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Given the advances made in deep learning, one of the biggest challenges in clinical research 

is accurately diagnosing Parkinson’s disease (PD). Deep learning models currently utilize 

recurrent neural networks (RNNs) or convolutional neural networks (CNNs) to identify 

temporal correlations across broad timescales within time-series medical data as well as 

spatial features. However, they fail to do so effectively. Therefore, extensive preprocessing 

must be done and model parameters need to be fine-tuned substantially. This often prevents 

us from achieving optimal classification accuracy. This study proposes a new method called 

recurrent convolutional transformers (RCTs) that overcome these limitations while 

enhancing PD classification performance. RCTs are unique because they combine both 

CNN and RNN architectures together which enables them to capture both temporal 

connections and spatial features simultaneously from inputs; something traditional deep 

learning models struggle with when analyzing complicated time series medical data sets. 

Our model preprocesses raw text data heavily into structured and annotated datasets for 

time-series classification. We achieve this by using shoe-mounted accelerometers collected 

during an open access clinical trial inquiry phase. We then generate a TensorFlow time 

series generator dataset which is well balanced with fine-tuned parameters for maximum 

performance possible. Among these criteria are one batch size of one and fifteen delays. 

The findings of comparison evaluations demonstrate that our recommended RCT model 

outperforms models that are state-of-the-art, managing to obtain an incredible accuracy of 

99.2%. Overcoming the limitations of present deep learning models and using the special 

power of RCTs, this study suggests a more efficient method for accurate PD classification. 

This work might lead to medical diagnosis methodologies breaking through. 

Keywords: 

Parkinson's disease (PD), classification, 

recurrent convolutional transformers 

(RCTs), deep learning 

1. INTRODUCTION

Parkinson's disease, or PD [1] for short, is one of the most 

severe health concerns influencing millions of people 

worldwide. The neurological condition known as Parkinson's 

disease (PD) defines by a development of symptoms and 

worsens with time. There is a wide spectrum of motor and non-

motor symptoms linked with PD [2]. Among the many 

symptoms the patient can have been tremors, stiffness, 

bradykinesia, and postural instability. Not only does it affect 

quality of life, but it also causes significant expenses on 

society and healthcare [3] establishments. Estimates of the 

prevalence of PD among those over the age of sixty worldwide 

range from one percent to something else entirely. It is 

noteworthy that the incidence of the disease rises with age, 

which results in a larger frequency of disorder among persons 

of older age. Global demographic trends toward aging 

populations suggest that Parkinson's disease [4-6] burden will 

increase over next several years. Smoking is recognized as one 

of the leading causes of Parkinson’s disease and as global 

population ages the incidence of Parkinson’s disease is 

projected to increase greatly. From the data of the world health 

organization WHO the percentage of people of the world’s 

population aged more than 64-65 increased from 9% in 2019 

to 16% in 2050. Likewise, the Global Burden of Disease study 

revealed the worldwide trends of Parkinson’s disease that 

globally it has increased to 6 million in 2016 from 2.5 million 

in the year 1990 majorly due to aging population. Such global 

demographic changes also imply an increasing health care 

burden of PD and therefore call for better diagnostic 

techniques and therapeutic approaches to this disorder. 

This is so since people are living longer. This will highlight 

even more the need to offer efficient and successful diagnostic 

and treatment options. The main ingredients of the traditional 

methods of PD diagnosis are clinical observation, patient 

history, and standardized rating scales. Though they have 

advantages, these approaches might be arbitrary and prone to 

change depending on the medical practitioner. Considering 

this viewpoint, the integration of ML and DL [7, 8] 

technologies offer various interesting directions for the 

improvement of Parkinson's disease symptom control and 

diagnosis. Deep learning and machine learning among other 

approaches employ computer algorithms to perform analysis 

across a wide spectrum of data [9-12]. Among other kinds of 

data, these analyses might be conducted on patient medical 

records, imaging tests, and wearable sensor data. Deep 
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learning and machine learning models [13-16] have great 

power to provide important new perspectives on the diagnosis, 

evolution, and treatment response of diseases. Finding trends 

and connections in these datasets will help one to get these 

insights. 

