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Rotating Machinery is a vital component in the manufacturing process. Its health 

conditions directly affect production, and any failure of the Machinery may reduce 

production and cause accidents. Condition-based monitoring detects faults in the early 

stages, which, in turn, reduces machine failures. Machine learning condition monitoring 

has made remarkable achievements in fault detection, but it requires various feature 

calculations and is a time-consuming process. Recently, deep learning-based models 

outperformed traditional machine learning techniques as they automatically identify 

features through the learning process. This paper proposes a deep-learning model to 

classify bearing faults, specifically a convolution Neural Network Model (CNN) and 

Convolution Invariant Neural Network (CINN). The bearing dataset from Case Western 

Reserve University (CWRU) is used for training and testing the proposed CNN and CINN 

Models. The performance of model is evaluated on different working conditions of the 

bearing faults with varying loads, demonstrating 99% and above accuracy. 
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1. INTRODUCTION

In modern life, Machinery serves as a utility integrated into 

domestic and industrial appliances, designed to operate 

reliably for extended periods. Rotating machines are the 

crucial component required for smooth and efficient machine 

operation. As the machines operate uninterrupted for extended 

periods, they are vulnerable to failures, and prediction of 

machinery failure is of paramount important. The risk of 

sudden breakdowns or failures of the Machinery can be 

minimized if regular maintenance is accomplished and failures 

are detected early [1]. Early fault detection of machinery 

optimizes operational efficiency, thereby averting costly 

downtime, production losses and potential safety hazards [2]. 

The predominant component contributing to these machine 

breakdowns is the rolling bearings component, and 90% of 

failures are related to bearing faults [3]. The root causes of 

bearing failures and their fault modes include defamation, 

fracture and wear [4], which are identified during predictive 

maintenance based on continuous machine monitoring. Early 

identification of faults is possible based on the analysis and 

inspection of available data collected from various sensors 

such as voltage, vibration, temperature, and pressure [5]. A 

specific predictive maintenance strategy utilizes vibration 

signal analysis, where data is collected with a microprocessor 

and distinct vibration frequency components, amplitude 

changes generated during machine operating conditions are 

analyzed. However, microprocessor-based data collected 

cannot capture accurate data and generate low-frequency 

vibrations [6]. Thus, signal analysis performed on low-

frequency vibration components is not precise. These findings 

on signal have inspired researchers to propose various 

techniques to capture high-frequency data and diagnose the 

faults of bearings in rotating Machinery through vibration 

monitoring [7]. 

Most of the research hitherto has concentrated on 

identifying faulty Machinery by monitoring the signal 

amplitude and its frequency transitions, which include manual 

extraction of signal features: statistical time-domain, 

frequency-domain, spatial domain, and time-frequency 

features [8]. Statistical time features of the time domain 

include max, mean, root amplitude, standard deviation, 

variance, standard error, peak-peak, root mean square, 

skewness, entropy, kurtosis, margin, clearance, crest, shape 

and impulse factor. Frequency domain or spectral features 

include applying fast Fourier transform (FFT) and performing 

envelope analysis Time-frequency features include wavelet 

transforms, Fourier transforms like short-term Fourier 

transform (STFT); the derived spectrograms, wavelets, and 

decomposed wavelets are inspected, and wavelet analysis is 

performed [9]. According to the task requirements, a selective 

approach with only a subset of features is adopted to analyze 

machine faults. Many supervised and unsupervised machine 

learning models, namely, decision trees, k nearest neighbors, 

random forest, artificial neural networks, support vector 

machines, backpropagations and convolution neural networks 

(CNN), are trained on these selected features [10-13]. While 

many supervised learning models have been utilized in fault 

diagnosis, the incorporation of deep learning models remains 

crucial.  

