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 This paper examines synchronization between two identical 6-D hyperchaotic Lorenz 

systems based on nonlinear control strategy. The designed control functions for the 

synchronization between the drive state variables and the response state variables are 

succeed to achieve synchronization with unknown parameters. Numerical simulations are 

carried out to validate the effectiveness of the analytical technique. 
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1. INTRODUCTION 

 

Chaos control is one of the chaos treatments, which contains 

two aspects, namely, chaos control and chaos synchronization. 

Chaos control can be classified into two categories: one is to 

suppress the chaotic dynamical behavior when it is harmful or 

is attempt to eliminate chaotic behavior, and the other is to 

generate or enhance chaos when it is desirable known as 

chaotification or anti-control of chaos [1]. 

Synchronization means to control a chaotic system to follow 

another chaotic system. Chaos control and chaos 

synchronization were once believed to be impossible until the 

1990s when Ott et al. developed the OGY method to suppress 

chaos [2]. Pecora and Carroll introduced a method to 

synchronize two identical chaotic systems with different initial 

conditions [3], which opens the way for chaotic systems 

synchronization. Chaos control and chaos synchronization 

play very important role in the study of nonlinear dynamical 

systems and have great significance in the application of chaos 

[4]. Especially, the subject of chaos synchronization has 

received considerable attention due to its potential applications 

in physics [5], secure communication, chemical reactor, 

biological networks, control theory, artificial neural network. 

etc. [6]. 

Various types of synchronization phenomena have been 

presented such as complete synchronization (CS), generalized 

synchronization (GS), lag synchronization, anti-

synchronization (AS), projective synchronization (PS), 

generalized projective synchronization (GPS). The most 

familiar synchronization phenomena are complete 

synchronization and anti-synchronized [7, 8]. 

In the last two decades, extensive studies have been done on 

the properties of nonlinear dynamical systems. One of the 

most important properties of nonlinear dynamical systems is 

that of chaos [9]. This phenomenon is an important topic in 

nonlinear science and has been intensively investigated within 

the mathematics, physics, engineering science, and secure 

communication, etc. [6, 8, 9]. Chaos is sometimes undesirable, 

so, we wish to avoid and eliminate such behaviors [10]. 

Therefore, chaos control has become the key process in 

applying chaos. Since Ott, Grebogi and Yorke (OGY) firstly 

proposed the method of chaos control in 1990, thereafter 

enormous research activates have been carried out in chaos 

control by many researchers from different disciplines, and 

lots of successful experiments have been reported 

Chaotic system has become an important aspect in 

dynamical systems due to its interesting and complex 

dynamical behaviors. But, for this system, there is just one 

positive Lyapunov exponent. In secure communication, 

messages masked by such simple chaotic systems are not 

always safe [11]. It is suggested that this problem can be 

overcome by using higher-dimensional hyperchaotic systems, 

which have increased randomness and higher unpredictability. 

Due to its higher unpredictability than chaotic systems, the 

hyperchaos may be more useful in some fields such as secure 

communication [12]. So, it's needed to discover hyperchaotic 

systems, these systems are characterized as a chaotic system 

with more than one positive Lypunov exponent, and have 

more complex and richer dynamical behaviors than chaotic 

system. Historical, Rössler system is the first hyperchaotic 

systems which discover in 1979, Since then, many 

hyperchaotic systems have been discover [13], such as 

hyperchaotic Lorenz system [2], hyperchaotic Liu system, 

hyperchaotic Chen system, Modified hyperchaotic Pan system 

(2012), as well as to propose a 5-D hyperchaotic system such 

as A novel 5-D hyperchaotic Lorenz system (2014), a novel 

hyperjerk system with two nonlinearities. Currently, a novel 

6-D hyperchaotic Lorenz is discover by Yang which contains 

four positive Lyapunov Exponents [16]. 

