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This paper presents a method for precise parameter identification in quadcopter Unmanned 

Aerial Vehicle (UAV) systems using the Particle Swarm Optimization Algorithm (PSO). 

Accurate identification of dynamic parameters such as thrust, drag coefficients, and 

moments of inertia is essential for ensuring stable and responsive flight control. The 

proposed approach employs the PSO algorithm to optimize these parameters by 

minimizing model fitting errors, using simulation and experimental data. The 

identification was conducted under closed-loop conditions, due to the inherent instability 

of quadcopter UAVs. The performance of this approach was validated using simulations 

performed on the obtained model of the quadcopter, which were compared with real data 

obtained from real-world experiments. The results demonstrate significant improvements 

in model accuracy, with enhanced control precision and trajectory tracking performance. 

The method shows great potential for UAV system identification and control design. 
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1. INTRODUCTION

Over the last years, and particularly over the past ten years, 

there has been exponential growing development in MEMS 

technology; therefore, it has resulted in cost reductions and 

performance improvements. Thus, due to this development 

widespread interest in several research areas lead to rapid 

growth such as aeronautics, robotic, electronics, etc. 

Nowadays, Unmanned Aerial Vehicles (UAVs) have grown 

in capability, prevalence, and public awareness. Therefore, 

they have started to play an increasing number of critical roles 

and excel in applications where human labor is prohibitively 

expensive and/or too dangerous for them to perform tasks. 

Various products and technologies have been developed 

recently. 

Among the most common and probably used, Considerable 

attention and enormous prominence has been paid on the 

quadcopter drones structure. Some researchers used available 

commercial platforms like Parrot AR.drone, OS4 [1, 2], X4-

Flyer [2, 3], STARMAC [2], Asctec Pelican, Arducopter or 

Mikrokopter. Other research projects are based on their own 

built structures. 

Because of its lightweight design, simplicity, cost-

effectiveness in manufacturing, as well as its agility and ease 

of control, the quadcopter platform has recently been 

increasingly employed for various tasks. It serves as a 

substitute for ground mobile robots incapable of undertaking 

specific assignments, such as aerial searches for disaster or sea 

rescues, inspections of power lines, bridges, and dams, 

monitoring forests, detecting fires, facilitating express goods 

delivery for trading companies, and performing military 

surveillance, monitoring, and espionage operations. 

The performance demands associated with these tasks 

present challenges for control engineering, prompting 

significant efforts to enhance dynamic control performance. 

The Quadcopter drone is characterized by strongly 

nonlinear, unstable, multivariable, and fully coupled dynamics, 

and necessitates a robust and stable controller for optimal 

stabilization. Developing an accurate dynamic model is not a 

straightforward task, leading researchers to explore various 

works and techniques in the literature. Researchers employ 

mathematical models and/or experimental identification 

methods to achieve precision and reject the model uncertainty 

that can tolerate the controller performance [4]. 

Generally speaking, methods for quadcopter model 

identification can be classified into three main approaches: 

white-box, grey-box, and black-box identification. the first 

one called white-box technique relies on direct computation of 

the quadcopter geometry and/or physical law to determine 

mathematical models, such as mass, moment of inertia, or 

motor coefficients to explain its behavior. 

The grey-box model approach combines prior knowledge of 

the system's dynamics with experimental data to estimate 

unknown coefficients, offering improved forecasting 

capabilities for thrust and moment models. 

In contrast, the black-box model approach uses input-output 

data to model system dynamics directly without relying on 

laws based on the first principles of physics. While this 

approach may lack physical interpretability, it is especially 

beneficial for modelling unconventional aircrafts whose 

dynamics are not easily understood or modelled from first 

principles. Many researchers concentrate on this area of 
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identification due to its applicability in complex or poorly 

understood systems. 

Alkowatly et al. [5] presented the mathematical model of a 

quadcopter UAV based on a biologically inspired routine. 

Initial parameters found by using analytical approximations, 

followed by a refinement process using a constrained Quasi-

Newton (QN) optimization algorithm from MATLAB's 

toolbox. This optimization was performed by adjusting the 

nonlinear model parameters based on real flight data collected 

from onboard sensors. 

