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Respiratory diseases account for 14.1% of global deaths annually, as reported by the World 

Health Organization, underscoring the urgent need for advanced diagnostic tools. This study 

investigates the classification of respiratory sounds using machine learning techniques 

applied to the ICBHI 2017 dataset. To address class imbalance and improve 

generalizability, augmentation methods such as time masking and stretching were 

implemented. Feature extraction techniques, including Mel-Frequency Cepstral 

Coefficients (MFCCs), were combined with lightweight classifiers like KNN and SVM, 

achieving a classification accuracy of 99%. The proposed approach surpasses prior 

benchmarks while maintaining computational efficiency, making it suitable for deployment 

on edge devices in resource-constrained healthcare environments. 
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1. INTRODUCTION

Respiratory diseases remain a significant global health 

burden, accounting for a considerable portion of global 

morbidity and mortality. According to the World Health 

Organization (WHO) Global Health Statistics Report 2022 [1], 

respiratory diseases contribute to approximately 14.1% of 

global deaths annually, underscoring the urgent need for 

advanced diagnostic tools. This study focuses on leveraging 

machine learning techniques to enhance the efficiency, 

accuracy, and objectivity of respiratory sound analysis, 

particularly in resource-constrained environments. 

Machine learning offers a promising avenue for enhancing 

respiratory sound analysis. Using automated techniques 

through machine learning for diagnostic precision in image 

analysis might enhance accuracy, objectivity, and efficiency, 

potentially minimizing patient interventions and improving 

patient care. The research article aims to develop a robust and 

computationally complex classification model leveraging 

machine-learning techniques to classify respiratory sounds 

while accounting for class imbalances and computational 

complexities.  

One such public dataset is the ICBHI 2017 Respiratory 

Sound Database [2], which contains a wide range of 

respiratory sounds (tailed breaths, wheezes, and crackles) and 

serves as a test case for developing and comparing respiratory 

sound classifiers. So far, several studies have exploited 

machine learning methods [3] to analyze respiratory sounds 

derived from this dataset, including wavelet coefficients [4], 

convolutional neural networks, and deep neural networks [5]. 

However, difficulties, including class imbalance and 

computational cost, hinder large-scale deployment. 

Our selected classification methods were hyperparameter-

tuned using the ICBHI 2017 dataset. Our suggested model 

uses MFCC Mean, MFCC, and Chroma-Mean_std to obtain 

great accuracy with little computational cost on extremely low 

specifications. However, our solutions work best suited for a 

limited applications compound with resource-constrained 

environments. Early test results are promising and suggest 

therapeutic application. 

2. LITERATURE REVIEW

Introduction to Respiratory Sound Analysis and Edge 

Computing: Respiratory diseases are a significant global 

health burden that requires rapid and precise diagnosis. 

Conventional auscultation methods are subjective and variable 

[6]. Automated respiratory sound analysis via machine 

learning is a promising approach toward more objective and 

efficient assessments. The growing availability of mobile and 

edge computing devices enables point-of-care diagnostics, 

underscoring the need for computationally efficient solutions. 

Deep Learning for Classifying Respiratory Sound: Deep 

learning models, especially Convolutional Neural Networks, 

have shown remarkable performance in respiratory sound 

classification [7-11]. However, their computational demands 

can hinder deployment on edge devices. Hybrid CNN-RNN 

architectures [12, 13] and other deep learning methods [14, 15] 

have been explored, but computational efficiency remains a 
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critical challenge.  

Efficient Feature Extraction for Edge Devices: 

Consequently, the ratio between accuracy and computational 

cost relies on effective feature extraction. Features from the 

spectrum domain, including Mel-Frequency Cepstral 

Coefficients [16, 17], are employed. Feature selection is 

essential for optimising performance on resource-limited 

devices. Alternative methods for extracting relevant 

information from respiratory sounds include wavelet 

transforms and various signal-processing techniques [18-22]. 

It is crucial to investigate lower complexity features for 

implementation in edge devices. 

Machine Learning on Edge Devices: The simplification of 

respiratory sound classifications task on the edge devices by 

Efficient feature extraction and less computationally 

demanding machine learning models. Such a practical point-

of-care diagnostics solution will likely enhance access to 

timely and accurate respiratory status measurements. A recent 

study [23] the feasibility of abnormal sound detection with 

deep learning and a vest-coat stethoscope, a practical 

application. Such systems demonstrate evidence of the 

integration of wearables and edge computing for respiratory 

health monitoring. It is important to conduct further research 

to optimize machine learning models to make them work at 

lower energy levels or on devices with limited resources. 

Public Datasets and Challenges: The ICBHI, which aims to 

automatically detect adventitious respiratory sounds on a 

large, standardized dataset, and the emergence of public 

respiratory sound datasets [24] have propelled research in this 

area considerably. These datasets are helpful for detailed 

evaluations and comparisons between methods, leading to 

collaborative innovations. 

Addressing Challenges: Noise Reduction and Data 

Augmentation Specifically, various noise reduction methods 

like spectral subtraction, as well as wavelet denoising, and data 

augmentation methods like adding noise, time stretching, and 

pitch shifting, are essential to achieve the robustness and 

generalizability of respiratory sound classification models 

[25]. Finding ways to overcome these challenges has the 

potential to improve the performance of ML models, 

especially in-practice clinical scenarios. 

This research focuses on developing a state-of-the-art 

machine learning model of good performance and low 

computation for automatic classification of respiratory sounds 

based on the ICBHI 2017 dataset trained on good responses of 

the ICBHI 2017 dataset. The class imbalance is also tackled 

through data augmentation and hyperparameter tuning, 

benefiting its real-world clinical usability in place of 

traditional analysis methods. In particular, the aims are to: 

1. Build and Validate a Strong Model: This will help build a 

strong machine-learning model that can perform well, 

even in noise or other real-world differences, ensuring 

reliability and generalizability in diverse datasets and 

disease settings. 

2. Address Class Imbalance: Address the challenge of class 

imbalance using data augmentation methods and other 

balancing approaches so that poorly represented sound 

categories can be accurately classified. 

3. Reduce Computational Complexity: Create a 

computationally efficient model that can be used for real-

time processing and deployment on devices with limited 

resources, enabling quicker processing and broader access 

in clinical environments. 

4. Validate the Model Using the ICBHI 2017 Dataset: As 

mentioned in step no. 3, the second task is to validate the 

model using the ICBHI 2017 dataset. ICBHI 2017 is a 

widely used dataset in biomedical signal processing, 

making it easier to compare the model performance 

against existing literature and measure accuracy/efficacy 

objectively. 
 

