the field of automated

deformities detection in structures, ensuring more accurate and

Ingénierie des Systèmes d’Information
Vol. 30, No. 2, February, 2025, pp. 495-503

Journal homepage: http://iieta.org/journals/isi

495

https://orcid.org/0000-0002-8757-4001
https://orcid.org/0000-0001-9802-9255
https://orcid.org/0000-0001-5480-6200
https://orcid.org/0000-0002-3110-4908
https://orcid.org/0009-0004-8385-370X
https://orcid.org/0000-0003-0640-8640
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300221&domain=pdf

precise detection of such deformities. To ensure the correct

detection and upkeep of the structures, the article introduces

strategies that have been addressed in the civil domain. The

cost calculation to restore the damaged architecture is another

advantage over the manual technique that this article

highlights in addition to the attained accuracy and time savings.

This would eliminate the need for human efforts to list all the

costs necessary to fix the structure. The described method

would save a significant amount of time compared to its

counterpart methodology, which is labor-intensive and may

still produce some inaccurate results.

2. MOTIVATION

2.1 To prevent mishappenings

The main driving force behind the authors' decision to

produce this work is their desire to avoid any accident or

misfortune by identifying structural flaws like cracks [9].

Although surface cracks may seem natural, their internal

growth could pose a threat to structures including nuclear

power plants, dams, bridges, pillars, and others [10]. In the

case of the large structure stated earlier, these malformations

can be regarded as the most serious ones. The authors' method

would identify the critical flaws in advance so that the

appropriate safety measures and repair work may be done to

avert the potential accident [11].

2.2 Producing more feasible options

The structures, small and large both, are built with

complexities in today’s world. The addition of the new

facilities also contributes to the increased complexity of these

structures. Because of such persisting complexity, the manual

inspection of such structures is not feasible by sole human

efforts [12, 13]. But there are various small-scale devices like

small robot cars and other small-sized robots that can go to

places inside a structure where human reach is not possible.

So, integrating such devices with the method proposed here

would facilitate detecting deformities [14]. The proposed work

would contribute as another element to the array of feasible

options to inspect a structure.

2.3 Workers' safety insurance

The vast reach of the structures makes it very hard to

involve humans in various works involved in building and

maintaining these structures [15]. The factors like location,

weather, and physical condition of the structure make it very

hard to ensure the safety of a human participating in the task

of repairing work. Putting human efforts to detect, count, and

estimate the required expenditure to repair structure is not the

most efficient approach but the approach suggested in this

paper can be bolstered by other methods to calculate the cost

required to repair the system or structure [16]. Various

algorithms [17-19] can be integrated with this method to

calculate the area of damage and hence the cost needed to

repair and fix them.

3. PREDOMINANCE OF PROPOSED APPROACH

The proposed approach in this study makes use of encoder-

decoder architectures, especially U-Net and its variants, which

are perfectly suitable for image segmentation tasks, such as

crack detection for several reasons.

3.1 Fine localization

The encoder-decoder architecture allows the network to

capture high-level contextual information from the encoder

and fine details from the decoder. This will be used to make

accurate crack localization. Cracks tend to include fine, subtle

structures and thus require more precise localization than

standard classification tasks. While CNNs have been good in

classification tasks, they often fail at pinpointing pixels

belonging to a crack. Crack detection using deep learning

involves employing Convolutional Neural Networks (CNN) to

analyze images for structural defects. This methodology

achieves high accuracy by classifying images of cracks and

non-cracks, utilizing a dataset of concrete crack images for

training [20].

3.2 Variability in shape and size of cracks

Encoder-decoders have no problem with the variability in

shape and size of cracks. The downsampling within the

encoder captures the overall structure and context, and

upsampling within the decoder refines the segmentation map

to delineate the boundaries of cracks, regardless of their

complexity.

Those direct connections that the U-Net is providing

between corresponding layers within the encoder and decoder

blocks are very helpful as these could bypass the bottleneck in

case downsampling by an encoder while preserving finer

information that is critical to perfect segmentation. This often

ends up being a bottleneck when using simpler encoder-

decoder models without skip connections.