The application of neural networks across various domains 

has seen a surge, and recent advancements in deep learning 
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have become popular in bearing fault diagnosis. The deep 

learning models applied on bearing datasets convert raw 

vibration signals to time-frequency images using various 

wavelet transforms. Wavelet transforms like continuous 

wavelet transform (CWT) [14-25], CWT of complex morlet 

[26], two-level discrete wavelet transform (DWT) [27], Non-

uniform Fast Fourier Transform (NFFT) [28] and Short-time 

Fourier Transform (STFT) [29] were applied to convert one-

dimensional vibration signals to 2-dimensional spectrograms. 

These time-frequency images are given as input to convolution 

neural networks for fault identification. While neural networks 

are integrated into the system, but their operations are not 

directly applied on the raw signal. 

The following researchers employed deep learning 

approaches for fault diagnosis and achieved the following 

performance metrics. Xia et al. [30] proposed a CNN model 

incorporating multiple sensors. The model is trained using 

spatial and temporal information from raw data signals. 

Manual feature extraction and selection are avoided, and is 

tested, which results in 99.41% accuracy. Sonmez et al. [31] 

proposed real-time condition monitoring based on combining 

one—and two-dimensional deep convolution neural networks 

combined with wide first-layer kernels (WD-CNN). The 

model’s effectiveness is tested, and 96.45% accuracy is 

achieved on different operating loads. van den Hoogen et al. 

[32] introduced an adaptive wide kernel in one-dimensional 

CNN architecture to classify multivariate signals without data 

pre-processing. The model’s performance is trained and 

evaluated, and an average accuracy of 89.39% is achieved. 

Eren et al. [33] proposed an intelligent-based diagnosis using 

CNN without encapsulating distinct blocks for feature 

extraction, selection, and classification. One-dimensional 

CNN is applied directly to the raw time-series sensor data, 

learning optimal features automatically and achieving 93.22% 

accuracy. Jin et al. [34] proposed variational mode 

decomposition (VMD) to decompose the signal and CNN for 

bearing fault diagnosis. High-correlated components acquired 

are given as input to the classification model. The fault 

diagnosis method achieved 96.41% accuracy on CWRU 

dataset. Kulevome et al. [35] proposed rolling element-bearing 

classification using a deep neural network. The features from 

the input vibration signals are classified using a modified 

VGG16 architecture. The classification model achieved 

99.23% accuracy and a healthy indicator framework for 

varying operating conditions of faults is proposed.  

As evidenced by the previous studies, there remains a 

research potential to propose an efficient fault diagnosis model 

to diagnose bearing faults in rotating Machinery. While CNNs 

are primarily designed for two-dimensional image processing, 

their applicability can be extended to one-dimensional signals 

through appropriate modifications of parameters. The main 

objective of the proposed work focuses on, 

1. Processing raw input vibration signals directly. 

2. Signals are segmented to make them appropriate for 

neural networks. 

3. A neural network and a two-level invariant Neural 

Network Model is proposed to classify fault signals and to 

improve the classification accuracy. 

The following sections outline the paper’s organization, 

‘Theoretical Background’ provides a functional overview of 

the theoretical underpinnings of the Neural Network Models. 

The ‘Proposed Methodology’ provides a systematic approach 

and description of the fault diagnosis model. ‘Experimental 

Results and Discussions’ demonstrates a comprehensive and 

detailed performance analysis of the proposed models’ 

capabilities. The section ‘Conclusion’ summarizes the 

essential findings and contributions of the paper, highlighting 

the potential of the proposed model in improving the 

efficiency and accuracy of model. 

 

 

2. THEORETICAL BACKGROUND 

 

The Neural Network models are computational models in 

which nodes are connected and adapted with weights during 

model use. These computational elements are densely 

interconnected to achieve better performance. 

 

2.1 CNN 

 

The basic CNN consists of three important layers. The first 

layer is a convolutional layer, involving multiple kernels 

where input features are learnt as feature maps. These feature 

maps are connected to neighboring neurons in the previous 

layer and are obtained by first performing convolution 

operation on the input tensor with a kernel filter. To the 

convolved result, element-wise activation functions such as 

ReLU, tanh and sigmoid, are applied. A pooling layer is 

applied to reduce the feature map resolutions, and operations 

include max and average pooling. By stacking multiple 

convolutional and pooling layers, higher-level abstracted 

features are detected [36].  