 

3. DATASET PREPARATION 
 

1. The ICBHI 2017 Respiratory Sound Database serves as 

the primary dataset for this study. It includes 920 labeled 

recordings obtained from 126 individuals, encompassing 

6,898 respiratory cycles. Table 1 shows the classification 

of respiratory sounds by the number of cycles. These 

recordings are categorized into four classes: 

 

Table 1. Classification of respiratory sounds by number of 

cycles 

 

Disease/Class 
Number of 

Cycles 

Percentage of 

Total (%) 

Healthy/Normal 1,200 17.4% 

Crackles (e.g., Pneumonia, COPD) 1,720 25.0% 

Wheezes (e.g., Asthma, Bronchitis) 920 13.3% 

Crackles+Wheezes (Mixed 

Respiratory Conditions) 
3,058 44.3% 

Total 6,898 100% 

 

This dataset was specifically designed for benchmarking 

machine learning models in respiratory sound classification, 

providing a diverse set of examples for model evaluation. 

2 Respiratory Database@TR [26]: This dataset offers multi-

channel recordings, capturing 12 lung sound channels for 

each patient. It includes recordings from patients with 

varying severities of Chronic Obstructive Pulmonary 

Disease, categorized from COPD0 to COPD4. The multi-

channel recordings provide a richer representation of lung 

sounds, enabling more nuanced analysis. However, the 

short recording duration (at least 17 seconds) might limit 

the data available for training complex models. 

3 HF_Lung_V2 [27]: This publicly accessible database 

extends the HF_Lung_V1 dataset, focusing on computer-

aided and automated lung sound analysis. It has more 

subjects (303) and sample recordings (4138) than 

numerous other datasets. A description of the respiratory 

conditions encompassed in the data would enhance it.  

4 R.A.L.E. Lung Sounds 3.1 [28]: This dataset encompasses 

several adventitious lung sounds associated with distinct 

respiratory illnesses, including wheezes, crackles, and 

pleural rubs. The specifics regarding the number of 

recordings and the related respiratory diseases examined 

would enhance the characterisation of the description.  

We used a few audio data augmentation methods to avoid 

class imbalance and increase the robustness of our trained 

models [29-31]. These methods amplify the training dataset 

while maintaining significant content and mitigate the dangers 

of data shortages and overfitting. To address class imbalance 

and improve model generalizability, we applied the following 

augmentation techniques using the librosa library in Python: 

1. Loudness Normalization: Adjusted the amplitude of 

recordings to ensure uniform loudness levels. 

2. Time Masking: Randomly masked segments of audio 

ranging from 100–200 ms to simulate missing data and 

enhance robustness. 
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3. Time Shifting: Shifted audio signals by ±50 ms to 

improve generalization across variable recording timings. 

4. Time Stretching: Applied stretch factors between 0.8 and 

1.2 to simulate variations in breathing patterns. 

These augmentations expanded the training dataset and 

minimized overfitting by balancing the class distributions. 

These audio augmentation techniques improve model 

efficiency by expanding the training set and reducing the risk 

of overfitting associated with limited data [32, 33].   

 

 

4. PROPOSED METHOD 

 

The proposed method for respiratory sound classification 

outlines a structured methodology for classifying ICBHI lung 

sound data into normal and abnormal categories. The process 

begins with normalisation of the raw lung sound recordings to 

ensure uniformity across the dataset.  

 

 
 

Figure 1. Workflow of the proposed respiratory sound 

classification method 

 

To improve the dataset's variability and resilience, audio 

augmentation techniques such as time masking, time shifting, 

and time stretching are applied. The augmented audio is then 

transformed into spectrograms, enabling visual representation 

of the frequency and temporal features of the sounds. 

Following this, 80 feature extraction techniques are utilised to 

extract meaningful characteristics from the spectrograms.  

A feature selection process is then employed to identify the 

most relevant features by evaluating their effectiveness across 

various machine learning (ML) models. These optimised 

features are subsequently used as input for ML classifiers, 

which categorise the lung sounds as either normal or 

abnormal, facilitating effective diagnosis and analysis. The 

proposed method for respiratory sound classification is 

illustrated in Figure 1. 

The audio database ICBHI 2017 was employed in the 

current study with 920 audio signals and 6898 respiratory 

cycles [34]. The samples were collected in a way that the 

COPD class has more samples as compared to the Asthma and 

LRTI classes which have a paucity of samples. To this end, 

data augmentation was used. 

Your "Normalizing and Augmentation" section provides 

essential details about your preprocessing steps. Here are a few 

suggestions for improvement: 

• Clarity and Terminology: While "time masking," "time 

shifting," and "time stretching" are generally understood, 

providing a brief explanation or referencing a standard 

library (like librosa in Python) could enhance clarity. For 

instance, you could mention that time masking is 

analogous to masking in image processing, where random 

sections are zeroed out. Similarly, specifying the range or 

distribution for time shifting and the stretching factor for 

time stretching would be beneficial. This level of detail 

ensures reproducibility and allows others to understand 

the exact transformations applied. 

• Rationale: Briefly explaining why these specific 

augmentation techniques were chosen would strengthen 

the section. For example, you could mention that time 

masking helps the model learn to focus on relevant 

features even with missing information, while time 

stretching and shifting increase the model's robustness to 

variations in speech rate and timing. 

• Normalization Details: You mention splitting signals into 

4-second breaths, which is a form of normalization. 

However, you could also specify whether any amplitude 

normalization was performed. Common techniques 

include peak normalization, RMS normalization, or 

simply scaling the audio to a specific range. Including 

these details would make your preprocessing steps more 

comprehensive. 

• Quantifying Augmentation: Instead of stating that "the 

number of augmentations vary with the class ratio," 

provide specific numbers or ratios. For instance, you 

could say, "The minority class was augmented to achieve 

a 1:1 ratio with the majority class." This adds precision 

and makes your methodology more transparent. 

 

4.1 Normalizing and augmentation 

 

The respiratory sound signals were segmented into 

individual breaths, each 4 seconds long, with a sampling rate 

of 16000 Hz. To address class imbalance and improve model 

robustness, we applied several data augmentation techniques 

using the librosa library in Python: 

• Time Masking: Random sections of the audio were 

silenced, simulating missing information and encouraging 

the model to learn more robust features. The duration of 

masked sections was randomly chosen between 0.1 and 

0.2 seconds. 

