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Unit commitment (UC) is the most important optimization task for power system 

operation. It is categorized as a large combinatorial, nonlinear, high-dimensional, mixed-

integer optimization problem to schedule the best generation units during each distinct 

operating period to meet the demands of the system load and spinning reserve capacity. 

This study proposed a new hybrid paradigm by combining the Moth Flame Optimizer 

algorithm and particle swarm optimization (MPO-PSO) to determine the optimal solution 

to the unit commitment problem. The approach logically combines the ideas of MFO and 

PSO to overcome their shortcomings and improve their ability to search globally the MFO-

PSO approach is better able to handle challenging, confined and unknown search space 

problems. Additionally, it is a simple methodology and requires a limited number of 

parameters. The MFO-PSO approach is evaluated against other evolutionary heuristic 

algorithms such as (EE, M-FA, PSO, AMFA, PSO-GWO, MPSO-EO, and MFO) on 26 

bus-test system to manage the UC problem. It is evident from the statistical results, that 

the proposed algorithm can offer competitive and highly promising results. Regarding cost 

improvement and execution time the outcomes show that the suggested hybrid approach 

performs better than certain other heuristic algorithms and original MFO. The influence of 

the MFO-PSO approach on the accuracy and convergence rate for dealing the UC issue is 

shown by the simulation results section. It can be observed from the obtained results that, 

in comparison to the original MFO technique, the algorithm demonstrated improved 

accuracy, fast convergence, and good performance. Because of these details, the 

estimation showed increased accuracy and convergence. The interesting thing to note of it 

is that the PSO is added to improve the MFO's accuracy, which is already rather high. 

Furthermore, the study also shows the algorithm's efficacy in resolving difficult issues 

with constrained and unknown search spaces.  
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1. INTRODUCTION

In the modern energy system technology, the greatest 

interesting and a challenging aspect of the power system 

process is deciding the prober electrical generating units 

should operate at each time in order to meet a fluctuating 

electricity demand [1]. These estimations and actions cover 

under the subject of the unit commitment (UC). Unit 

commitment is the issue of identifying the ideal set of power 

production units in service for a daily to weekly time in order 

to accomplish a specific goal subject to a wide range of 

operating restrictions. The committed units must meet the 

system's predicted demand and spinning reserve requirement 

at the lowest possible operating cost [2]. Thus, the UC problem 

is highly challenging because of its intrinsic high-

dimensionality, non-convexity, discreteness, and non-

linearity. The initial solution needs to meet the constraints on 

the start-up and shut-down of the scheduled units during each 

planning period, as well as the requirements for system 

capacity and unit generation limit. The final solution must 

locate the best scheduling of the generation units during each 

distinct operating period to meet the demands of the system 

load and spinning reserve capacity [2, 3].  

Numerous approaches had been presented to address the UC 

topic. Some of classical methodologies such as dynamic 

programming (DP) [4], Lagrangian relaxation (LR) [5], Tabu 

Search and Interior Point Optimization [6] introduced to find 

a satisfactory solution or near optimum solution of the UC 

problem However, these methods necessitate a significant 

amount of work to establish inference rules for vast systems 

with an excessive number of units and a wide range of 

limitations. As a result, a long execution time is required. 

Recently, simulated annealing (SA) and genetic algorithms 

(GA) which simulate natural processes were being used more 

often to solve optimization problems in scientific and 

engineering fields. The UC problem was managed effectively 

by using adaptive SA method but the hill-climbing inspection 

is quick and it only chooses the best solution due to the sub-

optimization search [7]. The implementation of GA to resolve 

the unit commitment issue had been covered [8]. The GA 

achieved a good solution in UC problem along with the 

constraints. However, GA requires a number of steps for 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 1, January, 2025, pp. 39-45 

Journal homepage: http://iieta.org/journals/jesa 

39

https://orcid.org/0009-0002-6825-0535
https://orcid.org/0000-0002-5312-8222
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580105&domain=pdf


 

resolving the unit commitment issue, for achieving 

satisfactory response and an accuracy solution, the fitness 

function, parameter coding, and genetic operations such as 

mutation, convergence, and crossover criteria were chosen 

based on the characteristics of the UC situation. 