3.3 Outputting segmentation maps

Encoder-decoders are designed to output a pixel-wise

prediction to generate a segmentation map highlighting

regions of crack in the image. This is a near-ideal fit for a task

such as crack detection, although other deep models for

classification, like a normal CNN, need extra processing to

yield segmenting maps.

Although other deep learning models can be used for

segmentation, the natural architecture of an encoder-decoder

network makes such a model more suitable for tasks like crack

detection, where accurate boundary delineation and contextual

understanding are critical.

4. RESEARCH METHODOLOGY

The entire method to perform the research consists of

mainly 10 steps from the exploration of the dataset to the end

step which is the analysis of the results produced as the final

output from the entire research methodology [21, 22].

The very initial phase is an exploration of all the datasets

available for the fulfillment of the intended objective. The

finalization and incorporation of the datasets then succeed.

The integrated dataset then is arranged and loaded into the

objects in the next phases in such a manner as to support the

training phase of the model in upcoming steps. The Model is

then initialized and trained on the loaded dataset in succeeding

steps. The trained model is then evaluated on unseen data in

496

the next to last step and in the last step, the results produced

by all training and evaluation phases are discussed and

analyzed. The step-by-step summary of the methodology is as

depicted in Figure 1.

Figure 1. Research methodology

5. EXPERIMENTATION

All the phases of the research methodology are discussed in

extended detail in the following sub-section:

5.1 Dataset exploration, diversity and finalization

To fulfill the need for data to train the model the team of

authors has performed an intense exploration of the dataset

which contains the images of the surfaces with the crack and

the corresponding masks for the ground truth. The exploration

was performed solely on the internet as the availability of such

data cannot be collected locally and it would be feasible to

explore various surfaces and get the images.

All the data explored in the previous phase is also checked

for diversity and data has been collected from various sources.

To create a truly diverse dataset for crack detection, several

factors were considered and carefully controlled or varied

during data acquisition:

5.1.1 Surface types and materials

Concrete: The authors have included various types of

concrete as part of dataset images: smooth, textured, stamped,

colored, different aggregate sizes and compositions, and aged

concrete exhibiting weathering and discoloration.

Asphalt: Different asphalt types, ages, and conditions (e.g.,

cracked, potholed, repaired).

Metals: Various metals (steel, aluminum, etc.), finishes

(painted, unpainted), and conditions (rust, corrosion).

Other Materials: Wood, brick, stone—any material where

cracks might be relevant. This is crucial for genuine

generalization.

5.1.2 Crack characteristics

Orientation: Capture images with cracks running

horizontally, vertically, diagonally, and at various angles are

considered.

Width and Length: The dataset includes cracks of varying

sizes, from hairline cracks to wide, extensive cracks.

Depth: While depth is hard to directly capture visually,

include cracks in different stages of deterioration to represent

different depths.

Types of Cracks: Different crack types like transverse

cracks, longitudinal cracks, map cracks, etc were considered

in dataset images.

Fillings: We have also included cracks that are filled or

repaired, as the model should be robust enough to differentiate

these from genuine cracks.

5.1.3 Environmental conditions

Lighting: The dataset images under various lighting

conditions: direct sunlight, shade, overcast skies, different

times of day, and artificial lighting were considered. Consider

adjusting the exposure settings as well to incorporate varying

levels of brightness.

Weather: The dataset includes images captured in wet, dry,

snowy, or dusty conditions. These conditions significantly

change how cracks appear visually.

Shadows: There have been varying angles and intensities of

shadow that can obscure cracks, recreating images with

different shadow patterns.

5.1.4 Image acquisition

Resolution: Images had high enough resolution to capture

fine details of cracks.

Viewpoint: Images were taken from various viewpoints,

including close-up shots and more distant images.

Background: Varying background conditions (complex

backgrounds, relatively clean backgrounds) to test robustness

were considered.

5.1.5 Handling variations and generalization

Data Augmentation: The authors have endeavored to

artificially increase dataset size by creating variations of

existing images. Standard augmentation techniques rotation,

flipping, scaling, cropping, color jittering, and adding noise,

have been used. Advanced techniques like GANs that could

synthesize new images were also considered for a part of the

dataset.