Numerous control strategies have been proposed to address 

the difficulties raised above. For example, the studies [4-6] 

discussed the design of a dynamic model of a quadcopter UAV 

using real input/output measurement sets, in a Subspace 

identification routine as a black-box identification method. 

The resulting model is then used in a Linear Quadratic 

Regulator (LQR) control scheme. 

Hoshu et al. [6] introduced a novel system identification 

method aimed at experimentally estimating the precise 

dynamic model of a heterogeneous multirotor. The method 

uses a frequency sampling filter, input excitation signals, and 

a sophisticated curve-fitting technique to derive transfer 

functions. Auto-tuned PID controllers were implemented in 

the obtained transfer functions to validate the accuracy. 

While the techniques based on using experimental flight 

data have yielded satisfactory results, their limitations in 

handling convergence speed, accuracy, robustness to noise, 

complexity and nonlinear dynamics have led researchers to 

explore advanced optimization algorithms like genetic 

algorithms (GA) [7], gradient-based optimization, least 

squares techniques and Particle Swarm Optimization (PSO) 

algorithm. 

Researchers in the literature tried to combine different 

methods to address common difficulties using traditional 

mathematical models due to model complexity and 

nonlinearity. Thus, growing interest has been gained in using 

machine-learning approaches like Neural network, genetic 

algorithms, and other technics for dynamic system modelling 

and identification. 

PSO algorithm, which is a metaheuristic optimization 

technique, offers an effective solution for parameter 

identification. By mimicking the social behavior of particles, 

PSO algorithm iteratively improves candidate solutions, 

making it well-suited for optimizing nonlinear and complex 

systems like quadcopters [8-11]. 

The literature on PSO shows a variety of approaches and 

techniques where the studies [12, 13] survey and review 

investigate the evolution and adaptation of PSO in Swarm 

Intelligence, a field inspired by the collective behavior of 

social organisms. The review organizes research from 2017 to 

2019 into technical categories, covering advances in PSO 

methodologies, hybridization techniques [14-16], and varied 

applications in domains like as healthcare, environmental 

science, and smart cities. This paper emphasizes both the 

merits and limits of current studies, providing approaches to 

resolve issues and identify future research areas in PSO. 

In the study of Nabi et al. [17], a novel scheme for modeling 

and identifying dynamical systems was presented. The 

approach involves combining a hybrid Artificial Neural 

Network Autoregressive Moving Average (ANN-ARMA) 

with metaheuristic algorithms. It is based on artificial neural 

networks (ANN) and metaheuristic algorithms like Invasive 

Weed Optimization (IWO), Particle Swarm Optimization 

(PSO), Imperialist Competitive Algorithm (ICA), and 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES). 

Sanin-Villa et al. [18] investigated the use of metaheuristic 

algorithms for refining parameter estimation in dynamic 

systems, focusing on the inverted pendulum model. Three 

optimization methods: PSO, Continuous Genetic Algorithm 

(CGA), and Salp Swarm Algorithm (SSA) were evaluated. 

In this section, we review relevant works on parameter 

identification and optimization algorithms applied to 

quadcopter UAV systems. We highlight the novelty of using 

PSO algorithm, which has shown potential in solving 

optimization problems in other domains but has not been 

extensively applied to quadcopter UAV parameter 

identification. 

Tran and Chiou [19] introduced a hybrid controller design 

method combining Particle PSO with Evolutionary 

Programming (EP) to achieve optimized control gains quickly 

for complex systems. By integrating PSO and EP, the 

approach generates improved parameter sets for effective 

control. Applied to nonlinear micro air vehicle models, the 

proposed controllers demonstrate superior performance, 

highlighting the effectiveness of this combined algorithm in 

designing robust controllers for advanced technology 

applications. 

Another example of hybridization is in the study [20], where 

the authors studied and evaluated Support Vector Machine 

(SVM) and K-Nearest Neighbor (KNN) methods for fault 

diagnosis in a SCARA robot manipulator. A comparative 

analysis was conducted to detect and isolate seven classes of 

sensor faults using torque, position, and speed as input vectors. 