With the advancement in evolutionary heuristic algorithms 

some literatures had used evolutionary-based metaheuristic 

optimization algorithms to study the UC problem. In general, 

“shuffled frog leaping algorithm (SFLA) [9], artificial bee 

colony (ABC) [10], bat-inspired algorithm (BA) [11], gray 

wolf optimization (GWO) [12], firefly approach [13] and 

particle swarm optimization (PSO) [14]” build algorithmic 

logic from everyday occurrences in the natural world. These 

approaches can be effectively solving multi-objectives 

nonlinear optimization problems with continuous and discrete 

variables, doesn't require useless computation time in addition, 

effective in exploiting the solutions. However, the algorithms 

face challenges such as the method's exploitation of the 

possible solution is unacceptable and the global optimal 

solution becomes less efficient and requires more computing 

time if the parameters are not set correctly. Ananthan et al. [14, 

15] proposed PSO algorithm based on the UC problem. PSO 

is initialized by particles which is represented the set of 

possible solutions. The evolutionary process has few 

adjustable factors and is very simple. “Combinatorial, 

multimodal, multi-objective, and nonlinear problems” could 

all be solved with it successfully. Nevertheless, this algorithm 

has limitations including parameters adjusting, the selection of 

a proper swarm size and penalty functions that depend on the 

problem. Later, to increase the level of performance, several 

hybrid algorithms had been used in the literature to tackle the 

UC problem. Rastgou and Bahramara [16] proposed an 

adjusted firefly method to deal the unit commitment issue 

more effectively. SA method was combined with “Modified 

Sub-gradient Method (MSG)” [17]. A hybrid PSO-GWO 

approach for the unit commitment problem was presented [18, 

19]. Moreover, a hybrid method known as MPSO-EO [20] 

proposed that combines the modified particle swarm 

optimization (MPSO) with the equilibrium optimizer (EO).  

In the course of time, the Moth Flame Optimization (MFO) 

technique is a recently offered as intelligence technique [21]. 

The MFO approach was applied to solve the UC issue [22]. It 

is characterized by a minimal number of parameters and a 

straightforward construct. Furthermore, MFO is simple to use, 

reliable, and effective. However, although MFO can find the 

global optimal solution in some cases with less computational 

values, it finds a difficult to find the optimal solution in some 

extremely difficult optimization cases. On the other hand, 

despite PSO has comparatively fast response level, PSO's 

early convergence to the near-optimal and inefficiency in 

exploring the whole search space are its main drawbacks. So, 

Yang et al. [23] suggested combining MFO and PSO to 

improve the search for diversification in extremely difficult 

optimization subjects. As it is pointed out, Shaikh et al. [24] 

suggest a hybrid approach integrating MFO with PSO 

(MFOPSO) to improve MFO efficiency for calculating 

transmission line parameters optimally. 

This study proposed the hybrid MFO-PSO algorithm to 

determine the optimal solution of unit commitment problem as 

efficiently as possible. It is compared with a various 

optimization technique to address the UC problem and assess 

the accuracy of the proposed approach.  

The paper's main contributions summarize as follows: 

1. The motivation of this study, suggest a new approach 

with inspiration from nature for resolving the UC difficulty 

and to compete with other existing techniques to solve another 

power system issues. 

2. Compared to other established methods, MFO-PSO 

approach is better able to handle challenging confined and 

unknown search space problems. Additionally, it is simple 

methodology and requires a limited number of parameters. 

Thus, MFO-PSO has been used to address a real complex 

power system issue.  

3. As far as the authors are aware. The MFO-PSO approach 

which was motivated by the nocturnal navigation strategy of 

moths around light sources has never before been applied to 

the UC problem. 

The remainder of the work is divided as below: Section 2 

presents the formulation of the unit commitment problem. 