• Time Shifting: Sections of the audio were randomly 

shifted in time by up to ±50 ms, increasing the model's 

tolerance to variations in speech rate. 

• Time Stretching: The duration of the audio was altered 

without changing the pitch, using a random stretching 

factor between 0.8 and 1.2. This augmentation further 

enhances the model's robustness to variations in speech 

timing. 
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These augmentations were applied to the under-represented 

classes to achieve a balanced class distribution of 

approximately 1:1 with the majority class in ICBHI 2017 

dataset. Additionally, the amplitude of each breath segment 

was normalized using peak normalization to ensure consistent 

input levels to the model. 

Table 2 represents frequencies of the records in each group. 

Table 3 shows the number of records which have been chosen 

for augmentation and the number of times each of them has 

been augmented. 

Time Masking: Random sections of the audio were 

silenced, simulating missing information and encouraging the 

model to learn more robust features. The duration of masked 

sections was randomly chosen between 0.1 and 0.2 seconds. 

Time Shifting: Sections of the audio were randomly shifted 

in time by up to ±50 ms, increasing the model's tolerance to 

variations in speech rate.  
 

Table 2. Number of records in each class 
 

Class No. of Records 

Healthy 35 

COPD 793 

Bronchiectasis 16 

Bronchiolitis 13 

Pneumonia 37 

URTI 23 

Asthma 1 

LRTI 2 

Total 920 

 

Table 3. Number time each record is augmented 
 

Class 
Selected 

Records 

No. of Time 

Each Record 

is Augmented 

Total Records 

Healthy 35 30 1050 

Bronchiectasis 16 13 208 

Bronchiolitis 13 16 208 

Pneumonia 37 6 222 

URTI 23 9 207 

COPD 200 1 200 

Total records for training and testing 3140 

 

Time Stretching: The duration of the audio was altered 

without changing the pitch, using a random stretching factor 

between 0.8 and 1.2. This augmentation further enhances the 

model's robustness to variations in speech timing 

These augmentations were applied to the under-represented 

classes to achieve a balanced class distribution of 

approximately 1:1 with the majority class in ICBHI 2017 

dataset. Additionally, the amplitude of each breath segment 

was normalized using peak normalization to ensure consistent 

input levels to the model. 

Table 2 represents frequencies of the records in each group. 

Table 3 shows the number of records which have been chosen 

for augmentation and the number of times each of them has 

been augmented. 

 

4.1.1 Time masking 

Randomly masked audio segments between 100-200 ms 

using the librosa library to simulate missing information. Is the 

act of allowing a specific portion of the signal in auditory to 

the listener at a specific time. In this approach parts of the time 

are set to zero randomly; this in turn causes the time structure 

in the audio signal to be lost thus the model relies on other 

properties of sound. 

𝑌(𝑡) = 𝑥(𝑡) ∗ 𝑚(𝑡) (1) 

 

In Eq. (1), Y(t) denotes the masked signal and x(t) and m(t) 

is an original audio signal. where m(t) equals to 1 for the cases 

when segment is preserved and equals to 0 when segment is 

masked. 

 

4.1.2 Time shifting 

Is the process of shifting an audio signal in time or in other 

words, moving it ahead or behind in time but not changing its 

content. This manipulation is done by moving the signal along 

the time axis in some way. 

 

𝑦(𝑡) = 𝑥(𝑡 − ∆𝑡) (2) 

 

where, in the above Eq. (2), y(t) is the shifted signal, x(t) is the 

original signal and Δt is the time shift. If Δt is positive, then 

the signal is delayed and if Δt is negative then the signal is 

advanced. 

 

4.1.3 Time stretching 

Is the method of altering the temporal characteristics of an 

audio signal without altering the frequency content of the 

signal. In mathematical terms time stretching can be expressed 

by modifying the Short-Time Fourier Transform (STFT) of the 

sound signal. 
 

STFT(𝑥(𝑡)) = ∑  

∞

𝑛=−∞

𝑥(𝑡) ⋅ 𝑤(𝑡 − 𝑛𝐻) ⋅ 𝑒−𝑗𝜔𝑡 (3) 

 

In Eq. (3), x(t) is the input audio signal, w(t-nH) denotes the 

windowing function that isolates a small portion of the signal 

around time t. The parameter H controls the window size. n is 

the integer index which shifts the window across the signal.  

e-jωt: This is a complex exponential that represents the 

frequency component at ω. 

 

4.1.4 The pseudocode for data preparation 

x(n): Input audio signal 

T1, T2, T3, T4: Time masking, shifting, time stretching 

augmentation functions.  

x'(n) = T4(T3(T2(T1(x(n)))))  

x''(n) = x'(n)x'(n)…x'(n))  

y(n) = truncate_or_pad(x''(n), L) 

As depicted in Figure 1 the waveform and spectrogram of 

the audio sample is depicted before applying any type of audio 

augmentation. The waveform and spectrogram of the audio 

when audio augmentation techniques are applied is presented 

in Figure 2 and Figure 3. 

 

 
 

Figure 2. Waveform and spectrogram before audio 

augmentation 
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Figure 3. Waveform and spectrogram after audio 

augmentation 

 

It is a fundamental stage of audio processing that involves 

turning unprocessed input into a numerical format. A total of 

80 features were taken from audio signals for this project. 

These characteristics fall into several categories. 

The following categories apply to the features that have 

been added to the system: 

• Mel-Frequency Cepstral Coefficients (MFCCs): These 

characteristics show the audio signal's envelope since they 

are the most crucial component in characterizing its tonal 

properties [35]. 

• Chroma features: These give the matching audio's 

perceived pitch, which may reveal details about the chords 

that are present in the sound. 

• Spectral features: The overall form of the spectrum is also 

described by the spectral centroid, bandwidth, and rolloff. 

• Features connected to rhythm: When analyzing the audio 

signal's rhythm patterns, zero-crossing rate, harmonic, 

and percussive characteristics are crucial. 

The systematic feature extraction approach facilitates the 

analysis of each acoustic property's contribution to 

classification. This analysis enables identifying and 

eliminating superfluous features, leading to a more robust and 

interpretable model. Table 4 delineates the 80 features 

retrieved from the audio signals. Table 5 presents samples of 

extracted feature values alongside their corresponding labels.  

 

Table 4. A set of 80 features were used to extract from the audio signals 

 
Sl. 

No 
Feature Extraction Technique 

Sl. 