A large dataset was employed for training and testing. The 

SVM method utilized a Gaussian kernel with parameters 𝛾 and 

penalty margin 𝐶 , optimized via the PSO algorithm to 

maximize diagnostic accuracy. 

In the study [21], an adaptive Proportional-Integral-

Derivative (PID) controller optimized using a Neural 

Network-Particle Swarm Optimization (NN-PSO) algorithm 

was introduced. The adaptive controller dynamically adjusts 

its parameters to enhance performance, hence eliminating the 

need for extensive manual tuning. By leveraging NN-PSO, the 

PID controller is optimized in real-time, ensuring stability and 

precision in dynamic environments. 

Our research expands on and develops the underlying work 

originally reported in the study [5]. By leveraging this 

contribution, we aim to explore new methodologies and tackle 

more complex challenges in the field. This extension refines 

and expands upon the original findings, contributing to a 

deeper understanding and advancing the overall scope of the 

research. In this paper, we present a detailed study on how the 

PSO can be applied to identify critical parameters in 

quadcopter UAV systems, enhancing model accuracy and 

improving control performance. The effectiveness of this 

approach is demonstrated through simulations and 

experimental validation. 

The remainder of this article is organized as follows: 

Section 2 is dedicated to the description of the quadcopter 

drone platform used in this work, while section 3 discusses the 

Particle Swarm Optimization method for Quadcopter UAV 

system identification. In section 4 we present the simulations 

carried out using the PSO algorithm on the chosen quadcopter 

UAV, together with their results and discussions. The paper 

concluded with a summary that encapsulates the key findings 

of the current study and outlines directions for future research. 
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2. THE QUADCOPTER DRONE PLATFORM 

 

A quadcopter drone is a flying machine with four 

horizontally mounted propellers that are supported by two sets 

of orthogonal propeller engines. As seen in Figure 1, adjacent 

propellers rotate in a clockwise direction while the others 

rotate counterclockwise. 

The quadcopter has 6 DOF which are three altitudes and 

three attitudes where we can control the DOFs by adjusting the 

spinning rate of each motor. However, it is impossible to reach 

or achieve all set points in drone space, and due to this notice, 

we can tell that the quadcopter drone is an underactuated 

system with nonlinear dynamics. 

In most of papers in the literature, the quadcopter drone 

dynamic model has been demonstrated using Newton-Euler or 

Newton-Lagrange formalism [22-24] with consideration of 

different forces acting on the system. 

In this paper two reference frames are considered to define 

the system coordinates. A Body fixed frame (B-frame) and an 

inertial Earth fixed frame (E-frame), both frames are 

designated using the 𝑂𝑁𝐸𝐷  (North-East-Down) orientation for 

x, y and z axis respectively. The origin of the Body fixed frame 

is coincident with the quadcopter’s center of gravity. 

We define in the inertial frame 𝑂𝑁𝐸𝐷  the three Euler angles 

(roll, pitch and yaw) as 𝜂 = [𝜙 𝜃 𝜓]. 
We define 𝜐 = [𝑝 𝑞 𝑟]𝑇  as angular velocity in Body 

frame of roll, pitch and yaw respectively and 𝑉𝑏 =
[𝑢 𝑣 𝑤]𝑇  is the vector of linear velocity of x, y and z 

respectively. 

The mathematical relation between   and   is described 

as below: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 tan θ sin f tan θ cos f

η= 0 cos f -sin f υ 

0 sin f /cos θ  cos f /cos θ  

 
 
 
 
 

 (1) 

 

The kinematic and dynamics equations of the rigid body are 

as follows:  

 
b b b
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
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where, m  is the mass in [𝐾𝑔], 𝐹𝑏[𝑁] and 𝜏𝑏[𝑁.𝑚] are the 

forces and torques calculated in fixed frame respectively, 𝐼𝑎×𝑎 

denotes the identity matrix, 𝐽  moment of inertial matrix 

[Kg.m2]. The vectors υ[rad/s] and 𝑉𝑏[𝑚. 𝑠−1] correspond to 

rotational and translation speed velocities, respectively. 