Then, the MFO-PSO approach is detailed in Section 3 in 

addition to a thorough explanation of the steps involved the 

using MFO-PSO approach to resolve the UC task. The 

outcomes and numerical results of the simulation provides in 

Section 4. The final section of the paper is concluded in 

Section 5. 

 

 

2. MATHEMATICAL MODELLING OF UNIT 

COMMITMENT  
 

The main focus of unit commitment is the generating unit’s 

ON and OFF states at various internal times. It also needs to 

maintain estimated load levels and spinning reserve 

requirements while satisfying all generating unit constraints. 

Additionally, optimal power flow is used to reduce fuel 

consumption [25]. Therefore, when combined, the unit 

commitment and optimal power flow study provide a cost-

saving methodology for power generating units [8].  

The target function of UC is to minimize the total cost over 

a period of time, considering the costs associated with 

operating, starting and shutting down each unit under the 

related constraints as stated mathematically in Eq. (1) [3, 16]: 

 

𝐹(𝑃𝑖
𝑡 , 𝑈𝑖

𝑡) = ∑ ∑[𝐹𝑖(𝑃𝑖
𝑡) + 𝑆𝐶𝑖

𝑡(1 − 𝑈𝑖
𝑡−1)]𝑈𝑖

𝑡

𝑁

𝑖=1

𝑇

𝑡=1

+ ∑ ∑ 𝑆𝐷𝑖
𝑡 × (1 − 𝑈𝑖

𝑡)𝑈𝑖
𝑡−1

𝑁

𝑖=1

𝑇

𝑡=1

 

(1) 

 

where, 𝐹𝑖(𝑃𝑖
𝑡) represents the fuel cost of the i-th number of 

generators units at the 𝑡  of hours, and it can be stated 

mathematically as: 

 

𝐹𝑖(𝑃𝑖
𝑡) = 𝛼𝑖𝑖

(𝑃𝑖
𝑡)2 + 𝛽𝑖𝑃𝑖

𝑡 + 𝛾𝑖 (2) 

 

where, 𝛼𝑖𝑖
, 𝛽𝑖 and 𝛾𝑖 are the fuel cost constant of the i-th unit. 

𝑇 is time, N is the total number of generators, 𝑃𝑖
𝑡 represents 

output power of i-th unit at time t, 𝑈𝑖
𝑡 is status of unit i at hour 

t (ON=1, OFF=0). 

𝑆𝐶𝑖
𝑡 represents the startup cost of i-th unit at hour t, and is 

defined with following mathematical formula: 

 

𝑆𝐶𝑖
𝑡 = {

𝐻𝑆𝑐𝑜𝑠𝑡  𝑖𝑓 𝑇𝑖,𝑑𝑜𝑤𝑛 ≤ 𝑇𝑖,𝑜𝑓𝑓
𝑡 ≤ 𝑇𝑖

𝑑𝑜𝑤𝑛 + 𝑇𝑖
𝑐𝑜𝑙𝑑

𝐶𝑆𝑐𝑜𝑠𝑡  𝑖𝑓 𝑇𝑖,𝑜𝑓𝑓
𝑡 ≥ 𝑇𝑖

𝑑𝑜𝑤𝑛 + 𝑇𝑖
𝑐𝑜𝑙𝑑

} (3) 

 

𝑆𝐷𝑖
𝑡  represents the shutdown cost of i-th unit at hour t, 
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which it is assigned as a constant value for every generator unit.  

Subject to the following system constraints: 

System power balance:  

The load demand must be met by the total power produced 

in each time [22]. 

 

∑ 𝑈𝑖
𝑡𝑃𝑖

𝑡 = 𝑃𝑑
𝑡

𝑁

𝑖=1

 (4) 

 

𝑃𝑑
𝑡: Power loading on the system at hour t. 

Units capacity limitation: 

It's important to satisfy the minimum and maximum power 

limitations of units. 