No 

Feature Extraction 

Technique 

Sl. 

No 

Feature Extraction 

Technique 

Sl. 

No 

Feature Extraction 

Technique 

1 chroma_cens_mean = [] 21 rolloff_var = [] 41 mfccs_mean_10 = [] 61 chroma_mean_4 = [] 

2 chroma_cens_std = [] 22 zcr_mean = [] 42 mfccs_mean_11 = [] 62 chroma_mean_5 = [] 

3 chroma_cens_var = [] 23 zcr_std = [] 43 mfccs_mean_12 = [] 63 chroma_mean_6 = [] 

4 mel_mean = [] 24 zcr_var = [] 44 mfccs_std_0 = [] 64 chroma_mean_7 = [] 

5 mel_std = [] 25 harm_mean = [] 45 mfccs_std_1 = [] 65 chroma_mean_8 = [] 

6 mel_var = [] 26 harm_std = [] 46 mfccs_std_2 = [] 66 chroma_mean_9 = [] 

7 mfcc_mean = [] 27 harm_var = [] 47 mfccs_std_3 = [] 67 chroma_mean_10 = [] 

8 mfcc_std = [] 28 perc_mean = [] 48 mfccs_std_4 = [] 68 chroma_mean_11 = [] 

9 mfcc_var = [] 29 perc_std = [] 49 mfccs_std_5 = [] 69 chroma_std_0 = [] 

10 mfcc_delta_mean = [] 30 perc_var = [] 50 mfccs_std_6 = [] 70 chroma_std_1 = [] 

11 mfcc_delta_std = [] 31 mfccs_mean_0 = [] 51 mfccs_std_7 = [] 71 chroma_std_2 = [] 

12 mfcc_delta_var = [] 32 mfccs_mean_1 = [] 52 mfccs_std_8 = [] 72 chroma_std_3 = [] 

13 cent_mean = [] 33 mfccs_mean_2 = [] 53 mfccs_std_9 = [] 73 chroma_std_4 = [] 

14 cent_std = [] 34 mfccs_mean_3 = [] 54 mfccs_std_10 = [] 74 chroma_std_5 = [] 

15 cent_var = [] 35 mfccs_mean_4 = [] 55 mfccs_std_11 = [] 75 chroma_std_6 = [] 

16 spec_bw_mean = [] 36 mfccs_mean_5 = [] 56 mfccs_std_12 = [] 76 chroma_std_7 = [] 

17 spec_bw_std = [] 37 mfccs_mean_6 = [] 57 chroma_mean_0 = [] 77 chroma_std_8 = [] 

18 spec_bw_var = [] 38 mfccs_mean_7 = [] 58 chroma_mean_1 = [] 78 chroma_std_9 = [] 

19 rolloff_mean = [] 39 mfccs_mean_8 = [] 59 chroma_mean_2 = [] 79 chroma_std_10 = [] 

20 rolloff_std = [] 40 mfccs_mean_9 = [] 60 chroma_mean_3 = [] 80 chroma_std_11 = [] 

 

Table 5. Extracted feature values and labels from the sample records 

 
Sl. 

No 
File_Name 

144_1b1_Al_

sc_aug_3.wav 

201_1b2_Ar_

sc_aug_9.wav 

125_1b1_Tc_sc_a

ug_27.wav 

150_1b2_Al_sc_a

ug_2.wav 

221_2b3_Lr_mc_LittC2S

E_aug_1.wav 

1 chroma_cens_mean 0.26506 0.27453 0.25834 0.27745 0.27594 

2 chroma_cens_std 0.11436 0.08927 0.12882 0.07973 0.0848 

3 chroma_cens_var 0.01308 0.00797 0.0166 0.00636 0.00719 

4 
melspectrogram_mea

n 
0.6469 0.07583 1.39133 2.88862 0.99446 

5 melspectrogram_std 7.67458 0.94867 24.7201 34.8482 13.5884 

6 melspectrogram_var 58.89925 0.899968 611.0847 1214.395 184.6454 

7 mfcc_mean -9.48785 -13.6381 -4.5474 -2.44224 -6.56647 

8 mfcc_std 141.9098 159.665 115.2643 128.0599 139.7678 

9 mfcc_var 20138.39 25492.9 13285.86 16399.33 19535.04 

10 mfcc_delta_mean 0.121052 0.046281 0.05109 0.007315 0.006629 

11 mfcc_delta_std 2.399807 2.465145 3.753295 3.847119 2.602856 

12 mfcc_delta_var 5.75907 6.07694 14.0872 14.8003 6.77486 

13 mfccs_mean_0 -487.79 -541.46 -366.46 -427.67 -469.72 

14 mfccs_mean_1 124.148 180.208 152.144 122.285 129.259 

15 mfccs_mean_2 51.6949 46.0076 12.7227 67.2487 88.7582 
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Figure 4. Heatmap for all the features 

 

It is a basic level of audio processing which is a process of 

converting raw data into a numerical form. The study extracted 

80 features categorized as follows: 

• Mel-Frequency Cepstral Coefficients (MFCCs): 

MFCC captures the power spectrum of audio signals, 

mimicking human auditory perception. These features 

depict the envelope of the audio signal since this is the 

most important aspect in describing the tonal aspects of 

the signal. Represent the short-term power spectrum of 

audio signals. Calculated using: 

 

𝑀𝐹𝐶𝐶𝑘(𝑡) = ∑ 𝑙𝑜𝑔(𝑆𝑚)

𝑀

𝑚=1

co s [
𝑘π(𝑚 − 0.5)

𝑀
] (4) 

 

where, Sm is the mel spectrum, and M is the number of mel 

filters. 

• Chroma features: Capture the harmonic structure of 

sounds by mapping audio frequencies onto 12 chroma 

bins representing musical pitches.  

• Spectral features: Include centroid, bandwidth, and 

rolloff, which describe the overall shape and energy 

distribution of the audio spectrum.  

• Rhythm-related features: Incorporating zero-crossing 

rates and harmonic/percussive properties to capture 

rhythmic patterns.  

This systematic feature extraction ensures comprehensive 

representation of the audio signals, facilitating high-accuracy 

classification. This analysis enables the identification and 

potential removal of less relevant features, leading to a more 

efficient and interpretable model. Table 2 lists the 80 features 

extracted from the audio signals. Table 3 presents examples of 

extracted feature values and their corresponding labels. Figure 

4 provides a heatmap visualization of the relationships 
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between all features used in the model. 