Although deep learning and machine learning provide a lot 

of possibilities, models judged to be state-of- the-art encounter 

various difficulties [17-19] even if they have high promises. 

Among these constraints are the issues with the interpretability 

and generalization of the model [20-22], the complicated 

demands for feature engineering, and the restricted data 

availability. This work aims to provide a fresh method using 

RCTs to get above constraints and improve PD classification 

efficiency. RCTs efficiently capture both temporal 

correlations and spatial characteristics within time-series 

medical data by combining RNNs, CNNs, and self-attention 

techniques. By use of these characteristics, RCTs aim to 

surpass the limitations of conventional deep learning models 

and provide a solution that is both more robust and more 

clearly interpretable for correct PD categorization. These 

qualities will help to bring about this. 

The RCT model that we have presented shows a better 

degree of accuracy than other models that are being used. 

Extensive preprocessing, dataset balancing, and parameter 

manipulation are how this objective is achieved. Through the 

utilization of data obtained from clinical research that is 

accessible to the public and was carried out with 

accelerometers that were attached to shoes, we can 

demonstrate the efficacy of our method in addressing the 

challenges that are associated with the diagnosis of Parkinson's 

disease and contributing to the development of new methods 

for medical diagnosis.  

 

 

2. LITERATURE SURVEY 

 

PD diagnosis, the literature review provides a 

comprehensive analysis of the research that has been carried 

out in the past, with a specific focus on the several machine 

learning and deep learning approaches that have been used. In 

this section, a critical review of the advantages and 

disadvantages of prior studies is offered. This section also lays 

the framework for the approach that is being presented by 

emphasizing gaps in the current research as well as 

opportunities for improvement. By conducting an in-depth 

analysis of the relevant literature, this study not only 

contributes to the development of novel approaches to the 

classification of PD, but it also calls attention to areas that need 

more research. Frid et al. developed a CNN architecture 

consisting of four layers with the purpose of detecting raw 

speech data belonging to persons with PD and controls [6]. In 

their model, which displayed promising results in 

distinguishing between distinct stages of PD, they 

demonstrated a surprising degree of accuracy for their model. 

For the goal of PD classification, this method has the power to 

leverage on the inherent patterns that are present in speech data. 

This is one of the benefits of this methodology. Still, 

depending too much on speech data has drawbacks as it is 

likely to not cover the complete gamut of Parkinson's disease 

symptoms and development. This is a drawback. 

Tsanas et al. [7] investigated the categorization of speech 

signals from PD patients and controls using support vector 

machine and random forest models developed on dysphonia 

data. The potential of these features for the diagnosis of 

Parkinson's disease is shown by their ability to attain a high 

degree of classification accuracy with only a small number of 

dysphonia traits. By use of subjective grading of audio data, 

this approach, on the other hand, may have resulted in bias and 

variance in the categorization results. Therefore, this approach 

produced not totally consistent findings. Rasheed et al. [8] 

presented a technique called Back Propagation with Variable 

Adaptive Momentum (BPVAM) hoping to identify de novo 

PD using voice data. This method suffers in that it requires a 

lot of computing effort and takes a lot of time. This approach 

has limits even if it generates a great degree of accuracy. 

Moreover, feature selection using principal component 

analysis (PCA) runs the risk of ignoring small trends in the 

data that are nevertheless significant. 

Gunduz [9] showed two deep learning models for the voice 

data categorization and obtained promising degrees of 

accuracy. By reducing the requirement for human feature 

engineering, deep learning systems can automatically uncover 

acceptable features from raw data. This eliminates the 

necessity for human feature engineering. These strategies have 

several benefits, and this is one of them. On the other hand, the 

interpretability of deep learning models may be constrained, 

which makes it difficult to grasp the core aspects that are 

responsible for the categorization decisions. 