Robust Loss Functions: The authors have employed robust

loss functions that are less sensitive to outliers and noisy data.

This helps when handling significant variations in lighting or

surface quality.

The diversity of the dataset is directly proportional to the

model's ability to reliably detect cracks under real-world

conditions. So, the diverse dataset was considered and later

handled using variation handling techniques and

generalization methods.

Figure 2. Samples from different datasets

497

After performing the exploration and collecting the

diversity of the dataset, the authors found 4 datasets [23-26].

that have the samples/dataset that is the most suitable for the

objective of this article. Figure 2 shows various samples from

the diverse datasets.

The Datasets finalized after the intense explorations are then

unified under a single entity. Various samples, from various

sources, are unified to increase the length of the samples in the

dataset. This facilitates the study by increasing the size of the

dataset and helps in generalizing the model so the model is less

susceptible to noise and hence can be saved from overfitting.

5.2 Arrangement of the incorporated dataset

After unifying the data, the directory arrangement is done in

a manner that bolsters the training phase of the model. The

input samples received from various sources are then stored in

a single directory and renamed and then their mask or ground

truth are mapped correctly with their counterpart input images.

This would mark the dataset as ready to be loaded for training

as each image would be having correct mask mapped to them

which would serve as the pair of the input image and ground

truth. The arrangements of images and their corresponding

masks in the finalized dataset are shown in Figure 3.

Figure 3. Images and their corresponding masks

5.3 Preprocessing and feature extraction

Marked in the previous phase, the arranged dataset is then

loaded into two objects. One object serves the purpose of

storing all the input images in a proper format which may be

an array or tensor. The other object would store the mask or

ground truth value utilized in the model optimization. The

loaded datasets are then normalized to bring the values of the

data points within the range of 0-1. Each loaded dataset is

divided by 255 to achieve the normalized dataset.

The encoder in an encoder-decoder architecture used in this

research study performs hierarchical feature extraction using

convolutional layers. However, its role is specifically to create

a rich, compressed representation of the input image that the

decoder can then use to generate the segmentation map. The

details of feature extraction are as follows:

Downsampling and Feature Extraction: The encoder

used in the proposed study uses a series of convolutional layers

followed by pooling (or strided convolutions) to progressively

downsample the input image. This downsampling serves two

key purposes:

Increases Receptive Field: Going deeper into the encoder,

the receptive field of the neurons expands. This means that

neurons in later layers "see" a larger portion of the input image,

enabling them to capture broader contextual information about

the cracks. This is crucial for understanding the overall crack

structure and distinguishing it from noise or other image

features.

Creates a Compressed Representation: The

downsampling effectively compresses the image's spatial

dimensions, creating a lower-resolution representation that

encodes the essential features of the crack. This compression

helps the network learn more abstract and generalizable

features, making it less sensitive to minor variations in crack

appearance.

Feature Hierarchy Within the Encoder: The hierarchical

feature learning has used in the encoder decoder architecture

that has been deployed here. The details of the layers used in

feature extraction are as follows:

Early Layers: This layer focus on low-level features like

edges, gradients, and corners, providing the initial building

blocks for crack detection.

Middle Layers: These layers capture more complex

patterns, linear structures, and crack morphology. The

increased receptive field allows these layers to integrate

information from a larger area of the image.

Later Layers (Bottleneck): Extract the most abstract, high-

level features representing the overall presence, location, and

potentially the type of crack. These features form the

compressed representation that is passed to the decoder.

The key difference in the encoder-decoder is how these

extracted features are used. Unlike in a standard CNN where

the final layer might be a classifier, here, the encoded features

serve as input to the decoder.

Decoder Upsampling and Segmentation: The decoder

takes the compressed feature representation from the encoder's

bottleneck and progressively upsamples it, recovering the

spatial information needed for precise segmentation.