Table 6 represents grouping 80 features into 9 feature set 

groups allows for more efficient data management and 

analysis by categorizing similar features together [36]. This 

approach enhances the interpretability of the data, making it 

easier to understand and visualize the relationships between 

different features. In addition, it can improve the performance 

of machine learning models by reducing redundancy and 

focusing on the most relevant feature subsets for specific tasks 

[37].  

 

Table 6. Features are grouped 

 
Sl. No Grouped Features 

1 df_feature_all = df3.iloc[:, 1:-1] 

2 df_feature_mel_chroma = df3.iloc[:, 2:7] 

3 df_feature_mfcc_mean = df3.iloc[:, 13:26] 

4 df_feature_mfcc_std = df3.iloc[:, 26:39] 

5 df_feature_mfcc = df3.iloc[:, 13:39] 

6 df_feature_chroma_mean = df3.iloc[:, 39:51] 

7 df_feature_chroma_std = df3.iloc[:, 51:63] 

8 df_feature_chroma = df3.iloc[:, 39:63] 

9 df_feature_csrzhp = df3.iloc[:, 63:81] 

 

• df_feature_all this group comprises all extracted features 

that provide a summary of the audio signal. This category 

encompasses intricate characteristics and facilitates audio 

analysis across all levels. Utilizing its capacity to exhibit 

harmonic and spectral characteristics along with temporal 

variations, we constructed an extensive audio 

representation. A holistic approach can improve the 

efficacy of machine learning models by leveraging many 

examples and diverse attributes to feed the modelling 

process. 

• df_feature_mel_chroma the integration of harmonic 

(Chroma CENS) and spectral (Mel-Spectrogram) features 

yields df_feature_mel_chroma, which is profound, stable, 

and enhances performance in music genre classification 

[38]. 

• df_feature_mfcc_mean comprises the average values of 

the Mel-Frequency Cepstral Coefficients (MFCCs), 

which denote the short-term power spectrum of audio. 

MFCCs are extensively utilized in speech recognition and 

music categorization due to their capacity to represent the 

spectrum characteristics of audio signals. This group, 

favoring mean values, provides an average representation 

of spectral features, rendering it appropriate for advanced 

pattern and trend recognition. A collective that enhances 

the efficacy of the machine learning model by offering a 

consistent and dependable feature collection that 

encapsulates essential spectral and spatial data. 
 

MFCC𝑘(𝑡) = ∑ log(𝑀[𝑚, 𝑡])𝑀−1
𝑚=0 ⋅ cos (

π𝑘

𝑀
(𝑚 +

1

2
)), 𝑘 = 0,1, … ,12 

(5) 

 

where, MFCCk(t) denotes the k-th Mel-Frequency Cepstral 

Coefficient at time frame t, ∑  𝑀−1
𝑚=0 signifies a summation 

across M Mel filter banks. The log(𝑀[𝑚, 𝑡])  denotes the 

logarithm of the Mel filter bank output at index m and time 

frame t. The cos (
π𝑘

𝑀
(𝑚 +

1

2
)) represents the cosine function 

utilized in the Discrete Cosine Transform (DCT) and k=0, 

1, …, 12 signifies that the MFCCs are calculated for k values 

ranging from 0 to 12. 

The advantages of amalgamating 13 MFCC features into a 

singular feature vector are as follows. The methods utilized in 

generating these audio signal representations provide a more 

succinct and efficient form of the signal, preserving the most 

pertinent elements of the spectral content. It fundamentally 

diminishes the dimensionality of the data, facilitating 

processing and analysis. Mean values of the MFCCs are also 

calculated, which provide helpful information about the 

generic spectral envelope of the signal, enabling 

discrimination between sounds and extract patterns. The 

method enables the extraction of stable characteristics from 

dynamic and transient inputs, such as heartbeats, voice, and 

music, enhancing model performance in classification tasks. It 

also assists in reducing noise and variability, leading to a more 

stable and precise evaluation. 

• df_feature_mfcc_std quantifies the variability of the 

spectral envelope, augmenting the mean values and 

enriching the feature set for the comprehensive 

investigation of spectral features. 
 

μMFCC𝑖 =
1

𝑇
∑ 𝑡 = 1𝑇MFCC𝑖(𝑡)  for 𝑖 = 0,1, … ,12 (6) 

 

μMFCC𝑖  calculates the mean value (μMFCC𝑖
) of each MFCC 

coefficient by averaging the MFCC values across all time 

frames. 

• df_feature_mfcc integrates both mean and standard 

deviation values of the MFCCs, offering a thorough 

representation that encapsulates both the average and 

variability of the spectral envelope. 

 

mfccs_std
𝑖

= √∑(MFCC𝑖(𝑡) − mfccs_mean
𝑖
)

2
𝑇

𝑡=1

 

for 𝑖 = 0,1, … ,12 

(7) 

 

where, (mfccs_std
𝑖
) calculates the standard deviation of all 

Mel-Frequency Cepstral Coefficient (MFCC) values across all 

time frames is given here. The term 
1

𝑇
 is the normalization 

factor, where T is the total number of time frames, 

∑ (MFCC𝑖(𝑡) − mfccs_mean
𝑖
)

2𝑇
𝑡=1  aggregates the squared 

differences between the i-th MFCC values and their mean 

(mfccs_mean
𝑖
) across all frames. 

• df_feature_chroma_mean encapsulates the harmonic and 

melodic elements of the audio, offering a consistent and 

dependable feature set for discerning overarching patterns 

in music information retrieval tasks. It integrates mean 

and standard deviation data to create a more 

comprehensive feature set, facilitating an in-depth 

investigation of spectral features.  

• df_feature_chroma_std measures the variability of the 

harmonic content, complementing the mean values and 

enhancing the feature set for detailed analysis of the 

harmonic characteristics and also includes the standard 

deviation values of the MFCCs, which measure the 

variability of the spectral envelope. 
 

chroma_mean𝑖 =
1

𝑇
∑ 𝑡 = 1𝑇Chroma𝑖(𝑡) 

for 𝑖 = 0,1, … ,11 
(8) 

 

• df_feature_chroma amalgamates the mean and standard 
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deviation of the Chroma features, offering a thorough 

representation that encapsulates both the average and 

variability of the harmonic content. 

• df_feature_csrzhp offers a comprehensive spectral 

analysis, including spectral centroid, bandwidth, roll-off, 

zero crossing rate, and harmonic and percussive content, 

encapsulating the audio signal's intricacies and dynamics. 