The architecture of CNN [37] model is presented in Figure 

1.  

 

 
 

Figure 1. CNN 
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Figure 2. CINN 

 

2.2 CINN 

 

The fundamental CINN design integrates a feature extractor 

and classifier into a unified sequential model. The feature 

extractor comprises convolutional, pooling, and fully 

connected layers. The pertinent characteristics of the input 

signal are derived in the feature extractor component of the 

model through convolution and pooling layers. The classifier 

component forecasts the acquired features utilising the fully 

linked layers. The integrated model is trained to reduce loss 

and enhance classification accuracy. Figure 2 above illustrates 

the architecture of the Convolution Invariant Neural Network 

(CINN) Model [37]. 

  

 

3. PROPOSED METHODOLOGY 

 

This study uses convolutional neural networks to 

automatically extract features and classify vibration signals for 

the diagnosis of bearing faults. The subsequent sections detail 

the data preparation for the proposed model and the findings 

obtained.  

 

3.1 Data collection and processing 

 

The dataset utilized in the research is the Case Western 

Reserve University (CWRU) bearing dataset [38], a publicly 

accessible benchmark dataset found in reference [39], which 

has been employed in the majority of prior publications. The 

bearing dataset is produced using a 2hp Reliance electric 

motor equipped with a dynamometer, encoder and transducer, 

as seen in Figure 3, sourced from publication [38]. 

  

 
 

Figure 3. CWRU bearing test rig 

 

Sensors are placed at different locations. Data were 

collected at two different frequencies, 12 KHz and 48 KHz, 

from three different ends: bearing end, Drive-end (DE) and 

fan-end (FE).  

A total of 161 data files were utilized, and defects were 

introduced to bearings with diameters varying from 0.007 to 

0.040 inches. Data was collected at several speeds ranging 

from 1720 to 1797 rpm. Each data file comprises multiple 

properties, specifically: drive end signal (DE_Time) and fan 

end signal (FE_Time) – acceleration data measured in vertical 

direction, base signal (BA). Only DE_time data is utilized for 

analysis, as it is proximate to the bearing. 

This research examines data sampled at a frequency of 48 

kHz. Three categories of faults are examined: bearing ball 

fault, race inner and race outer fault, in conjunction with data 

from normal conditions. All files are in .mat format. Each file 

is renamed to indicate the defect kind, its diameter, and the 

motor run load. The file name I7_2 signifies that the fault type 

is Inner Fault, occurring while the motor operates at a 2hp 

load, with a fault diameter of “0.007”, the file name B21_1 

indicates the fault type is Bearing Fault generated when the 

motor is run at 1hp load, and the fault diameter is “0.021” and 

the file name O14_3 indicates the fault type is Outer Fault 

generated when the motor is run at 3hp load, and the fault 

diameter is “0.0014”. The data is designated with distinct 

names for each class type and provided as input to the models. 

Despite 48 KHz sampling rate for 10 seconds, certain data 

files exhibit a smaller number of data points indicating 

potential error during data acquisition, storage or hardware 

malfunctions. To standardize the varying sample rate of data 

files recorded across the dataset, 48 KHz samples are 

resampled to a consistent 420 samples of 1024 data points each 

to streamline computations and facilitate focused analysis of 

data processing. To enable accurate diagnostics and 

predictions, fault diameter under varying loads is considered 

which provides the impact of fault severity and its influence 

on the machine. Therefore, the vibration signals are divided 

into 420 segments, each containing 1024 data points for 

processing. The sampled signals are categorized into four 

types of dataset cases: A, B, C, and D. Dataset A comprises 

9,728 data samples of 0.007 diameter faults, encompassing 

three distinct fault types and normal faults. Dataset B has 

6,475 instances of three distinct fault types at a diameter of 

0.014. Dataset C has 9,759 data samples with a fault diameter 

of 0.0021. Dataset D encompasses all varieties of faults under 

three distinct load circumstances and fault sizes. Table 1 

presents the configuration of instances from the CWRU 

dataset under consideration.  
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Table 1. Dataset cases of CWRU 