 

 
 

Figure 1. Quadcopter frame reference showing the rotation 

direction 

The moment of inertia is represented as a diagonal matrix, 

assuming symmetry and considering that the origin coincides 

with the quadcopter’s center of gravity. 

The angular velocity of rotor 𝑖 , denoted with 𝜔𝑖 , creates 

force 𝑓𝑖 in the direction of the rotor axis. The angular velocity 

and acceleration of the rotor also create torque 𝜏𝑑 around the 

rotor axis. 

 
2 i if b =  (3) 

 
2 d id =  (4) 

 

where, 𝑏  is the lift coefficient, and 𝑑  is the drag constant. 

Thrust 𝛤 is produced in the direction of the body's z-axis by 

the combined forces of the rotors. Torque 𝜏𝐵 consists of the 

torques 𝜏𝜙 ,  𝜏𝜃 𝑎𝑛𝑑 𝜏𝜓  in the direction of the corresponding 

body frame angles. 
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The gyroscopic effect produced by the angular speed rate, 

can be defined as follow: 

 

𝑂(𝑣)𝛺 = [

03×1

𝐽𝑟 (𝜔𝑏/𝑒
𝑏 × [

0
0
1
])𝜔𝑟

] = 𝐽𝑟 [

03×1
𝑞

−𝑝
0

]𝜔𝑟     (7) 

 

where, × is the cross product and 𝜔𝑟 = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4 

The acceleration caused by the gravitational effect 𝑔[𝑚/
𝑠2] is expressed as follows: 

 

𝐺𝐵(𝑣) = [
𝐹𝑏

03×1
] = [

𝑅𝛩
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]
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𝑚𝑔 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝑓)
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(8) 

 

Finally, thrust and torque can be extracted straightforward 

from the selected inputs. The equation of motion can be 

expressed by substitution of the torques and forces effect in the 

right-hand side of Eq. (2), therefore the equation can be 

expressed as: 

 

�̇� = [𝑞 𝑟 (𝐽𝑦𝑦 − 𝐽𝑧𝑧) + 𝐽𝑟 𝑞 𝛺𝑟 + 𝜏𝜙]/𝐽𝑥𝑥 

�̇� = [𝑝 𝑟(𝐽𝑧𝑧 − 𝐽𝑥𝑥) − 𝐽𝑟𝑝 𝛺𝑟 + 𝜏𝜃]/𝐽𝑦𝑦 

�̇� = [𝑝 𝑞 (𝐽𝑥𝑥 − 𝐽𝑦𝑦) + 𝜏𝜓]/𝐽𝑧𝑧 

�̇� = 𝑟 𝑣 − 𝑞 𝑤 − 𝑔 𝑠𝑖𝑛(𝜃) 
�̇� = 𝑝 𝑤 − 𝑟 𝑢 + 𝑔 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙) 
�̇� = 𝑞𝑢 − 𝑝𝑣 + 𝑔 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙) − 𝛤/𝑚 

(9) 
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Additionally, Eq. (1) can be used to directly extract the 

angles rate stated in the E-frame as follows: 

 

( ) ( ) ( ) ( )

( ) ( )
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
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(10) 

 

 

3. PARTICLE SWARM OPTIMIZATION 

ALGORITHM OVERVIEW 

 

Particle Swarm Algorithm as originally proposed by 

Kennedy and Eberhart (1995), is a meta-heuristic optimization 

technique that simulates the social behavior of groups, such as 

bird flocks or fish schools, to find optimal solutions in a search 

space. The algorithm uses a population of potential solutions 

(known as particles) and moves these particles about in the 

search space using simple mathematical calculations based on 

the particle's position and velocity. 

PSO was utilized in this paper for offline parameter 

estimation based on collected data to enhance model accuracy 

and reliability. The collected dataset, consisting of input-

output pairs, served as a foundation for defining an objective 

function that quantified the error between the mathematical 

model outputs and the actual measurements as it is illustrated 

in Figure 2. By employing PSO, a swarm of candidate 

solutions explored the parameter space iteratively, adjusting 

their positions based on individual and collective performance. 