Skip Connections: Crucially, encoder-decoders like U-Net

utilize skip connections. These connections directly pass

feature maps from corresponding encoder layers to the

decoder. This allows the decoder to combine the high-level

contextual information from the deeper layers with the fine-

grained details from the earlier layers, leading to more

accurate and sharp segmentation boundaries around the cracks.

In essence, the encoder's role is to learn a rich, multi-scale

representation of the crack. The decoder then leverages this

representation and the skip connections to reconstruct a

detailed segmentation map that precisely outlines the crack's

location and extent in the original image.

498

5.4 Experimentation setup

The experimentation is performed on Google Colab virtual

environment with the memory of 13.6 Gigabytes and graphical

memory of 12 Gigabytes. The virtual environment also has a

storage space of 70 Gigabytes which is utilized to store the

temporary data and intermediate results of the

experimentations. Colab is based on Debian-based Ubuntu

Linux 18.04 LTS and hence has most of the dependencies, for

experimentation, like python, pip, and git are pre-installed. All

the required libraries as OpenCV, Numpy, etc are also

preinstalled on the environment. Few other libraries, like

imutils, from third-party sources, are required to be installed

according to the need of the experimentation. This virtual

environment is accessed throug web-browser client Google

Chrome installed on Ubuntu 22.04 LTS with memory of 12

Gigabytes and storage space of 500 Gigabytes. The host

operating system runs on Intel i5 processor from 8th

generation.

5.5 Model construction

After loading the datasets in the respective objects

according to the type of the data, the next step would consist

of the model construction. As the model follows the encoder-

decoder structure, so the model is constructed accordingly.

And in this case of encoder-decoder structure, the model

follows the sequential order so the model is constructed as the

Sequential() so various layers can be stacked on top of each

other. As the model follows the encoder-decoder structure the

model is mainly constructed with the input layer, encoder

block, decoder block, and the output layer in the end. The input

layer accepts the image in the size of 448×448×1.

Encoder: The encoder block follows the input layer and

consists of 4 sub-blocks which are made up of repetitive

conv2D and Batch Normalization layers, repeated 2 times in

the first sub-block of the encoder. The connection between

each sub-block of the encoder is established by deploying the

Activation layer. The second sub-block has a MaxPooling2D

layer for down sampling and then, as in the first sub-block of

the encoder, the Conv2D layer is stacked, followed by the

Batch Normalization layer. This pattern of Conv2D followed

by Batch Normalization is repeated twice in the given order in

each remaining sub-block of the encoder. After stacking all the

blocks and connecting them by the Activation layer, the

encoder is connected by the decoder by connecting both

through a block called the bridge. The bridge consists of a

MaxPooling layer followed by a repeating layer structure as

each sub-block of the encoder, followed by another Activation

layer, and at the end, the bridge has the Conv2DTranspose

layer.

Decoder: The decoder, as encoder, has a fixed number of

blocks i.e. 4. The bridge is connected to the first sub-block of

the decoder. The first decoder block is connected to the bridge

by concatenating layer. The concatenate layer connects the

previous sub-block to the next one in the case of the decoder

and the same layer also connects the current sub-block of the

decoder to the corresponding sub-block of the encoder. The

correspondence of the sub-blocks of encoder and decoder is

determined based on the parameters they have or based on the

order of the insertion in the network. Each sub-block of the

decoder has the repeating structure of layers as in the case of

sub-blocks of the encoder with a Conv2DTransopose layer

added at the end of each sub-block of the decoder except the

last sub-block of the decoder. In the last sub-block, the

Conv2DTranspose layer is replaced by the Conv2D layer

which produces the output.

The input accepts the input of the size 448×448×1 and each

Conv2D layer in each sub-block of the encoder has filters

number of filters as 16,32,64,128 in-order, in each sub-block

of the encoder. The kernel size for all the Conv2D layers is set

as 2×2 and stride of 2 and padding is not changed. MaxPool

has a pool size of (2,2). The Activation function is RELU in

the entire model. The decoder block has Conv2DTranspose

layers which have several filters as 128, and 64,32,16 in order.

The kernel size for this layer is kept as 2×2. The stride of 2 is

initialized and padding is, as the encoder part, kept the same.