 
Dataset Case A Case B Case C Case D 

Bearing Type Ball 

(B) 

Inner 

(I) 

Outer 

(O) 

Ball 

(B) 

Inner 

(I) 

Outer 

(O) 

Ball 

(B) 

Inner 

(I) 

Outer 

(O) 

All 

Normal Yes Yes Yes Yes 

Fault Diameter 0.007 0.0014 0.0021 All 

Load 0/1/2/3 0/1/2/3 0/1/2/3 0/1/2/3 

Data Samples 9728 6475 9759 22650 

 

3.2 Classification models 

 

A multiclass fault diagnosis system is proposed for various 

data-organized groups of bearing faults. The data samples of 

each dataset are partitioned into training and testing sets. The 

training samples include 80% of the data, whereas the testing 

samples constitute 20% of the data. The classification models 

are executed for 35 epochs with a batch size of 128. 

 

3.2.1 CNN 

In this study, Layer 1 of the Convolution has a kernel size 

of (3, 3) with 64 filters, and the input shape is (30, 30, 64), 

featuring 640 parameters which facilitates balance between 

diverse feature extraction capability and computational 

efficiency of the signals. The second layer of the convolutional 

layer comprises 128 filters with a kernel size of (3, 3), and the 

input shape is (15, 15, 64). The produced feature maps have a 

shape of (13, 13, 128) and contain 73,856 parameters. The 

employed activation function is a ReLU function, 

characterized by continuity and an unbounded signal. Layer 3 

of the Convolution layer comprises 256 filters with a kernel 

size of (3, 3), and the input shape is (6, 6, 128) which facilitates 

the hierarchical extraction of complex features contributing to 

fault detection. The produced feature maps have a shape of (4, 

4, 256) and contain 295,168 parameters. To standardize the 

activations of preceding layers, batch normalization is utilized. 

The feature maps from the first, second, and third Conv2D 

layers are downscaled by a factor of two by the selection of the 

maximum value. The pooling layer’s feature maps are 

converted into a one-dimensional vector appropriate for the 

following layers. The initial dense layer comprises 1024 

neurons that process flattened feature vectors to generate a 

128-dimensional vector. A dropout rate of 0.5 is established to 

mitigate overfitting. The model’s final output layer executes 

categorization by transforming a 128-dimensional vector into 

six output classes. The condensed architecture of the network 

model is presented in Table 2. 

 

Table 2. Overview of CNN layer configurations 

 
Layer Filter Size Output Parameters 

Conv 1 (ReLU) 3×3 (30,30,64) 640 

BatchNormalization  (30,30,64) 256 

Pool 1 2×2 (15,15,64) 0 

Conv 2 (ReLU) 3×3 (13,13,128) 73856 

BatchNormalization  (13,13,128) 512 

Pool 2 2×2 (6,6,128) 0 

Conv 3 (ReLU) 3×3 (4,4,256) 295168 

Batch Normalization  (4,4,256) 1024 

Pool 3 2×2 (2,2,256) 0 

Flatten  (1024) 0 

Dense 1 (ReLU)  (128) 131200 

Output (Softmax)  (None,6) 774 

Total Parameters   503430 

 

 

3.2.2 CINN 

Feature extractor: The convolutional layers of the model 

manage the feature extraction process. The three convolutional 

layers acquire intricate aspects of the signal and utilize 64 

filters of kernel size (3, 3) with a ReLU activation function. 

The pooling layer down-samples by selecting the maximum 

value with a stride, so mitigating overfitting and reducing 

computational expenses. This pertains to learning and feature 

extraction. The pooling layer’s feature maps are converted into 

a one-dimensional vector appropriate for the following layers.  