 

The algorithm is based on the following: 

- Velocity and Position Updates: 

Firstly, a group of particles with a random velocity vector 

𝜈𝑖(𝑡) and random spatial position vector 𝑥𝑖(𝑡) are generated. 

This allows the particle swarm to be evenly distributed 

throughout the entire space, maximizing the search range and 

reducing the likelihood of converging to a local optimal 

solution [25]. The vector 𝜈𝑖(𝑡)  and 𝑥𝑖(𝑡)  are defined as 

follows: 

 

 

 
1 2

1 2

( ) ( ), ( ),...., ( )

( ) ( ), ( ),...., ( )

i i i iM

i i i iM

t t t t

x t x t x t x t

   =

=
 (11) 

 

where, M is the number of the parameters to be identified 

within the identification process. 

Subsequently, particles adjust their velocities and positions 

in the parameter space based on their best-known position 

𝑃𝑏𝑒𝑠𝑡  and the best-known positions of neighboring particles 

𝑔𝑏𝑒𝑠𝑡 , guiding the swarm towards better solutions. 

- Convergence: The algorithm iteratively refines the particle 

positions until convergence criteria are met, such as achieving 

a minimal fitting error or reaching a specified number of 

iterations. 

- Particle Representation: We choose each particle to 

represent a set of quadcopter parameters, including thrust and 

drag coefficients and moments of inertia. 

- Fitness Function: Let x represent the estimated parameter 

vector  . The objective of the Particle Swarm Algorithm here 

is to minimize the error between the UAV's simulated output, 

based on the model of the Eqs. (9) to (10), and the actual flight 

data. We can define the equation as: 

 

1

ˆ( ) ( , ) , ( 1,2,...., )
T

obj

t

f y t y t t T
=

= −  =  (12) 

 

The fitness function, which evaluates this error, guides the 

movements of the particles to optimize the parameter 

estimates accordingly. 

 

 
 

Figure 2. Particle Swarm Optimization (PSO)-based identification approach 

 

  

144



 

In our case, the algorithm is presented as follows: 

 
Algorithm 1 Pseudo code for the Particle Swarm Optimization 

• Input 

Objective function (fitness function), upper bound 

(ub)  and lower bound (lb) , population size (𝑁) , 

inertia weight ( ) , (
1c and 

2c ) individual and social 

cognitive acceleration coefficients, respectively. The 

terms 𝑟1 ∼ 𝑈(0,1)  and 𝑟2 ∼ 𝑈(0,1)  are the random 

variables corresponding to these acceleration 

coefficients. 𝑇 Is the number of iterations, 

 

• Initialization 

Initialize random position ( x ) and velocity ( v ) 

within the search space boundaries. 

Assign 𝑃𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡  (based on the objective 

function). 

• Loop 

1: For iteration t=1, . . . , T do 

2:       For i=1, . . . , N do 

3: Update velocity: 𝜈𝑖(𝑡) = 𝜛𝜈𝑖(𝑡 − 1) +
𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡 − 1)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡 − 1)) 

4: Update position values: 𝑥𝑖(𝑡)=x𝑖(t-1)+v𝑖(𝑡) 

5: Check ( )ix t  within the boundaries: If 𝑥𝑖(𝑡) >

𝑥𝑢𝑏 → 𝑥𝑖(𝑡) = 𝑥𝑢𝑏  and If 𝑥𝑖(𝑡) < 𝑥𝑙𝑏 → 𝑥𝑖(𝑡) = 𝑥𝑙𝑏  

6: Evaluate the objective function 𝑓𝑥𝑖
 

7: Update 𝑃𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡: 𝑃𝑏𝑒𝑠𝑡 = 𝑥𝑖  if 𝑓𝑥𝑖
is better 

than 𝑓𝑃𝑏𝑒𝑠𝑡,𝑖
, and 𝑔𝑏𝑒𝑠𝑡 = 𝑃𝑏𝑒𝑠𝑡,𝑖  if 𝑓𝑃𝑏𝑒𝑠𝑡,𝑖

 is better 

than 𝑓𝑔𝑏𝑒𝑠𝑡
 

8: If there is no convergence of the current solution 

and if 𝑡 > 𝑇 

9:      end For 

10:     Print Output: 𝑔𝑏𝑒𝑠𝑡  and 𝑓𝑔𝑏𝑒𝑠𝑡
 

11: end For 

 