 

𝑃𝑖
𝑚𝑖𝑛𝑈𝑖

𝑡 ≤ 𝑃𝑖
𝑡 ≤ 𝑃𝑖

𝑀𝑎𝑥𝑈𝑖
𝑡 , 𝑖 = 1,2, … . 𝑁 (5) 

 

𝑃𝑖
𝑚𝑖𝑛 , 𝑃𝑖

𝑀𝑎𝑥: the lower and upper output power limits of i-th 

unit.  

Minimum up/down time limitations:  

The operating unit needs to be on for a specific amount of 

time. It's called minimum up time during this period. However, 

there is a minimum amount of time that must pass after a unit 

is de-committed before it can be recommitted. This period is 

called the time of minimum downtime. These limitations can 

be shown as [10]: 

 

𝑇𝑖
𝑜𝑛 ≥ 𝑀𝑈𝑇𝑖  (6) 

 

𝑇𝑖
𝑜𝑓𝑓

≥ 𝑀𝐷𝑇𝑖 (7) 

 

𝑇𝑖
𝑜𝑛 : Minimum time that the unit i-th has been online 

constantly. 

𝑇𝑖
𝑜𝑓𝑓

: Minimum time that the unit i-th has been unavailable 

(offline) 

𝑀𝑈𝑇𝑖  and 𝑀𝐷𝑇𝑖 : The minimum up/down time of the i-th 

unit. 

UC solution is not convex issue because it involves 

structure binary variables. These variables make solving the 

UC extremely challenging and problematic. The coupling 

constraint for the UC problem is load balance. The unit 

coupling constraints are designed so that, in the event that the 

coupling constraints are satisfied, the behavior of one unit 

influences that of other units. 

 

 

3. PROPOSED METHOD  
 

Moth-flame optimization: MFO is based on the moth's 

nocturnal transverse navigation strategy around light sources 

by maintaining a constant angle with the sky. The moth 

population acts as the candidate search solutions flying 

throughout the area using the specified strategy. Whereas, the 

flame population displays the best locations for the moths that 

have been found thus far. Moths are capable of flying in multi-

dimensions or hyper-dimensional space by manipulating their 

position vectors. The proposed algorithm ensures convergence, 

and it is simple to use, reliable, and effective [23, 24].  

With 𝑁 moths in a 𝐷-dimensional search area, at the k-th 

iteration, assume 𝑀𝑖
𝑘 and 𝐹𝑗

𝑘 represent the location of the i-th 

moth and the j-th flame consequently. Later, a flame updates 

each moth's position using a mathematical model that is 

created using the equation: 

𝑀𝑖
𝑘+1 = 𝐷𝑖

𝑘 ∗ 𝑒𝑏𝑣 ∗ cos(2𝜋𝑣) + 𝐹𝑗
𝑘 (8) 

 

where, v is a vector consisting of D random values uniformly 

distributed on [-1, 1], the factor b is predetermined which 

determines the form of the logarithmic spiral, and 𝐷𝑖
𝑘  refers to 

the distance of the i-th moth from the j-th flame, which has the 

following definition: 

 

𝐷𝑖
𝑘 = |𝐹𝑗

𝑘 − 𝑀𝑖
𝑘| (9) 

 

The population size of moths is predetermined, whereas the 

number of the flame population is adaptively determined 

based on the search iteration, which is computed using the 

following formula: 

 

𝑓𝑙𝑎𝑚𝑒_𝑛𝑜𝑘 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑘 ∗
𝑁 − 1

𝐾𝑀𝑎𝑥
) (10) 

 

where, KMax is the upper limit of search iterations. The 

number of flames appears to gradually decrease, and only in 

the last stages of iterations, the moths adjust their location in 

relation to the best flame. 

The moths that have been sorted based on their fitness value 

form the flame population in the initial iteration. The optimal 

moth in the first location of the flame population will be 

designated and the remaining moths will be arranged similarly. 

Subsequently, the flame population will comprise the better 

𝑓𝑙𝑎𝑚𝑒_𝑛𝑜𝑘  individuals chosen from the set of the previous 

iteration’s flame population and the current iteration's moth 

population [23]. 

