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Computational thinking skills are essential in education, especially for students at the 

beginning of their engineering studies. Therefore, it is crucial to integrate these skills 

with other techniques and methods that can further enhance computational thinking in 

engineering students. This research aimed to strengthen computational thinking skills 

by developing technological projects that address the specific needs of the local context 

for industrial and systems engineering students. To achieve this, students engaged in 

classroom activities utilizing technological resources, where they developed 

algorithms, programmed Arduino boards, configured sensors, debugged programs, and 

created applications using the mBlock platform. The research methodology employed 

a quantitative approach with a quasi-experimental post-test design and intentional non-

probabilistic sampling proportional to the number of students. Results indicated that 

working on technological projects equally motivated and sensitized both female and 

male students to engage in technological activities successfully, thereby strengthening 

computational thinking skills in students across both fields. Furthermore, the results 

revealed that systems engineering students demonstrated greater improvement in 

computational thinking skills compared to industrial engineering students. This 

difference can be attributed to the systems engineering curriculum being more oriented 

toward the use and development of technology, while industrial engineering focuses 

more on management. 
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1. INTRODUCTION

In Peru and other Latin American countries, significant 

inequalities in education persist, particularly in the teaching of 

STEM (Science, Technology, Engineering, and Mathematics) 

disciplines, where students often achieve low competency 

levels [1]. According to the World Bank, approximately 40% 

of students in the region fail to reach satisfactory levels in 

mathematics and science, as evidenced by PISA results [2]. 

These challenges limit the development of cognitive skills 

necessary for addressing the demands of the 21st century, 

where STEM knowledge is essential for technological 

innovation and societal advancement [3, 4].  

Computational thinking (CT) has emerged as a critical skill 

in STEM education, equipping students with problem-solving 

abilities, algorithmic reasoning, and persistence [5]. It enables 

them to deconstruct problems, identify patterns, and propose 

algorithmic solutions, fostering creativity and innovation in 

real-world contexts [6, 7]. While developed countries have 

successfully integrated CT into their curricula, its application 

in developing regions remains underexplored.  

This research aims to address this gap by investigating how 

technological projects, designed to tackle local challenges, can 

strengthen computational thinking skills in first-year 

engineering students. Specifically, this study seeks to answer 

the following questions: How do technological projects 

enhance computational thinking skills in engineering 

students? And are there significant differences in skill 

development between students from different engineering 

disciplines? 

By focusing on local contexts and utilizing tools such as 

Arduino boards and the mBlock platform, this study explores 

innovative methods to foster critical skills and contribute to 

educational equity in STEM disciplines. 

2. RELATED WORK

The existing literature highlights the importance of 

computational thinking as an essential skill in 21st-century 

education, particularly for engineering students who face an 

increasingly technological environment. Various studies have 

explored the integration of computational thinking into 

education, emphasizing the effectiveness of methods such as 

project-based programming, the use of interactive platforms 

like mBlock, and the configuration of technological devices 
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like Arduino. However, these investigations often address 

these practices in a general manner, without considering the 

specific needs of local contexts or the curricular differences 

between engineering disciplines. Furthermore, there is a lack 

of studies examining the implications of gender in the 

motivation and performance of students in technological 

activities. This research seeks to fill these gaps by focusing on 

strengthening computational thinking through technological 

projects designed for local contexts, while also analyzing how 

these practices impact students in industrial and systems 

engineering differently. In doing so, it contributes to 

understanding how technology-based pedagogical approaches 

can be adapted to maximize their effectiveness in various 

engineering fields. 