 

4. SIMULATIONS AND EXPERIMENTAL RESULTS 

 

Quadcopters are inherently unstable systems that cannot be 

controlled using open loop methods. In this investigation, 

Ascending Technologies GmbH’s Pelican UAV platform for 

research was used. The platform has an integrated stabilizing 

controller that runs at 1 kHz on an embedded ARM7 

microprocessor. This controller enables the operator to pilot 

the quadcopter by sending orientation reference inputs (roll, 

pitch, and yaw angles) and throttle values via a transmitting 

device. This setup ensures data collecting to take place while 

flying a closed-loop stable system. The measurements were 

gathered from the onboard MEMS gyroscopes where body 

rates are (𝑝, 𝑞, 𝑟), and the Attitude and Heading Reference 

System (AHRS) estimates the attitude angles (𝜙, 𝜃, 𝜓) . 

Additionally, the onboard MEMS accelerometers capture the 

body accelerations (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) , which are corrected for 

gravitational effects using AHRS attitude estimates. During 

test flights, input and output data are recorded using an SD 

card to store the measurements via I2C connection with an on-

board ARM7 embedded microcontroller at a sample rate of 

50Hz (measurements were taken every 20ms) as the 

quadcopter’s attitude and throttle are manually adjusted. Three 

experimental data sets, are collected each 500 seconds in 

duration, for system identification and model validation. 

In this paper, to verify the effectiveness of the proposed 

PSO-based identification method, a series of simulations were 

carried out using MATLAB®. Three data sets were utilized: 

 Data Set 1: Used to train the model using Particle Swarm 

Optimization, with the initial values carefully selected 

beforehand. 

 Data Set 2 and Data Set 3 are test data that were not 

involved in the identification process, the performance of the 

proposed method is verified using these data sets. The validity 

of the results is further confirmed through direct comparison 

between the identified model and the actual flight test data. 

The simulation results are presented in Figures 3 to 8, and 

Tables 1 to 2. 

Table 1 gives an overview of the results from the three data 

sets. The Mean Squared Error (MSE) is used as a fitness 

function as it is calculated from Eq. (13) for each set, as well 

as the corresponding fitting percentages. 

Table 2 represents model parameters obtained from 

identification-based PSO. 

Figures 3 to 5 represent the attitude angles, body 

accelerations, and body rates, respectively, with Data Set 1 

used to train the PSO model. 

Figures 6 to 8 represent the body accelerations, body rates, 

and attitude angles using the obtained model parameters with 

Data Sets 2 and 3 to validate the PSO-based model. The blue 

line, dashed red and yellow lines in the Figures represent time 

segments of the real measurements, the mathematical model 

outputs using the optimized parameter estimates from [5] and 

the PSO-based identification technique, respectively. 

From the figures, we extract metrics that we present in Table 

1, demonstrating significant percentage improvements. The 

current model based on the PSO method shows a 61.37% 

enhancement over the baseline (initial guess) and a 16.08% 

improvement over the results from the study [5]. Additionally, 

it achieves further improvements of 17.67% and 18.08% 

compared to our previous results in the study [22], obtained 

using Canonical Variate Analysis (CVA) and the Multi-

Output Error State Space (MOESP) methods, respectively. 

These results highlight a clear advancement over prior work, 

as the identified parameters significantly enhance the accuracy 

of the quadcopter model compared to the initial estimates 

across all three data sets. Error metrics, including Mean 

Squared Error (MSE) and fitting percentage, were used to 

evaluate the effectiveness of the PSO in reducing model-fitting 

errors. 
 