 

Particle swarm optimization: The process of the PSO 

algorithm consists of a random collection of particles in a 

certain trajectory traveling in the direction of the best solution. 

Particles are driven depending on their former best location, 

their neighboring locations, and the best position among total 

particles. Each particle moves towards the optimal solution 

based on its previous best position given by 𝑃_𝑏𝑒𝑠𝑡, position 

of other particles and the optimum solution attained out of all 

the other particles given by g_best. let 𝑣𝑖
𝑘 and 𝑥𝑖

𝑘 are the 

velocity and position, respectively [15, 24]. Typically, the 

adjusted values for the location and velocity of the i-th particle 

are determined by analyzing Eqs. (11) and (12). 

 

𝑣𝑖
𝑘+1 = 𝜔 ∗ 𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝_𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘)

+ 𝑐2𝑟2(𝑔_𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘) 

(11) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (12) 

 

Proposed hybrid MFO-PSO: Early convergence is a 

general disadvantage for both MFO and PSO. The PSO 

iteration results in the search center of the total swarm 

convergent to one point, the best global location, and a 

negligible decrease in the particle's speed as it leaves local 

optima in the next iterations. The situation in MFO is 

noticeably worse. since the search center index has adjusted to 

one at last iterations of the program [23]. 

To deal the premature convergence point and enhance their 

capacity for global search, a hybrid algorithm logically 

incorporates the ideas of the MFO position-adjusting process 

of moths about a flame and the PSO local attractor. To ensure 

that the PSO algorithm converges, that every particle must be 
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close to its local attractor 𝑄𝑖
𝑘  [26]. The local attractor is known 

as below: 

 

𝑄𝑖
𝑘 = ∅ ∗ 𝑝_𝑏𝑒𝑠𝑡𝑖

𝑘 + (1 − ∅) ∗ 𝑔_𝑏𝑒𝑠𝑡𝑘 (13) 

 

where, ∅  is “a vector with uniformly distributed multi-

dimension random numbers on [0, 1]”. In this approach 

assume there are no defined 𝑝𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡  in MFO, the 

flame with the same sequence number for every moth is 

considered the pbest, and the best flame in the flame 

population is considered the gbest in our approach [23, 24]. 

This leads to the following modification of each moth's 

position update equation: 

 

𝑀𝑖
𝑘+1 = 𝐷𝑖

𝑘 ∗ 𝑒𝑏𝑣 ∗ cos(2𝜋𝑣) + 𝑄𝑖
𝑘  (14) 

 

Hence, the distance is computed by following formula: 

 

𝐷𝑖
𝑘 = |𝑄𝑖

𝑘 − 𝑀𝑖
𝑘| (15) 

 

 
 

Figure 1. Flowchart of the proposed HMFOPSO 

 

Figure 1 displays the flowchart for the suggested MFO-PSO 

approach for solving UC problem. 

 

 

4. RESULT AND DISCUSSION  

 

To evaluate the proposed MPO-PSO approach, ten units and 

a 24-hour period are considered as the bench-test system. 

Table 1 displays the generators input data for the system [22]. 

The daily load demand of this case study is shown in Figure 2, 

which shows that the maximum system's demand is at the 11th 

and 12th hours, and its minimum system's demand is at the 

first hour. Table 2 lists the parameters setting for MFO-PSO, 

MFO, and PSO that are utilized in this issue. The setting 

parameters of the suggested hybrid MFO-PSO algorithm and 

original MFO method are identical. The suggested MFO-PSO 

algorithm's parameters for the simulation analysis are the same 

as those of the MFO method with population size of 20 and 

maximum number of iterations is 100. The commitment and 

generation schedule optimization results are displayed in 

Tables 3 and 4, respectively. Each line shows the unit's output 

power. The total cost is displayed in the final row of Table 4. 