Light Gradient Boosting (GB) and Extreme GB are two 

approaches that Karabayir et al. [10] used to diagnose PD 

using the features of speech data. They were successful in 

properly identifying significant traits via the use of feature 

analysis, which led to good accuracy rates obtained. Among 

the many advantages that are linked with gradient boosting 

algorithms is their capability to handle various types of data 

and to capture complicated correlations between attributes. 

This is only one of the many advantages that these algorithms 

provide. The interpretation of model predictions, on the other 

hand, may prove to be challenging due to the ensemble nature 

of these applications of algorithms. Using vocal data time–

frequency features, the study [11] developed a machine 

learning technique that offers great accuracies for the detection 

of PD. This method was developed by merging a stacked 

autoencoder with a k-nearest neighbours (KNN) algorithm. 

One of the benefits of using this strategy is that it has the 

capacity to capture hierarchical representations of the data 

during unsupervised pretraining with autoencoders. This is 

one of the advantages of using this method. It is possible that 

the reliance on k-nearest neighbours for classification might 

be a hindrance to scalability and efficiency, particularly when 

working with enormous datasets [12]. 

El Maachi et al. [13] provided a deep learning framework 

for the diagnosis of PD by gait categorization in their research 

paper. About the differentiation of PD and the prediction of 

UPDRS severity, the system demonstrated exceptional 

accuracy rates. Deep learning frameworks have the potential 

to automatically train discriminative features from raw data, 

which might potentially identify minute patterns that are 

indicative of Parkinson's disease. Using these models has one 

of the benefits in that it Deep learning models' computational 

complexity, however, might provide difficulties in real-time 

applications—especially in situations where resources are 

limited. This is particularly true in cases where additional 

resources are at hand. Using a Radial Basis Function (RBF) 

neural network to replicate gait patterns, Zeng et al. [14] were 

able to achieve a really high degree of accuracy in the 

diagnosis of Parkinson's disease. This approach let them reach 

their objective. One advantage of RBF neural networks is their 
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capacity to communicate intricate nonlinear connections in the 

data. One more benefit is the possibility to examine data via 

these networks. Conversely, the interpretability of these 

models may be limited, which would make it challenging to 

value the fundamental elements in charge of the classification 

judgments. 

For every one of these initiatives, there are significant 

findings ready for application of machine learning and deep 

learning approaches in PD diagnosis. These studies show both 

the possible benefits and the limitations of these methods in 

clinical environments shaped in the actual world. 

 

 

3. PROPOSED METHODOLOGY 

 

Applying RCTs, the suggested project aims to provide a 

special approach for the classification of PD based on the 

insights gained from past studies, therefore leveraging the 

advancements. This work intends to use the special qualities 

of RCTs to raise the PD classification accuracy. The 

shortcomings of present deep learning models as well as the 

encouraging results generated by RCTs in many domains 

motivated this study. The job that is proposed will include 

many crucial procedures. These stages include the public 

access to publicly available clinical trial data gathering, 

meticulous data processing to guarantee its integrity and 

quality, the construction of a model utilizing RCT architecture, 

and thorough evaluation of the operational efficacy of the 

model. 

 

 
 

Figure 1. Proposed RCTs for PD classification 

 

Furthermore, assessments will be conducted comparing the 

suggested RCT-based approach with state-of- the-art models. 

This will provide light on both the possible use of the strategy 

in the actual world and its efficacy. Specifically, the proposed 

initiative is to improve the field of medical diagnostics by 

using this special approach and leveraging RCT model shown 

in Figure 1. This is particularly pertinent considering the 

classification of Parkinson's disease. Through this effort, we 

want to provide a contribution of important concepts and 

strategies that, over time, can improve the care patients get and 

the outcomes they encounter in clinical environments. 

The architecture incorporates several components to enable 

it handle sequential data efficiently. First, the input data that 

many contain discrete features are converted into a continuous 

feature vector form since the embedding matrix can represent 

many attributes of the dispersed signals. The LSTM layer 

captures temporal dependencies through its gates: The forget 

gate buffer the old information while the input gate 

incorporates new info, and the output gate a decision of the 

present state. This layer makes sure that the model is learning 

sequential data appropriately and is retaining appropriate 

context over the time step. 