Table 1. The calculated model fitting error E using both the initial estimates and the refined model parameters 
 

 MSE for Initial 

Guess 

MSE QN Based 

Estimation 

MSE PSO Based 

Estimation 

Enhancement Over Initial Guess 

Result (Baseline) 

Enhancement Over QN 

Result [5] 

SET1 

(Training) 
14.64 7.67 6.388 0.5637 0.1672 

SET2 

(Validation) 
16.81 8.79 6.694 0.6018 0.2384 

SET3 

(Validation) 
18.93 8.71 7.309 0.6139 0.1608 
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Table 2. Refined model parameters based on Particle Swarm 

Optimization throughout the system identification 

 
Parameter PSO Algorithm Obtained Value 

Thrust Coefficient b 2.33E-05 

Drag Coefficient d 4.96E-07 

Moments of Inertia Jxx 1.00E-02 

Moments of Inertia Jyy 1.36E-02 

Moments of Inertia Jzz 2.92E-02 

Rotor Inertia Jr 5.00E-05 

 

 
 

Figure 3. Three Euler angle model output fitting in a closed-

loop configuration using Particle Swarm Optimization with 

the training dataset 

 

 
 

Figure 4. Body accelerations for model output fittings in a 

closed-loop configuration using Particle Swarm Optimization 

with the training dataset 

 

We have to mention that, the quadcopter’s motors, rotors, 

and frame generate vibrations during operation that affect the 

gyroscope's ability to accurately measure angular velocity, 

leading to errors in motion tracking and control systems. These 

disturbances, typically characterized as random vibrations 

inducing angular velocity fluctuations and are often modeled 

as white noise, Despite the disturbances in body rate for p, q, 

r, the model still can track the dynamics. These results confirm 

the effectiveness of the current approach in reducing the mean 

squared error and improving the fitting percentage, thus 

achieving a more accurate and reliable quadcopter model. 

The results demonstrate that the PSO algorithm provides a 

robust and effective method for identifying key parameters in 

quadcopter UAV systems. Compared to traditional techniques, 

PSO offers several advantages, including faster convergence 

and better handling of noise in the data. 

However, we have found that the PSO algorithm has some 

limitations, such as the sensitivity to parameter initialization 

and the need for high-quality experimental data. 

 

 
 

Figure 5. Angular velocities for model output fittings in a 

closed-loop configuration using Particle Swarm Optimization 

with the training dataset 

 

 
 

Figure 6. Model output fitting of the three Euler angles in a 

closed-loop configuration using an unseen dataset for model 

validation 

 

 
 

Figure 7. Model output fittings of the three body acceleration 

in a closed-loop configuration using an unseen dataset for 

model validation 
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Figure 8. Model output fitting of the angular velocities in a 

closed-loop configuration using an unseen dataset for model 

validation 

 

 

5. CONCLUSIONS 

 

This paper explores the potential of the PSO algorithm for 

precise parameter identification in quadcopter UAV systems. 

PSO, which is a population-based optimization algorithm 

inspired by the collective behavior of social animals, has 

shown promise in addressing nonlinear, multidimensional 

problems, making it a suitable candidate for UAV system 

identification. Our study demonstrates how PSO can be 

applied to estimate key dynamic parameters, such as thrust, 

drag coefficients, and moments of inertia, which are critical 

for improving model accuracy and control performance. The 

proposed approach was validated through simulations and 

experimental results, indicating notable enhancements in 

model accuracy. While these findings suggest PSO's 

suitability for UAV system identification, further research is 

necessary to explore real-time implementations and its 

potential application to other UAV types, with the aim of 

advancing online parameter refinement. This is a subject of 

future research. 
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NOMENCLATURE 

 

NEDO  North-East-Down orientation for x, y and z 

axis respectively 
  Euler angles 

   roll 

  pitch 
  yaw 

  angular velocity in Body frame, rad/s 
 p  angular velocity of roll 
 q  angular velocity of pitch  
 r  angular velocity of yaw 

bV  Linear velocity, m/s 

u  Linear velocity of x, m/s 
v  Linear velocity of y, m/s 
w  Linear velocity of z, m/s 
m  Mass in Kg 

bF  Forces calculated in fixed frame, N 
b  Torques calculated in fixed frame, N.m 

i  The angular velocity of rotor i 

 J  Moment of inertial matrix, Kg.m2 

  Thrust 
g  Acceleration due the gravity effect, m.s-2 

b  lift coefficient 

d  drag constant 
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