The main contribution of this paper is the achieving 

synchronzation between two identical 6-D hyperchaotic 

Lorenz system via nonlinear control strategy with unknown 

parameters.
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2. SYSTEM DESCRIPTION  

 

In 2015, Yang constructed a 6-D hyperchaotic system which 

include 14 terms, three of them are nonlinearity i.e., 

𝑥1𝑥3,  𝑥1𝑥2, 𝑥1𝑥3  for the second, third and fourth equation, 

respectively[15]. And its contains four positive Lyapunov 

Exponents  𝐿𝐸1 = 1.0034, 𝐿𝐸2 = 0.57515, 𝐿𝐸3 = 0.32785, 

𝐿𝐸4 = 0.020937 , and two negative Lyapunov Exponents 

 𝐿𝐸5 = −0.12087 , 𝐿𝐸6 = −12.4713 . The dynamics of 

Lorenz system is given by the following form 

  

{
 
 

 
 

   

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑥4          
�̇�2 = 𝑐𝑥1 − 𝑥2 − 𝑥1𝑥3 + 𝑥5
�̇�3 = −𝑏𝑥3+𝑥1𝑥2                  
�̇�4 =  𝑑𝑥4 − 𝑥1𝑥3                  
�̇�5 = − 𝑘𝑥2                             
�̇�6 = 𝑙𝑥2 + ℎ𝑥6                      

                        (1) 

 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑘, 𝑙  and ℎ  are constant and 𝑥𝑖 , 𝑖 = 1,2, … ,6 

are a state variables. The Lorenz system shows hyperchaotic 

behaviour when 𝑎 = 10, 𝑏 =
8

3
, 𝑐 = 28, 𝑑 = 2,  𝑘 = 8.4 ,  𝑙 =

1 and ℎ = 1. Figures 1-3 show the 3-D attractor of the system 

(1), while figures 4-6 show the 2-D attractor of the system (1). 

 
 

Figure 1. 3-D attractor of the system (1) in the (𝑥1 , 𝑥3 , 𝑥4) 
space 

 
 

Figure 2. 3-D attractor of the system (1) in the (𝑥1 , 𝑥3 , 𝑥5) 
space 

 
 

Figure 3. 3-D attractor of the system (1) in the (𝑥1 , 𝑥2 , 𝑥4) 
space 

 

 
 

Figure 4. 2-D attractor of the system (1) in the (𝑥2 , 𝑥5) plane 

 

 
 

Figure 5. 2-D attractor of the system (1) in the (𝑥3 , 𝑥4) plane 
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Figure 6. 2-D attractor of the system (1) in the (𝑥1 , 𝑥6) plane 
 

 

3. CHAOS SYNCHRONIZATION OF THE 6-D 

LORENZ HYPERCHAOTIC SYSTEMS 

 

Our purpose herein is to realize complete synchronization 

between identical 6-D hyperchaotic Lorenz systems by the 

nonlinear control technique with unknown parameters. To 

begin with, the definition of chaos synchronization used in this 

paper is given as  

 

3.1 Definition 

 

For two nonlinear dynamical systems:  

 

�̇�𝑖 = 𝐹1(𝑋𝑖)                                        (2) 

 

�̇�𝑖 = 𝐹2(𝑌𝑖) + 𝑈(𝑋𝑖 , 𝑌𝑖)                       (3) 

 

where 𝑋𝑖 , 𝑌𝑖 ∈ 𝑅
𝑛, 𝐹1, 𝐹2: 𝑅

𝑛 → 𝑅𝑛, 𝑖 = 1,2, … , 𝑛, 𝑈(𝑋𝑖 , 𝑌𝑖) is 

the nonlinear control vector, suppose that Eq. (2) is the drive 

system, Eq. (3) is the response system. The response system 

and drive system are said to be chaos synchronized or 

(complete /full) synchronized if for  

 

∀ 𝑋𝑖 , 𝑌𝑖 ∈ 𝑅
𝑛, lim

𝑡→
∞‖𝑌𝑖 − 𝛼𝑖𝑋𝑖‖ = 0, 

 

where 𝛼𝑖 is the scaling factor taken the value 1 for complete 

synchronization. 