After, convolutional layers obtain local patterns from 

features that LSTM has provided to enrich the feature 

representation. In order to understand global dependencies, 

transformer blocks use self-attention to look at all elements in 

the sequence and compute their relation. Coordinates of 

queries and keys are learned from the sequence and values, 

while normalized attention scores assigned to features they 

want. The final layer of the fully connected network provides 

predictions of interest on output by first passing the 

representations through a dense layer. These three 

architectures LSTM, CNN, and transformers all together 

provide a strong foundation to the model and help in better 

understanding of the data that include sequential elements with 

both local and global features. 

1. Input Embedding: 

- Let X be the input sequence of length T, where each 

element Xt is a d-dimensional vector. 

- An embedding matrix E of size V x d maps each element 

to a continuous vector representation: 

 

𝑍𝑡 = 𝐸 ∗ 𝑋𝑡 

 

2. Recurrent Layers (LSTM): 

Initialize hidden state ho with zeros. 

For t=1 to T: 

Calculate forget gate -ft, input gate it, cell state candidate tt, 

cell state Ct, output gate ot, and hidden state ht as follows: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑍𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑍𝑡] + 𝑏𝑖) 

𝑡𝑡 =  tanℎ(𝑊𝑐  ∗  [ℎ{𝑡−1}, 𝑍𝑡]  +  𝑏𝑐) 

𝐶𝑡  =  𝑓𝑡  ∗  𝐶{𝑡−1}  +  𝑖𝑡  ∗  𝑡𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑍𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

 

- Where σ and tanh are the sigmoid and hyperbolic tangent 

activation functions, respectively. 

- Wf, Wi, Wc, Wo, bf, bi, bc, bo are weight and bias matrices 

specific to the LSTM unit. 

3. Convolutional Layers: 

- Apply one or more convolutional layers with filters of size 

F x d' to the output sequence of LSTMs (H=[h1,h2,...,hT]): 

- 𝑌𝑡 = 𝑓(𝑊𝑐𝑜𝑛𝑣 ∗ 𝐻 + 𝑏𝑐𝑜𝑛𝑣) 

- Where Wconv is the convolutional filter matrix, bconv is the 

bias vector, and f is the activation function (e.g., ReLU). 

4. Transformer Blocks: 

- For each transformer block: 

- Project the input sequence (Y) into query (Q), key (K), and 

value (V) matrices using weight matrices Wq, Wk, and Wv: 

- 𝑄 = 𝑌 ∗ 𝑊𝑞 , 𝐾 = 𝑌 ∗ 𝑊𝑘, 𝑉 = 𝑌 ∗ 𝑊𝑣  

- Calculate scaled dot-product attention scores: 

- 𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄 ∗
𝐾𝑇

𝑠𝑞𝑟𝑡(𝑑𝑘)
) 

- Multiply the attention scores with the value matrix: 

- 𝑆𝑖 = 𝛴(𝑎𝑖𝑗 ∗ 𝑉𝑗) 

- Perform multi-head attention mechanism by repeating the 

above process multiple times with different projections and 

concatenating the results. 

5. Output Layer: 

- The final output (Ot) is generated based on the processed 

information (e.g., the last hidden state or the output of the 

transformer block): 

- 𝑂𝑡 = 𝑓(𝑊𝑜 ∗ [ℎ𝑡] + 𝑏𝑜) 

To efficiently identify PD based on data obtained from 
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shoe-mounted accelerators, the proposed method makes use of 

RCTs, which are a sophisticated kind of deep learning 

architecture. Following is an explanation of how each 

component of RCTs relates to the categorization problem at 

hand. At the start of the RCT calculation, an embedding matrix 

converts the input sequence first into continuous vector 

representations. This technique improves both the 

understanding and processing of sequential data as well as 

provides a strong foundation for next research. Because RCTs 

have convolutional layers and recurrent layers respectively, 

they can encode both temporal dependencies and spatial 

properties in an input sequence simultaneously. With this 

architecture, the model can find useful patterns or information 

from sequential data. Transformer blocks can increase their 

capacity of RCTs, which are good at dealing with long-

distance relationships between different parts of input 

sequences. Attention mechanisms are used in these blocks to 

pay more attention to important parts of sequences so that 

complex connections can be fully understood. Transformer 

blocks and recurrent convolutional layers produce final 

outputs from processed data, which represent features or 

patterns learned from input sequences and thus guide 

Parkinson’s disease classification outcome. 