The initial dense layer of the classifier has 1024 neurons 

utilizing ReLU activation, processing a flattened feature 

vector that captures the intricate patterns and characteristics 

identified in the preceding feature-extraction phase. The 

second layer, utilizing softmax activation, generates the 

predicted probabilities for each class within the dataset. 

The combined model integrates the feature extractor and 

classifier into a singular sequential framework for 

comprehensive training and prediction. 

Table 3 presents a summarized architecture of the 

Convolution Invariant Neural Network Model. 

 

Table 3. Overview of CINN layer configurations 

 
Layer Filter Size Output Parameters 

Feature Extractor 

Conv 1 (ReLU) 3×3 (30,30,64) 640 

BatchNormalization  (30,30,64) 256 

Pool 1 2×2 (15,15,64) 0 

Conv 2 (ReLU) 3×3 (13,13,128) 73856 

BatchNormalization  (13,13,128) 512 

Pool 2 2×2 (6,6,128) 0 

Conv 3 (ReLU) 3×3 (4,4,256) 295168 

Batch Normalization  (4,4,256) 1024 

Pool 3 2×2 (2,2,256) 0 

Flatten  (1024) 0 

Classifier 

Dense_1 (ReLU)  (128) 131200 

Dense_2 (ReLU)  (256) 33024 

Output (Softmax)  (None,6) 1542 

Total Parameters   165766 

 

 

4. RESULTS AND DISCUSSION 

 

The experimental research was carried out on a core i7 

processor computer system equipped with 16GB RAM, 

utilizing the TensorFlow library within a Jupyter Notebook 

interface.  

 

4.1 Performance metrics 

 

The performance metrics used to evaluate the classifiers are 

accuracy, precision, recall and F1-score. The two class 

samples can be categorized [39] as denoted in the confusion 

matrix as shown in Table 4.  
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Table 4. Confusion matrix 

 
 Predicted Class  

Actual 

Class 

 Bearing Fault Normal  

Bearing 

Fault 

True Positive 

(TP) 

False Negative 

(FN) 
TP+TN 

Normal 
False Positive 

(FP) 

True Negative 

(TN) 
FP+TN 

  TP+FP TN+FN All 

 

The classification models’ performance metrics are: 

Accuracy: Quantifies the models’ performance in terms of 

correct classifications, calculated using Eq. (1) of the study 

[40]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 

Precision: For a given specific class, Precision quantifies 

the ratio of positive predictions that were actually correct [40]. 

Precision assesses positive predictive power of the model, 

given as in Eq. (2) of the study [40],  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

Recall: quantifies the correctly identified instances [41]. It 

assesses the model’s ability to find all relevant instances, given 

by as in Eq. (3) of the study [42]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

F1-Score: F1-Score is a balanced measure of model that 

combines precision and recall, given by as in Eq. (4) of the 

study [40]. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

4.2 Experimental results 

 

The classification models’ performance is evaluated on all 

testing sets of CWRU-bearing datasets. The performance of 

the two classification models, CNN and CINN, are tabulated 

in Table 5.  

 

Table 5. CNN and CINN performance results 

 
Model CNN  CINN 

Dataset Case A Case B Case C Case D  Case A Case B Case C Case D 

Precision 0.998 0.998 0.998 0.98  1 1 0.998 0.968 

Recall 0.998 0.998 0.998 0.982  1 0.998 0.998 0.978 

F1 – Score 1 0.995 0.998 0.982  1 1 0.998 0.978 

Accuracy (%) 99.90 99.69 99.80 98.28  100 99.77 99.74 97.60 

 

4.2.1 Dataset Case A  

Dataset A contains three fault types and a normal condition 

signal with a fault diameter of 0.007 mm, run on varying load 

conditions. The total testing samples are 1946; both CNN and 

CINN models achieved a classification accuracy of 99.8% and 

100%, respectively. Out of 1946, only two samples of Outer 

fault were misclassified as bearing fault. The confusion matrix 

of both models is depicted as in Figure 4. Class-specific 

performance, although challenging, models correctly predict 

the majority of instances with an excellent overall 

performance. Precision measure, recall measure and F1-score 

of CNN are 99.8% and 100% for CINN. 