 

3.2 Design of nonlinear controllers 

 

According to the above definition, we consider system (1) 

as the drive system and the response system is given as the 

following form: 

 

{
  
 

  
 

   

�̇�1 = 𝑎(𝑦2 − 𝑦1) + 𝑥4 + 𝑢1          
�̇�2 = 𝑐𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑦5 + 𝑢2
�̇�3 = −𝑏𝑦3+𝑦1𝑦2 + 𝑢3                  
�̇�4 = 𝑑𝑦4 − 𝑦1𝑦3 + 𝑢4                   
�̇�5 = − 𝑘𝑦2 + 𝑢5                             
�̇�6 = 𝑙𝑦2 + ℎ𝑦6 + 𝑢6                      

             (4) 

 

where 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6]
𝑇 is the nonlinear controller 

to be designed. 

The synchronization error 𝑒𝑖𝜖𝑅
6 for CS is defined as   

 

{
 
 

 
 

   

𝑒1 = 𝑦1 − 𝑥1
𝑒2 = 𝑦2 − 𝑥2
𝑒3 = 𝑦3 − 𝑥3
𝑒4 = 𝑦4 − 𝑥4
𝑒5 = 𝑦5 − 𝑥5
𝑒6 = 𝑦6 − 𝑥6

 

 

According to the above system, the error dynamics is 

calculated as the following:  

 

[
 
 
 
 
 
�̇�1
�̇�2
�̇�3
�̇�4
�̇�5
�̇�6]
 
 
 
 
 

= 𝐴

[
 
 
 
 
 
𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6]
 
 
 
 
 

+

(

  
 
𝐵 𝐷 +

[
 
 
 
 
 
𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
𝑢6]
 
 
 
 
 

)

  
 

                  (5)  

 

where 

 

𝐴 =

[
 
 
 
 
−𝑎
𝑐
0

0
0
0

𝑎
−1
0

0
−𝑘
𝑙

0
0
−𝑏

0
0
0

1
0
0

𝑑
0
0

0
1
0

0
0
0

0
0
0

0
0
ℎ]
 
 
 
 

,   𝐵 =

[
 
 
 
 
 
0 0 0
1 0 0
0
0
0
0

1
0
0
0

0
1
0
0]
 
 
 
 
 

 

 

𝐷 = [
−𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3
𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2
−𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3

] 

 

Then system (5) can be redefined as  

 

{
 
 

 
 
�̇�1 = 𝑎(𝑒2 − 𝑒1) + 𝑒4 + 𝑢1                                      
�̇�2 = 𝑐𝑒1 − 𝑒2 + 𝑒5 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑢2
�̇�3 = −𝑏𝑒3+𝑒1𝑒2 + 𝑥1𝑒2 + 𝑥2𝑒1 + 𝑢3                  
�̇�4 =  𝑑𝑒4 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑢4                 
�̇�5 = − 𝑘𝑒2 + 𝑢5                                                        
�̇�6 = 𝑙𝑒2 + ℎ𝑒6 + 𝑢6                                                 

    (6)  

 

Based on linearization method we obtain the following 

  

|

|

(−10 − λ)
28
0
0
0
0

10
(−1 − λ)

0
0

−8.4
1

0
0

(−(
8

3
) − λ)

0
0
0

1
0
0

(2 − λ)
0
0

0
1
0
0
−λ
0

0
0
0
0
0

(1 − λ)

|

|
 

= 0 

 

and the characteristic equation has the forms: 

 

λ6 +
32

3
λ5 −

4069

15
λ4 +

1658

15
λ3 +

24004

15
λ2 −

9496

5
λ

+ 448 = 0 

  

The six roots of the above equation are  
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{
 
 
 

 
 
 

  

𝜆1 = 1                                                                         
𝜆2 = 2                                                                         

𝜆3 = −
8

3
                                                                     

𝜆4 =  11.36592689 − 8.10
−9𝑖                            

𝜆5 = −22.69162026 − 3.92820323010
−9𝑖  

𝜆6 =  0.32569338 + 9.92820323010
−9𝑖        

 

 

So, some roots with positive real parts. Consequently, we 

must design control in order to suppresses this error dynamics 

(6). 