 

 

4. RESULTS AND DISCUSSION 

 

Since it is where we report and assess the outcomes of our 

experiments, this component of the research is the most crucial 

one. Here we examine the performance measures of the RCT 

model we propose and contrast them with other existing 

models such CNN-LSTM and Modified LSTM. This work 

aims to investigate if, using time-series data, the RCT model 

helps to classify Parkinson's disease. Analyzing the numbers 

for accuracy, precision, recall, F1-score, and loss can help one 

to do this in great detail. Furthermore, we investigate the 

relevance of these results with an eye toward the advantages 

of the RCT paradigm and resolving any flaws in the methods 

already in use. By means of an in-depth debate, we provide 

insights on the importance of our findings and their 

consequences for future research and therapeutic uses in the 

area of neurology. 

Dataset: The Gait in Aging and Disease Database [18] 

placed on PhysioNet presents currently the largest collection 

of gait data recorded in elderly people and patients with 

movement disorders. The collected data involves 

questionnaire demographics, medical history, and gait 

spatiotemporal parameters allowing understanding how 

ageing and clinical diseases affect human mobility. This data 

could then be used by researchers to create mathematical 

models to detect any abnormalities to gait, detect risks of 

falling and the evolution of diseases for example, Parkinson’s 

disease. The availability of the databases is appropriate, 

unambiguous, and became fundamental in furthering 

knowledge in the field of geriatrics, neurology and 

biomechanics. 

Performance metrics: KPIs are critical, diagnostic 

measures for assessing model or system fulfillment on defined 

objectives within Machine Learning and Deep learning. Still, 

basic measures are such things as accuracy that only shows 

how many instances have been classified correctly, as well as 

precision which shows how many actual positives have been 

classified as such by the model. The cohort subordinate to the 

model consists of all those records that it could recognize; 

hence, recall speaks to its performances in terms of drawing 

attention to all pertinent cases; the F1-score yields a measure 

that is the harmonic mean of both the precision and the recall 

values, indicating how the model can balance between the 

merits and demerits of precision or recall. 

Figure 2 shows across 10 epochs the models' degree of 

accuracy. The proportion of accurately recognized samples out 

of all the samples reflects this accuracy. After 10 epochs, the 

suggested randomised controlled trial model shows an 

accuracy of 96.4%, which is regularly greater than the 

performance of the other two models. By comparison to one 

another, CNN-LSTM and Modified LSTM models 

respectively get accuracies of 94.5% and 93.4%. This makes 

it abundantly evident that the suggested RCT model does quite 

well in correctly diagnosing Parkinson's disease. In medical 

applications, the model is very helpful because it suggests a 

more accurate RCT model for diagnosis and treatment 

recommendations. Besides having a recurrent architecture, the 

suggested RCT model can also have convolutional and 

transformer architectures at the same time. Therefore, it can 

effectively store geographical features and temporal 

connections as well. This solves problems with previous 

models like CNN-LSTM or Modified LSTM which may not 

capture long-term dependencies very well or suffer from 

issues such as vanishing gradients or overfitting. These were 

created to fix these problems. The proposed changes address 

this issue by increasing precision and robustness of 

classification in medical time series under RCT approach 

through addressing these shortcomings that were identified in 

past models like CNN-LSTM or Modified LSTM where they 

failed to capture long-term dependency adequately due their 

inability to handle vanish gradient problem during training 

phase leading into overfitting errors among others such as 

convergence failure etc. 