It integrates both temporal and frequency domains, 

yielding a comprehensive analysis of the sound's spectral 

attributes, including spectral centroid, bandwidth, roll-off, 

harmonic and percussive content, and zero crossing rate, 

which elucidate the subtleties of the audio signal. 
 

csrzhp(x)={Cs(x),Bw(x),Rf(x),Zr(x),Hp(x)} (9) 
 

This csrzhp(x) is the grouping of these spectral feature 

extractions applied to the input audio signal x. 

Where Cs is a Spectral Centroid, Bw is a Spectral 

Bandwidth, Rf is a Spectral Roll-off, Zr is a Zero Crossing Rate 

and Hp is a Harmonic and Percussive Content. This equation 

integrates multiple spectral and temporal aspects into a unified 

feature vector, offering an extensive description of the audio 

signal's attributes. 

 

 

5. CHALLENGES 
 

One of the significant problems is the variability of the 

respiratory sounds that are physiological and may depend on 

age, gender, and other factors. Also, there is no specific way 

of data gathering and the data itself is quite limited and not 

very diverse, which in its turn influences the creation of better 

models. In view of the above clinical need for rapid and precise 

identification, the researchers need the development of fast 

and non-invasive diagnostic systems that can operate in 

situations of high noise and variability [39-41]. 

 

 

6. RESULTS AND DISCUSSIONS 
 

In this research article, a framework is presented 

meticulously for comparing the effectiveness of several 

machine learning algorithms in classifying lung sounds. A 

complex experimental design was developed, utilizing several 

classifiers, including Decision Trees, Random Forest, and 

Support Vector Machines. To assess the impact of feature 

representation, various feature sets were constructed based on 

extracted features from audio signals, including Mel-

Frequency Cepstral Coefficients, chroma features, and other 

acoustic features. The model was trained and tested using 

different training and testing data splits (0.2, 0.3, 0.4, and 0.5) 

to evaluate model stability. 

The feature sets (MFCC Mean, MFCC Mean+Std, and 

Chroma Mean+Std) also yielded good results; however, the 

most comprehensive feature set, "All Features, MFCC 

(Mean+Std), achieved the highest accuracy. Tables 7-10 

present the average accuracy for All Features, MFCC Mean, 

MFCC Mean+Std, and Chroma Mean+Std at a split ratio of 

0.20. Table 11 shows the accuracy, F1-score, precision, recall, 

and ROC scores for these feature groups, with All Features and 

MFCC (Mean_std) achieving good accuracies. 

The combination of MFCC Mean+Std features with KNN 

and SVM classifiers achieved the highest accuracy (99%). 

This performance can be attributed to the robust feature 

representation of MFCCs, which effectively capture spectral 

properties crucial for distinguishing respiratory sounds. 

Compared to state-of-the-art methods: 

• This approach demonstrates superior performance while 

maintaining computational efficiency, making it suitable 

for deployment on edge devices. 

Comparative Analysis: 

• CNNs: Achieved 97% accuracy in prior studies but at a 

higher computational cost. 

• Proposed Model: Demonstrated state-of-the-art accuracy 

while being more efficient. 

 

Table 7. ML models average accuracy with split ratio 0.20 

 
Sl. 

No 
Feature  All 

Mel 

+Chroma 

MFCC 

mean 

MFCC 

std 

MFCC 

(mean+std) 

Chroma 

mean 

Chroma 

std 

Chroma 

(mean+std) 

c+s+r+

z+h+p 

1 Decision Tree 0.98 0.98 0.98 0.97 0.98 0.90 0.83 0.92 0.98 

2 Random Forest 1.00 0.99 1.00 1.00 1.00 0.98 0.90 0.98 0.99 

3 Gradient Boost 0.99 0.98 0.98 0.99 1.00 0.935 0.84 0.93 0.99 

4 XGBoost 1.00 0.99 0.99 0.99 1.00 0.98 0.91 0.97 1.00 

5 Ada Boost 0.99 0.90 0.97 0.93 0.96 0.83 0.72 0.87 0.98 

6 Extra Tree 1.00 0.99 1.00 1.00 0.99 0.98 0.94 0.99 0.99 

7 K-Neighbors 0.98 0.84 0.99 0.98 0.99 0.97 0.93 0.97 0.92 

8 Support Vector 0.99 0.64 0.97 0.96 0.99 0.95 0.90 0.98 0.87 

9 Gausian Naïve 0.62 0.54 0.76 0.69 0.79 0.58 0.66 0.67 0.57 

10 Multi-layer 0.99 0.65 0.98 0.98 0.99 0.94 0.84 0.96 0.91 

11 Logistic Reg 0.96 0.58 0.77 0.65 0.84 0.59 0.68 0.70 0.78 

Maximum 1.00 0.99 1.00 1.00 1.00 0.98 0.94 0.99 1.00 

Average accuracy 0.95 0.82 0.94 0.92 0.96 0.87 0.83 0.90 0.91 

 

Table 8. ML models average accuracy with split ratio 0.30 

 
Sl. 

No 
Feature  All 

Mel 

+Chroma 

MFCC 

mean 

MFCC 

std 

MFCC 

(mean+std) 

Chroma 

mean 

Chroma 

std 

Chroma 

(mean+std) 

c+s+r+

z+h+p 

1 Decision Tree 0.99 0.96 0.97 0.96 0.97 0.93 0.79 0.90 0.98 

2 Random Forest 1.00 0.98 1.00 1.00 1.00 0.97 0.89 0.97 0.99 

3 Gradient Boost 1.00 0.97 0.98 0.99 1.00 0.94 0.82 0.93 0.99 

4 XGBoost 0.99 0.98 0.99 0.99 0.99 0.97 0.93 0.97 0.99 

5 Ada Boost 0.99 0.90 0.95 0.93 0.98 0.82 0.73 0.83 0.97 

6 Extra Tree 1.00 0.98 1.00 1.00 1.00 0.98 0.93 0.99 0.99 
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7 K-Neighbors 0.99 0.82 0.99 0.98 0.99 0.96 0.93 0.96 0.91 

8 Support Vector 1.00 0.62 0.95 0.94 0.99 0.94 0.89 0.97 0.86 

9 Gausian Naïve 0.60 0.53 0.73 0.68 0.77 0.57 0.65 0.67 0.56 

10 Multi-layer 0.99 0.62 0.96 0.96 0.99 0.93 0.84 0.96 0.91 

11 Logistic Reg 0.94 0.57 0.76 0.65 0.81 0.59 0.66 0.71 0.77 

Maximum 1.00 1.00 0.98 1.00 1.00 1.00 0.98 0.93 0.99 

Average accuracy 0.95 0.95 0.81 0.93 0.92 0.95 0.87 0.83 0.90 

 

Table 9. ML models average accuracy with split ratio 0.40 

 
Sl.  