 

 
(a) 

 
(b) 

 

Figure 4. Confusion matrix for Dataset A using (a) CNN and 

(b) CINN 

 

4.2.2 Dataset Case B 

Dataset B contains signals with fault diameters of 

0.0014mm of varying load conditions. Models CNN and 

CINN are tested on 1295 samples; four samples of inner fault 

are misclassified as bearing fault.  

In CINN, one bearing fault is misclassified as an inner fault, 

and one is an outer race fault. Recall for both models is 99.8%, 

precision and f1 score for CNN is 99.8% and 100% for the 

CINN model. Both models performed well on normal and 

other classes. The respective models achieve an accuracy of 

99.69% and 99.77%; the confusion matrix is presented in 

93



 

Figure 5. 

 

 
(a) 

 
(b) 

 

Figure 5. Confusion matrix for Dataset B using (a) CNN and 

(b) CINN 

 

4.2.3 Dataset Case C 

Dataset C contains signals with a fault diameter of 

0.0021mm and varying load conditions. Models CNN and 

CINN were tested on 1952 samples, and two samples of 

bearing faults were misclassified as inner and outer faults. The 

respective models achieve an accuracy of 99.80% and 99.74%. 

Precision measure, recall measure and F1-score of both 

models are 99.8%, and their confusion matrix is shown in 

Figure 6. 

 

 
(a) 

 
(b) 

 

Figure 6. Confusion matrix for Dataset C using (a) CNN and 

(b) CINN 

 

4.2.4 Dataset Case D 

Dataset D contains signals of all fault diameters run on 

varying load conditions. Few samples of bearing faults were 

classified as outer faults and vice versa. Both CNN and CINN 

models achieved an accuracy of 98.28% and 97.60%, 

respectively. The confusion matrix of this dataset was 

evaluated, and Precision measure, recall measure and F1-score 

of the CNN model is 98.2%, and for CINN is 97.8%, as shown 

in Figure 7. 
 

 
(a) 

 
(b) 

 

Figure 7. Confusion matrix for Dataset D using (i) CNN and 

(ii) CINN 
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In dataset case A, both models demonstrates strong overall 

performance with only a 0.0065% misclassification error of 

outer faults as bearing faults. In Dataset cases B and C, both 

models exhibit strong performance and an average 0.006% of 

misclassification error of bearing faults as inner faults. In 

Dataset D, a 0.06% of bearing faults were misclassified and 

0.06% of outer faults as bearing faults. The negligible 

misclassification error that exists between bearing faults and 

outer faults suggest potential similarity or overlapping 

characteristics in the data samples. The main factors 

contributing to misclassification in vibration signals are noisy 

data, varying operating conditions and similarities in fault 

characteristics. Although both models significantly performed 

well on the data, few misclassification errors can be addressed 

by resampling, experimenting with ensemble methods, or 

alternative model architectures to optimize performance. 

 

 

5. CONCLUSIONS 

 

This research presents an innovative automated deep 

learning-based convolutional neural network for a bearing 

problem diagnosis system capable of directly analyzing raw 

input vibration data. This thus decreases the time necessary for 

pre-processing, feature extraction, and selection 

methodologies. Two models, specifically the convolutional 

neural network (CNN) and the convolution invariant neural 

network (CINN), were trained on an 80/20 dataset split and 

showed exceptional performance, achieving average 

accuracies of 99.42% and 99.28%, respectively. The confusion 

matrix assesses the efficacy of classifier models, specifically 

on the misclassification of vibration signals. Furthermore, 

under diverse operational conditions of the machine with 

variable loads from the CWRU dataset, both models attain 

elevated classification accuracy. 
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