The output layer is the Conv2D layer which has kernel size

1×1 and activation function as Sigmoid.

5.6 Callbacks and parameters initialization and model

compilation

For training the model efficiently and getting the best results

during the training phase 2 callbacks are initialized named

EarlyStopping and tensorboard logs. Early Stopping is a

callback method that ensures that the model does not learn

noise from the supplied data and hence saves the model from

overfitting. It does by stopping the model from training when

the model does not show any improvement in the accuracy

over the epochs. The EarlyStoppping is the method from Keras

API. It has a parameter named min_delta which determines the

minimum amount of change in the validation accuracy to keep

training continues. Patience defines the number of epochs for

which the training won't be stopped even if there is no change

in the model’s validation accuracy over the epochs. Another

parameter named restore_best_weights ensures that the model

is saved with the best weight even if the training does not show

any improvements over the epochs. The initialization of the

tensorboard would assist in the visualization of the training in

the form of interactive graphs as it would save the training logs

which can be used to plot the graphs like accuracy and loss

graphs.

Then in this phase, the initialization of the hyperparameters

takes place. The first hyperparameter is adam optimizer is used

in training. The learning rate is kept as 0.0001. The loss

function is assigned as binary_crossentropy and the metric

function is the accuracy that indicates the performance of the

model would be judged based on the accuracy achieved during

the training phase. After the initialization of hyperparameters

and callback functions to bolster training, the model is

compiled with the compile() method.

5.7 Model training and testing

The model training is started by using the method fit(). This

method takes arguments such as training and validation data,

batch size, number of epochs, and callbacks. The training and

validation dataset is provided as Xtrain, YTrain, and Xtest,

Ytest, respectively. Batch size is kept as 4 which suggests that

each batch in the dataset would contain 4 image samples.

The significance of the batch size uring training is that it

determines the memory usage during the training phase of the

model. More value of batch size would use more memory and

would be computationally expensive, and the pace of training

would be slower in comparison to the case when the batch size

is smaller. The model is projected to be trained for 5, 10, 15,

and 20 epochs respectively as the experimentation trial

499

maximize the chances to achieve the best accuracy. Verbosity

is set to 1 to check the training logs on the screen in real-time.

The shuffling is disabled in this case, but it also can be enabled

with no noticeable impact on the training or metrics like

accuracy and errors. Callbacks are assigned as

tensorboard_callback and EarlyStopping.

After assigning all the essential variables, finally, the

training is started using the model.fit().

Running trials with the predefined number of epochs, the

model achieved the best accuracy on the validation set in the

case of 5 epochs. The model suffers from overfitting if trained

for more than 10 epochs. The final epoch in each trial reported

the accuracy over validation split as 94.5%, 95.0%, 94.5%, and

94.02% respectively with epochs as 5, 10, 15, and 20 epochs.

The average time taken by the model to process a single epoch

is 183 seconds in each trial. The parameter tuning process was

conducted to optimize model performance using a systematic

grid search method. Key hyperparameters, including the

learning rate (0.0001-0.001), batch size (4-32), and the number

of convolutional filters (16, 32, 64, 128), were varied to

evaluate their impact on model accuracy and mean IoU score.

We evaluated combinations of these parameters on the

validation set and observed that a learning rate of 0.0001,

batch size of 4, and filter sizes of 16, 32, 64, and 128 achieved

the best trade-off between convergence stability and

computational efficiency.

The accuracy achieved on the training set and validation set

for each epoch is shown in Figure 4. By following the orange

curve in the graph, the distinct gradual increment in the

accuracy of the model on the training set is visible. The model

achieves an accuracy of 95.0%, on the training set till the end

epoch which is epoch 10.

Figure 4. Epoch accuracy

The outcomes from the loss functions are depicted in Figure

5. The small difference between the training and validation

curve proves that the model does not learn from the noise, so

it is not the case of overfitting. Figure 5 also shows that the

losses for the validation split are gradually decreasing which

substantiates the optimized learning by the model.