Because the methods used in the simulation analysis are 

stochastic optimization approaches, the algorithm is executed 

with 20 trials using different search agents (random initial 

population) over a 24-hour period to assess the robustness of 

the MFO-PSO approach for solving unit commitment 

problem. The MFO-PSO algorithm’s outcomes for the unit's 

output power for varied load demands are shown in Tables 4 

and 5. From the Table 5, it evident that the values of the cost 

function and execution time that MFO-PSO obtained are 

outperform or close to the MFO, PSO, and other algorithms. It 

demonstrates the MFO-PSO algorithm's robustness in 

handling unit commitment problems. Table 5 shows the 

outcomes of using 7 various approaches on the 10-unit test 

system and compares them with the findings of the proposed 

method (MPO-PSO) for cost and implementation time. For the 

aforementioned 10-unit system, the obtained cost is 553552$. 

It is clear from Table 5 that the hierarchical proposed approach 

outperforms some other heuristic algorithms like (EE [3], M-

FA [13], PSO [15], AMFA [16], PSO-GWO [18], MPSO-EO 

[20], and MFO [22]) in terms of reported cost improvement 

and execution time. Figure 3 depicts the convergence 

characteristics of fuel cost comparison of 10 generating unit 

test system according to the number of iterations. A 

comparison is made between the original MFO and the 

proposed method (MPO-PSO) performance. It is obvious that 

MFO-PSO has superior convergence than MFO. 

 

Table 1. The input figures of ten generating unit system [22] 

 

Unit γ ($/h) β ($/MWh) α ($/MW2h) 
Pimax 

(MW) 

Pimin 

(MW) 
𝐇𝐒𝐜𝐨𝐬𝐭 ($) 𝐂𝐒𝐜𝐨𝐬𝐭 ($) 

MUTi 

(h) 

MDTi 

(h) 

Ti Cold 

(h) 

Initial 

State 

(h) 

P1 1000 16.19 0.00048 455 150 4500 9000 8 8 5 8 

P2 970 17.26 0.00031 455 150 5000 10000 8 8 5 8 

P3 700 16.6 0.002 130 20 550 1100 5 5 4 -5 

P4 680 16.5 0.00211 130 20 560 1120 5 5 4 -5 

P5 450 19.7 0.00398 162 25 900 1800 6 6 4 -6 

P6 370 22.26 0.00712 80 20 170 340 3 3 2 -3 

P7 480 27.74 0.00079 85 25 260 520 3 3 2 -3 

P8 660 25.92 0.00413 55 10 30 60 1 1 0 -1 

P9 665 27.27 0.00222 55 10 30 60 1 1 0 -1 

P10 670 27.79 0.00173 55 10 30 60 1 1 0 -1 
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Figure 2. Load demand pattern for 24 h for 10-unit system 

Table 2. The parameters setting for MFO-PSO, MFO, and 

PSO 

 
Parameters of PSO 

inertia weight 𝜔 0.85 

c1 and c2 2 

random values of numbers r1 and r2 0, 1 

Parameters of MFO 

v is a vector consisting of random values [-1, 1] 

factor b 1 

 

 

Table 3. Commitment schedule for ten generating unit system using proposed method (HMFOPSO) 

 

Hour 
Generation Schedule for 10 Generating Unit System 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 1 1 0 0 0 0 0 0 0 0 