 

Theorem 1. For the error dynamics system (system 6) with 

nonlinear control 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6]
𝑇  such that  

 

{
 
 

 
 

   

𝑢1 = 𝑥3(𝑒2 + 𝑒4)−𝑥2𝑒3            

𝑢2 = −(𝑎 + 𝑐)𝑒1 − 𝑙𝑒6             
𝑢3 = 𝑥1𝑒4                                     

𝑢4 = −𝑒1 − (2 + 𝑑)𝑒4 + 𝑒1𝑒3
𝑢5 = (𝑘 − 1)𝑒2 − 𝑒5                  
𝑢6 = −2ℎ𝑒6                                 

                 (7) 

 

Then the system (4) followed to system (1) by two 

approaches.   

 

Proof. According to the previous discussion, the error 

dynamics system (6) with controller (7) become 

   

{
 
 

 
 

 

�̇�1 = 𝑎(𝑒2 − 𝑒1) + 𝑒4+𝑥3(𝑒2 + 𝑒4)−𝑥2𝑒3               
�̇�2 = −𝑎𝑒1 − 𝑒2 + 𝑒5 − 𝑙𝑒6 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3
�̇�3 = −𝑏𝑒3+𝑒1𝑒2 + 𝑥1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒4                  
�̇�4 = −𝑒1  − 2𝑒4 − 𝑥3𝑒1 − 𝑥1𝑒3                                
�̇�5 = −𝑒2 − 𝑒5                                                                
�̇�6 = 𝑙𝑒2 − ℎ𝑒6                                                                

    (8) 

 

Now, based on the first method (Lyapunov stability 

theory), we construct a positive definite on 𝑅6  Lyapunov 

candidate function as   

                         

𝑉(𝑒) = 𝑒𝑇𝑃𝑒 =
1

2
[𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒4

2 + 𝑒5
2 + 𝑒6

2]       (9) 

 

where  

 

𝑃 = 𝑑𝑎𝑖𝑔[1 2⁄ , 1 2⁄ , 1 2⁄ , 1 2⁄ , 1 2⁄ , 1 2⁄ ]              (10) 

 

Differentiating 𝑉(𝑒)  along the error dynamics (6), we 

obtain of the Lyapunov function 𝑉(𝑒) with respect to time is  

 

�̇�(𝑒) = 𝑒1�̇�1 + 𝑒2�̇�2+𝑒3�̇�3 + 𝑒4�̇�4 + 𝑒5�̇�5 + 𝑒6�̇�6      (11) 

 

�̇�(𝑒) = 𝑒1(𝑎(𝑒2 − 𝑒1) + 𝑒4+𝑥3(𝑒2 + 𝑒4)−𝑥2𝑒3)
+ 𝑒2(−𝑎𝑒1 − 𝑒2 + 𝑒5 − 𝑙𝑒6 − 𝑒1𝑒3 − 𝑥3𝑒1
− 𝑒3)
+ 𝑒3(−𝑏𝑒3+𝑒1𝑒2 + 𝑥1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒4)
+ 𝑒4(−𝑒1  − 2𝑒4 − 𝑥3𝑒1 − 𝑥1𝑒3)
+ 𝑒5(−𝑒2 − 𝑒5) + 𝑒6(𝑙𝑒2 − ℎ𝑒6) 

 
�̇�(𝑒) = −𝑎𝑒1

2−𝑒2
2−𝑏𝑒3

2 − 2𝑒4
2 − 𝑒5

2 − ℎ𝑒6
2 = −𝑒𝑇𝑄𝑒  (12) 

 

where 

 

𝑄 = 𝑑𝑖𝑎𝑔(𝑎, 1, 𝑏, 2,1, ℎ)                  (13) 

Clearly,  𝑄 > 0 . Therefore,  �̇�(𝑒)  is negative definite. 