 

 
 

Figure 2. Accuracy of the proposed and state-of-art model 

 

The precesion of the models over 10 epochs is displayed in 

Figure 3. The precesion rate can be used as a measure of the 

proportion of samples that were correctly identified out of all 

samples considered. After 10 epochs, the recommended RCT 

model attains an accuracy of 96.4% which is usually higher 

than what any other two models perform. If we compare CNN-

LSTM with Modified LSTM model, it’s clear that they 

respectively achieve accuracies of 94.5% and 93.4%. 

Therefore, it is easy to tell that suggested RCT model does a 

good job in diagnosing Parkinson's disease correctly. 

Additionally, this medical field oriented model has shown 
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even better results due to its higher precision rate thus enabling 

accurate detection and treatment recommendations at large 

scale for different healthcare institutions or systems worldwide. 

Moreover, suggested RCT model includes both recurrent and 

convolutional architectures with transformer capabilities 

concurrently held within them; hence enabling effective 

recording of temporal links as well geographical properties 

which were not possible before through other methods This 

solves such problems like long-term dependencies being hard 

to capture by previous approaches including CNN-LSTM or 

Modified LSTM that suffer from issues such as vanishing 

gradient problem and overfitting among others in deep 

learning networks designed for time series classification tasks 

based on medical data analysis mainly focusing on patients’ 

electronic health records where each patient’s past history 

plays significant role during diagnosis stage.. These are 

designed to overcome these problems. Resolving these 

limitations enhances the proposed RCT method’s ability to 

provide high accuracy rates along with robustness when 

dealing with various medical time-series classification 

challenges. 

 

 
 

Figure 3. Precision of the proposed and state-of-art model 

 

 
 

Figure 4. Recall of the proposed and state-of-art model 

 

Figure 4 shows the models' recall across 10 epochs, which 

shows the ratio of appropriately anticipated positive cases to 

the overall count of actual positive cases. By means of a 

comparison of CNN-LSTM and Modified LSTM models, it is 

evident that the Proposed RCT model regularly achieves 

higher recall values across every epoch. More precisely, after 

10 overall epochs have elapsed, the recall values for the 

Proposed RCT, CNN-LSTM, and Modified LSTM models are 

0.957, 0.92, and 0.90, respectively. This implies that the 

suggested RCT model is more efficient in spotting actual 

positives, which will help to lower the total Parkinson's disease 

incidence that is missed throughout the classification process. 

Full coverage of positive events guarantees a stronger recall, 

therefore lowering the likelihood of false negatives. Apart 

from showing better memory, the suggested randomised 

controlled trial strategy offers more sensitivity in spotting 

Parkinson's disease patients, thereby supporting more accurate 

diagnosis and consequent treatment decisions. 

The F1-score of the models over a ten-epoch period shows 

in Figure 5 the balance of accuracy and recall. The Proposed 

RCT model routinely maintains better F1-score values 

throughout all epochs evaluated when compared to CNN-

LSTM and Modified LSTM models. More precisely, after 10 

overall epochs, the F1-score values for the Proposed RCT, 

CNN-LSTM, and Modified LSTM models are 0.96, 0.93, and 

0.892 respectively. Higher F1-score suggests a better balance 

between avoiding false positives and false negatives—

qualities necessary for a good medical diagnosis. By obtaining 

a better F1-score, the suggested RCT model guarantees both 

great accuracy and recall, thereby producing more accurate 

classification outputs. 

 

 
 

Figure 5. F1-score of the proposed and state-of-art model 

 

 
 

Figure 6. Loss of the proposed and state-of-art model 

 

Figure 6 shows the ten-epoch declining trend in the loss 

values of the models throughout their training. A loss value 

lower indicates that the models have reached more optimal 

convergence. The Proposed RCT model shows a considerably 

more noteworthy decrease in loss in this specific figure than 

CNN-LSTM and Modified LSTM models. More precisely, 

after 10 overall epochs have gone by, the loss values for the 

Proposed RCT, CNN-LSTM, and Modified LSTM models are 
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0.09, 0.6164, and 0.582 correspondingly. This finding 

indicates that the suggested RCT model learns from the 

training data in a more efficient and effective way, which 

finally leads in faster convergence and improved model 

performance. Lower loss values suggest that the model is 

being trained and generalized more precisely, hence 

improving the reliability of the classification results. 