2 1 1 0 0 0 0 0 0 0 0 

3 1 1 0 0 0 0 0 0 0 0 

4 1 1 0 0 1 0 0 0 0 0 

5 1 1 0 0 1 0 0 0 0 0 

6 1 1 0 1 1 0 0 0 0 0 

7 1 1 1 1 1 0 0 0 0 0 

8 1 1 1 1 1 0 0 0 0 0 

9 1 1 1 1 1 1 0 0 0 0 

10 1 1 1 1 1 1 1 0 0 0 

11 1 1 1 1 1 1 1 1 0 0 

12 1 1 1 1 1 1 1 1 1 0 

13 1 1 1 1 1 1 1 0 0 0 

14 1 1 1 1 1 1 0 0 0 0 

15 1 1 1 1 1 0 0 0 0 0 

16 1 1 1 1 1 0 0 0 0 0 

17 1 1 1 1 1 0 0 0 0 0 

18 1 1 1 1 1 0 0 0 0 0 

19 1 1 1 1 1 0 0 0 0 0 

20 1 1 1 1 1 1 1 0 0 0 

21 1 1 0 1 1 1 1 0 0 0 

22 1 1 0 0 1 1 1 0 0 0 

23 1 1 0 0 0 1 0 0 0 0 

24 1 1 0 0 0 0 0 0 0 0 
 

Table 4. Generation schedule for 10 generating unit system using proposed method (HMFOPSO)  
 

Hour 
Generation Schedule for 10 Generating Unit System 

PD 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 455 245 0 0 0 0 0 0 0 0 700 

2 455 295 0 0 0 0 0 0 0 0 750 

3 455 395 0 0 0 0 0 0 0 0 850 

4 455 455 0 0 40 0 0 0 0 0 950 

5 455 455 0 0 90 0 0 0 0 0 1000 

6 455 455 0 130 60 0 0 0 0 0 1100 

7 455 410.071 130 130 25 0 0 0 0 0 1150 

8 455 455 130 130 29.999 0 0 0 0 0 1200 

9 455 455 130 130 110 20 0 0 0 0 1300 

10 455 455 130 130 162 43 25 0 0 0 1400 

11 455 455 130 130 162 80 25 13 0 0 1450 

12 455 455 130 130 162 80 25 53 10  1500 

13 455 455 130 130 162 43 25 0 0 0 1400 

14 455 455 130 130 110 20 0 0 0 0 1300 

15 455 455 130 130 30 0 0 0 0 0 1200 

16 455 310 130 130 25 0 0 0 0 0 1050 

17 455 260 130 130 25 0 0 0 0 0 1000 

18 455 360 130 130 25 0 0 0 0 0 1100 

19 455 455 130 130 30 0 0 0 0 0 1200 

20 455 455 130 130 162 43 25 0 0 0 1400 

21 455 455 0 130 162 73 25 0 0 0 1300 

22 455 455 0 0 145 20 25 0 0 0 1100 

23 455 425.001 0 0 0 20 0 0 0 0 900 

24 455 345 0 0 0 0 0 0 0 0 800 

Total cost 553552$ 
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Table 5. Overall cost ($) and implementation time (s.) 

comparison of various methods 

 

Method 
Overall Cost 

($) 

Implementation Time 

(s.) 

EE [3] 563978.9812 ---- 

M-FA [13] 557873 0.117938 

PSO [15] 567330.56 ---- 

AMFA [16] 563865 2.62 

PSO-GWO [18] 565210 ---- 

MPSO-EO [20] 563977.0122 ---- 

MFO [22] 564810 20.4563 

HMFOPSO 

(proposed) 
553552 0.135 

 

 
 

Figure 3. The convergence characteristic of fuel cost 

 

 

5. CONCLUSION  

 

Unit commitment plays a vital role in optimization tasks for 

power system operation to meet their system level 

requirements of power quality and demand response 

capability. It attempts to reschedule the generation units at a 

specific time in order to achieve an overall reduction in 

generation costs subject to a wide range of operating 

restrictions. To resolve the unit commitment issue and to 

superior of the sub-optimal operation of existing algorithms, a 

hierarchical hybrid approach by combining the Moth Flame 

Optimizer algorithm and particle swarm optimization (MPO-

PSO) has been presented in this paper. The hierarchical 

approach plans the generating units for each hour in order to 

achieve the feasible states while meeting given constraints. It 

is tested on a benchmark system (10-unit case study), and the 

estimated cost is 553552 $. A comparison is made between the 

efficacy of the suggested algorithms and several other 

evolutionary algorithms. Comparison results confirm that the 

MFO-PSO approach is better able to handle challenging 

confined and unknown search space problems. Additionally, it 

is simple methodology and requires a limited number of 

parameters. Thus, MFO-PSO has been used to address a real 

complex power system issue. 
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