According to the Lyapunov asymptotical stability theory, the 

nonlinear controller is achieved. Hence, the proof is complete. 

Based on the second method (linearization method), we 

get 

 

|

|

(−10 − λ)
−10
0
−1
0
0

10
(−1 − λ)

0
0
−1
1

0
0

(−(
8

3
) − λ)

0
0
0

1
0
0

(−2 − λ)
0
0

0
1
0
0

(−1 − λ)
0

0
−1
0
0
0

(−1 − λ)

|

|

= 0 

 

and the characteristic equation and eigenvalues are 

respectively as      

                 

λ6 +
53

3
λ5 − 202λ4 + 958λ3 +

6131

3
λ2 +

5917

3
λ +

2104

3
= 0 

 

{
 
 
 

  
 

 

λ1 = −1                                                              

λ2 = −
8

3
                                                                

λ3 = −1.205297774                                         
λ4 = −1.959701196                                      
λ5 = − 5.417500515 +  9.055158617𝑖  
λ6 = − 5.417500515 −  9.055158617𝑖   

 

 

Therefore, all eigenvalues with negative real parts. 

Consequently, we succeed the control system (6) via second 

method, the proof is complete. 

 

3.3 Numerical simulation 

 

For simulation, the MATLAB is used to solve the 

differential equation of  controlled error dynamical system (6), 

based on fourth-order Runge-Kutta scheme with time step 

0.001 and the and the initial values of the drive system and the 

response system are following 

(−10,−5,0,10,20,10)and(10,5,0, −10,−20,5)  respectively. 

We choose the parameters = 10, 𝑏 =
8

3
, 𝑐 = 28, 𝑑 = 2,  𝑘 =

8.4, 𝑙 = 1 and ℎ = 1.  

Figures 7-12 show the complete/full synchronization of the 

hyperchaotic Lorenz system (1) and system (4). Figure 13 

shows the convergent for system (6) with controller (7). 

 

 
 

Figure 7. Complete synchronization of the states 𝑥1 and 𝑦1 

for the Lorenz systems (1) and (4) 
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Figure 8. Complete synchronization of the states 𝑥2 and 𝑦2 

for the Lorenz systems (1) and (4) 

 
 

Figure 9. Complete synchronization of the states 𝑥3 and 𝑦3 

for the Lorenz systems (1) and (4) 

 
 

Figure 10. Complete synchronization of the states 𝑥4 and 𝑦4  

for the Lorenz systems (1) and (4) 

 
 

Figure 11. Complete synchronization of the states 𝑥5 and 𝑦5 

for the Lorenz systems (1) and (4) 

 
 

Figure 12. Complete synchronization of the states 𝑥6 and 𝑦6 

for the Lorenz systems (1) and (4) 

 
 

Figure 13. The convergent of the error dynamics (6) with 

controller (7) 

 

 

4. CONCLUSIONS 

 

In this article, controller was designed via the nonlinear 

control strategy for controlling of a 6-D hyperchaotic system 

based on the Lyapunov stability theory. Obviously from this 

controller, we achieved complete synchronization although 

this system is higher-dimensional hyperchaotic with unknown 

parameters and more complex from low-dimensional chaotic 

system. The effectiveness of these proposed control strategies 

was validated by numerical simulation results. 
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NOMENCLATURE 

𝐿𝐸 Lyapunov Exponents 

𝑒𝑖 Error dynamics 

𝑉(𝑒) Lyapunov candidate function 

Greek symbols 

λ𝑖 Roots of the characteristic equation 

Subscripts 

U 

p 

Control 

Matrix of Lyapunov function 

Q Matrix derivative of Lyapunov function 
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