Indeed, although RCT has been proved to achieve high 

performance in a simulation environment, several issues may 

occur when applying it in real practices. However, one can 

mention the following: a critical limitation – the need for high-

quality and various datasets. This can lower the performance 

in a model if the model faces high variability data including 

imaging protocols, patient characteristics, or disease stages not 

represented in the training model. Solving this problem is 

possible only with the advancement of effective data 

augmentation methods and with more diverse and large 

datasets. 

Further, the RCT model, especially the transformer blocks, 

may not be implementable in real-time in limited-resource 

settings such as small clinics or remote healthcares. This can 

be avoided by use of optimal model deployment on the devices 

or by employing cloud based solutions. Still, there are two 

critical issues that remain concerning about the current work: 

one is the instability of the model across runs; the other is the 

interpretability of the decision of the model. Whereas, in 

clinical practice users need some sort of explainable outcomes 

for approximately decision making. Thus, adapting the RCT 

model for introducing XAI methods will improve the model’s 

understanding and clinic’s trust among clinicians. 

 

 

5. CONCLUSIONS 

 

This work aims to use time-series data to study, by means 

of RCTs, the efficiency of PD classification. To do this, we 

meticulously assembled an open to the public dataset derived 

from clinical research. This dataset included controls together 

with accelerometer data from Parkinson's disease sufferers. 

We proposed an RCT model combining transformer, 

convolutional, and recurrent architectures. This model aims to 

record spatial components existing in the data as well as 

temporal links. We evaluated the RCT model's performance 

against two other models already in use by means of 

experiments: CNN-LSTM and Modified LSTM. Following 

their ten-epoch training, the accuracy, precision, recall, F1-

score, and loss values of every model were investigated 

correspondingly. Our analysis found that the Proposed RCT 

model routinely exceeded the CNN-LSTM and Modified 

LSTM models across all criteria. In terms of diagnosing 

Parkinson's disease based on time-series data, the RCT model 

showed specifically better accuracy, precision, recall, and F1-

score values as well as reduced loss values. 

Our study results not only provide proof that the RCT 

paradigm is advantageous but also highlight the possibility of 

this method to enhance medical diagnosis processes. One 

feasible method for improving the accuracy and dependability 

of PD classification systems is the capacity of the RCT model 

to effectively capture intricate temporal and geographical 

patterns. Moreover, the architectural advantages of the RCT 

model solve issues seen in earlier models, therefore enabling 

innovations in neurology research and clinical approaches. 

Future directions of study might include more optimization 

and refinement of the RCT model, exploration on the 

applicability of the model to other neurological diseases, and 

the integration of other multimodal data sources to enhance 

classification performance. Furthermore, looked at should be 

the RCT model's application in the actual world and validation 

in clinical environments. Both are crucial phases toward its use 

in contexts of patient care. Taken all together, these findings 

show the great potential of RCTs as a major instrument for 

enhancing the diagnosis and treatment of neurological diseases 

like Parkinson's disease and other neurological disorders. 

Future work will build upon the proposed RCT model to 

involve explainable AI for increased interpretability and the 

use of adaptive learning for accommodating the heterogeneity 

of clinical data. Furthermore, the fine-tuning of the model for 

deployment on edge devices will consider computational 

issues that will allow real-time use in areas with restricted 

computational limits. RCT model can complement the clinical 

assessment scales and imaging examinations since it has been 

applied to early and accurate diagnosis of Parkinson’s disease 

that outperforms current used methods. These goals seek to 

narrow the existing gap between what simulation has enabled 

in terms of technological advancement and what clinical 

practice can leverage to serve the patient and healthcare 

system better. 
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