No 
Feature  All 

Mel 

+Chroma 

MFCC 

mean 

MFCC 

std 

MFCC 

(mean+std) 

Chroma 

mean 

Chroma 

std 

Chroma 

(mean+std) 

c+s+r+

z+h+p 

1 Decision Tree 0.98 0.97 0.97 0.94 0.98 0.87 0.79 0.88 0.98 

2 Random Forest 1.00 0.98 0.99 0.99 0.99 0.97 0.89 0.98 0.99 

3 Gradient Boost 0.99 0.98 0.98 0.98 0.99 0.92 0.83 0.93 0.99 

4 XGBoost 0.99 0.98 0.99 0.99 0.99 0.96 0.91 0.96 0.99 

5 Ada Boost 0.99 0.92 0.95 0.93 0.97 0.81 0.74 0.83 0.95 

6 Extra Tree 0.99 0.98 1.00 0.99 1.00 0.99 0.93 0.99 0.99 

7 K-Neighbors 0.98 0.80 0.98 0.97 0.99 0.96 0.93 0.96 0.90 

8 Support Vector 1.00 0.61 0.94 0.94 0.98 0.94 0.88 0.97 0.85 

9 Gausian Naïve 0.58 0.52 0.71 0.66 0.74 0.58 0.65 0.66 0.54 

10 Multi-layer 0.99 0.625 0.95 0.96 0.99 0.91 0.81 0.96 0.88 

11 Logistic Reg 0.94 0.57 0.76 0.65 0.81 0.61 0.66 0.71 0.75 

Maximum 1.00 1.00 0.98 1.00 0.99 1.00 0.99 0.93 0.99 

Average accuracy 0.95 0.95 0.81 0.93 0.91 0.95 0.86 0.82 0.89 

 

Table 10. ML models average accuracy with split ratio 0.50 

 
Sl.  

No 
Feature  All 

Mel 

+Chroma 

MFCC 

mean 

MFCC 

std 

MFCC 

(mean+std) 

Chroma 

mean 

Chroma 

std 

Chroma 

(mean+std) 

c+s+r 

+z+h+p 

1 Decision Tree 0.97 0.96 0.98 0.94 0.97 0.88 0.77 0.87 0.97 

2 Random Forest 1.00 0.98 0.99 0.99 0.99 0.96 0.89 0.97 0.99 

3 Gradient Boost 0.99 0.97 0.98 0.97 0.99 0.90 0.82 0.92 0.99 

4 XGBoost 0.99 0.97 0.99 0.99 0.99 0.95 0.90 0.95 0.99 

5 Ada Boost 0.98 0.91 0.95 0.92 0.97 0.80 0.72 0.82 0.96 

6 Extra Tree 0.99 0.98 1.00 0.99 0.99 0.98 0.93 0.98 0.99 

7 K-Neighbors 0.97 0.79 0.97 0.96 0.97 0.94 0.93 0.95 0.88 

8 Support Vector 0.99 0.62 0.93 0.92 0.98 0.92 0.87 0.97 0.85 

9 Gausian Naïve 0.60 0.51 0.71 0.66 0.74 0.59 0.65 0.68 0.54 

10 Multi-layer 0.99 0.61 0.93 0.93 0.99 0.90 0.80 0.95 0.87 

11 Logistic Reg 0.94 0.57 0.75 0.66 0.82 0.62 0.65 0.72 0.77 

Maximum 1.00 1.00 0.98 1.00 0.99 0.99 0.98 0.93 0.98 

Average accuracy 0.95 0.95 0.81 0.93 0.90 0.95 0.86 0.81 0.89 

 

Table 11. ML models average accuracies on All features, MFCC mean, MFCC mean+std, chroma mean+std 

 
Sl.  

No 
Classifiers 

All_feature MFCC mean MECC (mean+std) Chroma (mean+std) 

acc f1 prec recall acc f1 prec recall acc f1 prec recall acc f1 prec recall 

1 Decision Tree 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.83 0.82 0.85 0.81 

2 Random Forest 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.91 0.91 0.91 0.90 

3 Gradient Boost 0.99 0.99 1.00 0.99 0.98 0.98 0.99 0.98 1.00 1.00 1.00 1.00 0.84 0.83 0.85 0.82 

4 XGBoost 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.91 0.91 0.93 0.89 

5 Ada Boost 0.99 0.99 0.99 0.99 0.97 0.96 0.98 0.95 0.96 0.96 0.97 0.96 0.72 0.72 0.71 0.73 

6 Extra Tree 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.94 0.94 0.94 0.93 

7 K-Neighbors 0.98 0.98 1.00 0.97 0.99 0.99 1.00 0.98 0.99 0.99 1.00 0.99 0.93 0.92 0.98 0.87 

8 Support Vector 0.99 0.99 1.00 0.99 0.97 0.96 1.00 0.94 0.99 0.99 1.00 0.98 0.90 0.90 0.90 0.90 

9 Gausian Naive 0.62 0.47 0.72 0.35 0.76 0.74 0.76 0.72 0.79 0.78 0.78 0.79 0.66 0.62 0.67 0.59 

10 Multi-layer 0.99 0.99 1.00 0.99 0.96 0.98 1.00 0.93 0.99 1.00 1.00 0.99 0.84 0.86 0.85 0.84 

11 Logistic Reg 0.96 0.96 0.97 0.94 0.77 0.77 0.76 0.77 0.84 0.83 0.85 0.81 0.68 0.66 0.67 0.64 

 

Error Analysis 

Confusion matrices reveal that misclassifications primarily 

occurred in overlapping classes (e.g., Crackles+Wheezes). 

Augmentation mitigated errors in minority classes. 

To compare the classification results across different feature 

sets and machine learning models, a cross-comparison of 

tables was performed. This matrix compares the performance 

of different features and models, including Decision Trees and 

Random Forest, using features such as All Features, MFCC 

mean, MFCC mean+std, see Figures 5-7. The average 

accuracy results across different models, features, and split 

ratios suggest that the best-performing model utilizes all 

features and a split ratio of 0.20. The study [4] achieved 97% 

accuracy using CNNs, while our approach achieved 99% with 

KNN and SVM, demonstrating superior performance with 

lower computational costs. 