Figure 6 denotes the model’s accuracy on the validation

split over the progressing numbers of iterations. There is a

sharp decrement in the accuracy on iteration 1700 and then

there is a constant sharp growth in the same. Till the end

iteration, the model achieved an accuracy of 95.0%. Thus, the

number of iterations focused during experimentation is 1700.

Justified by Figure 7 which denotes the loss over the

validation set. The graph of accuracy and loss are closely

related as clear from Figures 6 and 7. As there is a sharp

decrement in the accuracy in Figure 6, in Figure 7 there is a

sharp increase in the loss function around iteration 1700. After

iteration 1700, the model shows improvements sharply which

is clear from the accuracy and loss graph of the validation set.

Figure 5. Epoch loss

Figure 6. Evaluation accuracy

Figure 7. Evaluation loss

After completion of the training phase, the model is tested

against the split that was marked as testing split, comprised of

1000 images, during the data preparation phase. The entire

testing split is sent to be predicted for the segmented results

from the input dataset. The result from this phase of prediction

of the testing split is then utilized to determine the prediction

threshold which would be used to determine the model’s

accuracy over the testing split by employing mean IoU or

mean of intersection over union score. This performance

metric would be the ratio of the intersection of the predicted

image and ground truth of the same input image over the union

of the predicted image and ground truth. A higher mean IoU

score indicates the prediction accuracy of the model.

Prediction on the test split by the trained model shows the

mean score of IoU as 83%, shown in Figure 8, which means

that the predicted images by the model have been Extending

500

the insights received by mean IoU score on the testing split,

the trained model was then exposed to the unseen images. This

testing with the unseen would mimic the real-world

deployment of the model. The model produces the outputs

corresponding to the input images. The few sample predictions

made by the model are shown in Figure 9. The model predicts

new segmented images which show the structure deformities,

i.e. cracks, with a pixel intensity of 255, and the background

region is shown by absolute black color or pixel intensity of 0.

Figure 8. Segmentation score (Mean IoU) on test split

Figure 9. Prediction results by model

6. RESULT ANALYSIS

The achieved mean IoU score of 83% on a dataset size as

small as containing only 2500 images, promises enhanced

accuracy on the larger dataset. The memory limitation on the

environment acts as a constraint to improve accuracy as

alteration of the hyperparameters crashes the session and for

that reason, the maximum achieved accuracy on various trials

limits itself to only 83% of the mean IoU score shown in

Figure 8. On the other hand, the visual interpretation, as shown

in Figure 9, confirms the superiority of the model’s prediction

over any static algorithm or method. In the pseudo deployment

phase, the model predicts the segmented image with such an

accuracy that it can detect the fillings between the trace of

cracks on the surface as depicted in the first image sample of

Figure 9. From the last sample in Figure 9, it can be inferred

by the visual interpretation that the model struggles to predict

an ideal segmented image if the input image has a complex

crack structure on the surface. This shortcoming can be

overcome by training the model over the larger dataset. The

basic architecture of the proposed and applied model is

depicted in Figure 10 where the convoluted encoder and

decoder are connected via a bridge.

Figure 10. Encoder-decoder structure

7. CONCLUSION AND FUTURE SCOPE

This study targets to automate the process of inspection and

detection of the deformities, and cracks in this case, so they

can be repaired, and the structure can sustain for a long time.

The proposed methodology not only ensures the structural

safety of the system but also promises to save the lives of

workers who would otherwise require manual inspections. The

accuracy achieved on the testing dataset further reinforces the

objectives of this study. Currently, the model addresses only

one type of deformity, namely cracks. However, augmenting

the dataset by incorporating sample images of other

deformities, such as rust and peeling, could enhance the

model's generalizability as a predictor. Furthermore, by

integrating the model with additional algorithms for area

calculation and geotagging applications, the entire processes

of detection and cost estimation can be automated.