403



 
 

Figure 5. Cross-matrix representation of ML models using all features (df_feature_all) group 

 

 
 

Figure 6. Cross-matrix representation of ML models using MFCC mean features 
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Figure 7. Cross-matrix representation of ML models using Chroma(mean+std) features 

 

 

7. HYPERPARAMETER TUNING 

 

This paper details our attempt to utilize machine learning to 

classify respiratory sounds, referencing the ICBHI 2017 

Respiratory Sound Database. This work is intended to develop 

a robust and computationally efficient model to enhance 

diagnosis accuracy and objectivity, considering the worldwide 

public health crisis related to respiratory disorders and the 

limitations of classical auscultation. Our research addressed a 

significant issue in audio datasets, class imbalance, by 

applying various data augmentation techniques, including 

loudness adjustment, masking, shifting, and speed alteration. 

Hyperparameter tuning was implemented to improve 

classification, emphasizing attributes such as MFCC Mean, 

MFCC, and Chroma-Mean_std. This method prioritized high 

predicted accuracy with reduced computing demands, unlike 

deeper learning models that tend to be more computationally 

intensive. Tuning hyperparameters such as solver, penalty, C, 

and class_weight enhances the accuracy of our model, as 

demonstrated in Table 12, which pertains to MFCC Mean 

features. 

Hyperparameter tuning was performed using a grid search 

approach: 

A grid search was performed for KNN (neighbors: 1–15), 

SVM (kernel: linear, RBF; C: 0.1–10), Gradient Boosting: 

Learning rate (0.01–0.1) and maximum depth (3–10). 

The performance plateau observed in some classifiers (e.g., 

Logistic Regression) is attributed to: 

Model Complexity: Simpler models are less capable of 

capturing the nuanced relationships in high-dimensional 

feature spaces. 

Dataset Size: Limited samples in minority classes may 

restrict the ability of certain classifiers to generalize. 

Initial results were encouraging, but multiple aspects must 

be explored to use it accurately. While the ICBHI dataset is a 

valuable resource, the diversity of respiratory sounds may not 

fully reflect real-world complexities. Future research may 

address this issue through a larger, more heterogeneous dataset 

to improve generalizability. Moreover, an experiment with 

different combinations of features and machine learning 

models might yield even better classification performance. 

Validation of clinical utility requires direct comparison with 

established diagnostic capabilities of trained medical 

professionals. To conclude, further work should be carried out 

on seamless integration into the clinical workflow to 

understand its real-world impact on patient care and diagnostic 

efficiency. 

Table 12 compares different ML models with MFCC Mean 

features on a 0.20 split. KNN, SVM, and Gradient Boosting 

classifiers' accuracy increased significantly with 

hyperparameter tuning. However, Logistic Regression showed 

limited improvement due to its inability to model non-linear 

relationships in high-dimensional feature spaces. Accuracy is 

improved even tried with the best hyperparameters (C: 10, 

penalty: l1, solver: liblinear), chosen from solver: [newton-cg, 

lbfgs, liblinear], penalty: [l1, l2, elasticnet], C:[1e-5, 1e-4, 1e-

3, 1e-2, 1e-1, 1, 10, 100].  
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Table 12. Hyperparameter tuning with MFCC mean features 

 

Models 
Logistic 

Regression 
KNN 

SVM 

Classifier 
Random Forest Gradient Boost XGB Classifier 

Best 

hyperparameters 

'C': 10, 

'penalty': 'l1', 

'solver': 

'liblinear' 

'algorithm': 'auto', 

'metric': 'euclidean', 

'n_neighbors': 1, 

'weights': 'uniform' 

'C': 100, 

'gamma': 

'scale', 

'kernel': 'rbf' 

'criterion': 'gini', 

'max_features': 

'sqrt', 

'n_estimators': 100 

'learning_rate': 0.1, 

'max_depth': 7, 

'n_estimators': 100, 

'subsample': 0.5 

'learning_rate': 0.1, 

'max_depth': 7, 

'n_estimators': 

1000, 'subsample': 

0.5 

Model Accuracy 0.74 1.00 1.00 1.00 1.00 1.00 

ROC-AUC 0.74 1.00 1.00 1.00 1.00 1.00 

Precision 0.75 1.00 1.00 1.00 1.00 1.00 

Recall 0.74 1.00 1.00 1.00 1.00 1.00 

F1 0.74 1.00 1.00 1.00 1.00 1.00 

 

 

8. CONCLUSION 

 

This study demonstrates the effectiveness of machine 

learning techniques in respiratory sound classification, 

achieving state-of-the-art achieving 99% accuracy with 

efficient feature-classifier combinations. However, limitations 

include: 

1. Dataset Scale: Limited size and imbalance restrict the 

generalizability of findings. 

2. Feature Selection: While 80 features were tested, deeper 

exploration of advanced features could enhance 

performance. 

This research article investigated the application of machine 

learning to classify respiratory sounds, utilizing the ICBHI 

2017 Respiratory Sound Database as a benchmark dataset. 

Recognizing the global health challenge posed by respiratory 

diseases and the limitations of traditional auscultation, this 

work aimed to develop a robust and computationally efficient 

model for enhanced diagnostic accuracy and objectivity. The 

study addressed the critical issue of class imbalance inherent 

in audio datasets by employing various data augmentation 

techniques, including loudness control, masking, shifting, and 

speed alteration. Additionally, classification parameters were 

tuned, and features found to be optimal, e.g., MFCC Mean, 

MFCC, Chroma-Mean_std, were used for classification. This 

method emphasized high accuracy with little computational 

cost, which was a possible edge over computationally 

expensive deep learning technique. 

Preliminary results showed promising accuracy rates, but 

some areas need further exploration. The ICBHI dataset is 

helpful but does not entirely encompass all true variability of 

respiratory sounds. It would be helpful for future studies to 

include more extensive and more heterogeneous datasets to 

improve the generalizability of the results. Also, re-evaluating 

the feature sets and learning models could help us to improve 

the classification even more. The clinical utility of an 

automated approach must be validated with a direct 

comparison to the diagnostic ability of trained medical 

professionals. Lastly, future research must explore the 

implementation of this technology into everyday clinical 

workflows and its real-time effect on patient management and 

diagnosis. In Future the dataset can be Expanded with real-

world recordings and incorporate deep learning models for 

richer feature extraction and improved classification accuracy. 
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