While the model achieved promising results with a mean

IoU score of 83%, certain failure cases were observed. For

instance, as depicted in Figure 9, the model struggled with

detecting complex crack structures on surfaces with high

texture or noise. This may be attributed to the limited

representation of such scenarios in the training dataset,

resulting in insufficient generalization. Similarly, low-contrast

cracks in poorly lit environments occasionally led to false

negatives. The observed failure cases, particularly with

complex or low-contrast cracks, highlight the need for larger

and more diverse datasets encompassing challenging real-

world conditions. Additionally, exploring hybrid architectures

or attention-based mechanisms could enhance the model's

robustness to such scenarios. Incorporating multimodal data,

such as thermal imaging, may further reduce the likelihood of

501

misclassification.

To address limitations in detecting complex crack patterns,

future work could explore the use of 3D imaging modalities

such as structured light scanning or photogrammetry to

provide a more comprehensive representation of crack

morphology and depth. This would necessitate adapting the

current 2D encoder-decoder architecture to handle 3D data.

Additionally, integrating multimodal data (e.g., infrared

thermography for thermal anomalies, acoustic emission

sensing for crack propagation detection, or Ground

Penetrating Radar for subsurface crack detection) offers

significant potential for enhancing the accuracy and reliability

of the crack detection system. Advanced data fusion

techniques would be crucial to effectively combine these

disparate data sources.

REFERENCES

[1] McGlinchy, J., Johnson, B., Muller, B., Joseph, M., Diaz,

J. (2019). Application of UNet fully convolutional neural

network to impervious surface segmentation in urban

environment from high resolution satellite imagery. In

IGARSS 2019-2019 IEEE International Geoscience and

Remote Sensing Symposium, Yokohama, Japan, pp.

3915-3918.

https://doi.org/10.1109/IGARSS.2019.8900453

[2] Munawar, H.S., Hammad, A.W., Haddad, A., Soares,

C.A.P., Waller, S.T. (2021). Image-based crack detection

methods: A review. Infrastructures, 6(8): 115.

https://doi.org/10.3390/infrastructures6080115

[3] Mohan, A., Poobal, S. (2018). Crack detection using

image processing: A critical review and analysis.

Alexandria Engineering Journal, 57(2): 787-798.

https://doi.org/10.1016/j.aej.2017.01.020

[4] Kang, D., Benipal, S.S., Gopal, D.L., Cha, Y.J. (2020).

Hybrid pixel-level concrete crack segmentation and

quantification across complex backgrounds using deep

learning. Automation in Construction, 118: 103291.

https://doi.org/10.1016/j.autcon.2020.103291

[5] Chen, K., Reichard, G., Xu, X., Akanmu, A. (2021).

Automated crack segmentation in close-range building

façade inspection images using deep learning techniques.

Journal of Building Engineering, 43: 102913.

https://doi.org/10.1016/j.jobe.2021.102913

[6] Pan, Y., Khodaei, Z.S., Aliabadi, F. (2025). Online

fatigue crack detection and growth modelling through

higher harmonic analysis: A baseline-free approach.

Mechanical Systems and Signal Processing, 224: 112167.

https://doi.org/10.1016/j.ymssp.2024.112167

[7] Hsieh, Y.A., Tsai, Y.J. (2020). Machine learning for

crack detection: Review and model performance

comparison. Journal of Computing in Civil Engineering,

34(5): 04020038.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918

[8] Zhang, X., Tang, H., Yu, C., Zhai, D., Li, Y. (2025). SS-

CCDN: A semi-supervised pixel-wise concrete crack

detection network using multi-task learning and memory

information. Measurement, 239: 115478.

https://doi.org/10.1016/j.measurement.2024.115478

[9] Hu, H., Li, Z., He, Z., Wang, L., Cao, S., Du, W. (2024).

Road surface crack detection method based on improved

YOLOv5 and vehicle-mounted images. Measurement,

229: 114443.

https://doi.org/10.1016/j.measurement.2024.114443

[10] Kirthiga, R., Elavenil, S. (2024). A survey on crack

detection in concrete surface using image processing and

machine learning. Journal of Building Pathology and

Rehabilitation, 9(1): 15. https://doi.org/10.1007/s41024-

023-00371-6

[11] Zadeh, S.S., Khorshidi, M., Kooban, F. (2024). Concrete

surface crack detection with convolutional-based deep

learning models. arXiv preprint arXiv:2401.07124.

https://doi.org/10.48550/arXiv.2401.07124

[12] Hu, F., Gou, H.Y., Yang, H.Z., Yan, H., Ni, Y.Q., Wang,

Y.W. (2025). Automatic PAUT crack detection and

depth identification framework based on inspection robot

and deep learning method. Journal of Infrastructure

Intelligence and Resilience, 4(1): 100113.

https://doi.org/10.1016/j.iintel.2024.100113

[13] Kaveh, H., Alhajj, R. (2024). Recent advances in crack

detection technologies for structures: A survey of 2022-

2023 literature. Frontiers in Built Environment, 10:

1321634. https://doi.org/10.3389/fbuil.2024.1321634

[14] Sakshi, Kukreja, V. (2024). Machine learning and non-

machine learning methods in mathematical recognition

systems: Two decades’ systematic literature review.

Multimedia Tools and Applications, 83(9): 27831-27900.

https://doi.org/10.1007/s11042-023-16356-z

[15] Sakshi, Kukreja, V. (2023). Image segmentation

techniques: Statistical, comprehensive, semi-automated

analysis and an application perspective analysis of

mathematical expressions. Archives of Computational

Methods in Engineering, 30(1): 457-495.

https://doi.org/10.1007/s11831-022-09805-9

[16] Helvig, K., Trouvé-Peloux, P., Gavérina, L., Roche, J.M.,

Abeloos, B. (2024). Database for transfer learning in

crack detection and localization on metallic materials

using flying spot thermography and deep learning.

Journal of Electronic Imaging, 33(3): 031202-031202.

https://doi.org/10.1117/1.JEI.33.3.031202

[17] Huang, L., Fan, G., Li, J., Hao, H. (2024). Deep learning

for automated multiclass surface damage detection in

bridge inspections. Automation in Construction, 166:

105601. https://doi.org/10.1016/j.autcon.2024.105601

[18] Shen, J., Ma, T., Song, D., Xu, F. (2025). An embedded

physical information network for blade crack detection

considering dynamic multi-level credibility. Mechanical

Systems and Signal Processing, 224: 111948.

https://doi.org/10.1016/j.ymssp.2024.111948

[19] Amini, L., Karimi, H. (2024). CNN-based labelled crack

detection for image annotation. Industrial and

Manufacturing Engineering, 17(2): 1-9.

https://doi.org/10.20944/preprints202405.1702.v1

[20] Pal, S., Das, S., Manna, S. (2024). Deep learning-based

detection of defects from images. In Green Industrial

Applications of Artificial Intelligence and Internet of

Things, Netherlands, pp. 176-182.

https://doi.org/10.2174/9789815223255124010016

[21] Nuanmeesri, S. (2024). Utilization of multi-channel

hybrid deep neural networks for avocado ripeness

classification. Engineering, Technology & Applied

Science Research, 14(4): 14862-14867.

https://doi.org/10.48084/etasr.7651

[22] Fan, C.L. (2025). Evaluation model for crack detection

with deep learning: Improved confusion matrix based on

linear features. Journal of Construction Engineering and

Management, 151(3): 04024210.

502

https://doi.org/10.1016/j.ymssp.2024.111948

[23] Arun, R.K. (2024). Concrete surface sample images for

surface crack detection. Kaggle.

https://www.kaggle.com/datasets/arunrk7/surface-

crack-detection.

[24] Atkin, G. (2024). Concrete crack image detection.

Kaggle.

https://www.kaggle.com/code/nadagamal3/concrete-

crack-image-detection/input.

[25] Atkin, G. (2024). Surface-defect-detection-dataset PCB

inspection, solar panels, fabric defect, magnetic tile.

Kylberg Texture. Kaggle.

https://www.kaggle.com/datasets/yidazhang07/bridge-

cracks-image.

[26] Atkin, G. (2024). Crack segmentation dataset. Kaggle.

https://www.kaggle.com/datasets/lakshaymiddha/crack-

segmentation-dataset.

503