 

2.1 Computational thinking and problem-solving in higher 

education 

 

In the various studies carried out by the scientific 

community, they have agreed on the benefits that 

computational thinking provides in the educational sector; 

both in regular basic education and in higher education. In 

higher education, the ability to abstract and algorithmic 

thinking has been considered important; and they have been 

applied in the disciplines of communication and mathematics 

to solve complex problems [8, 9]; also, Wilson et al. [10] 

pointed out that the development of algorithms and coding 

contribute to the understanding and development of 

mathematical problems, logic, reading comprehension and 

other disciplines that have been characterized by their 

abstraction and complexity; to develop these activities 

involves using computers, microcontrollers and computer 

programs that help the student solve mathematical problems 

and other related disciplines. Shyamala et al. [3] points out that 

the use of tools based on block programming and hardware in 

different activities generates greater motivation in students; 

likewise, teamwork and gender equality have been 

strengthened in these activities; during the execution of the 

activity; also, the steps of the problem solving were practiced, 

and in each step the skills of decomposition, abstraction, 

algorithmic development, pattern recognition, among others, 

are applied [11]. Kules [12] in one of his investigations points 

out critical thinking as an important component of reasoning 

and argumentation before planning activities through 

computational thinking skills and problem-solving.  

Various authors suggest a range of computational thinking 

skills, such as abstraction, recursion, interaction, patterns, 

synectics, creativity, and simulation. However, most agree on 

five core skills of computational thinking: decomposition, 

abstraction, algorithmic design, pattern recognition, and 

evaluation [13, 14]. Abstraction focuses on identifying key 

characteristics; decomposition breaks down complex 

problems into smaller, more manageable parts; generalization 

involves recognizing patterns across different contexts; 

algorithmic design involves proposing a solution in a 

structured, step-by-step manner and executing the activity; and 

evaluation involves reviewing the solution and assessing the 

efficiency of the resources used. 

In the initial definition of computational thinking, Wing 

[15] described it as “a process that involves problem-solving, 

system design, and understanding human behavior using the 

core concepts of computer science”. From this first definition, 

various authors also conceptualized or pointed out that the 

main reason for “computational thinking is problem-solving, 

and problem-solving is composed of a set of phases that are 

used to obtain the solution; also, researchers consider it 

important to add other thoughts to computational thinking; 

such as, critical thinking, which takes on greater value when it 

is applied in a phase before computational thinking. This set 

of thoughts has only one objective, to strengthen the different 

skills; for example, communication when disseminating 

research results and teamwork to achieve common objectives; 

thus, as the search, analysis, and synthesis of information, and 

continuous learning [16, 17]. Starting from the definition of 

computational thinking that is linked to problem-solving, there 

are two fundamental components, which are: a set of skills 

required for problem-solving and an approach to using these 

skills in problem-solving [18]. 

Several researchers have explored the connection between 

computational thinking skills and the phases of problem-

solving, yielding positive results in enhancing computational 

thinking among students in both school and higher education 

[19, 20]. They have defined that the five key computational 

thinking skills align with the four phases of problem-solving 

[15]. Specifically, the “understand the problem” phase 

corresponds to the abstraction skill; the “prepare the plan” 

phase is associated with decomposition and generalization 

skills; the “execute the plan” phase relates to algorithmic 

design; and the “review the solution” phase corresponds to the 

evaluation skill [21]. Table 1 illustrates the relationship 

between computational thinking skills and the problem-

solving phases. 

 

Table 1. Relationship between problem-solving phases and computational thinking skills [21] 

 

Problem-Solving Phases 
Computational Thinking Skills 

Abstraction Decomposition Generalization Algorithmic design Evaluation 

Understand the problem X     

Prepare the plan  X X   

Execute the plan    X  

Review the solution     X 

 

2.2 Technological resources and computational thinking 

 

Currently, various activities utilize technological resources, 

such as hardware and software, to enhance computational 

thinking through classroom educational activities. Therefore, 

it is essential to train students in computational thinking and 

problem-solving skills using both digital tools and non-digital 

(unplugged) methods [22]. Research has demonstrated that 

lessons in computational thinking can improve students' 

response inhibition, planning, and coding abilities. As these 

skills become increasingly important in the fast-evolving 21st 

century, education in computational thinking holds great 

potential for better preparing students for future careers and 

active citizenship [23]. 

Various technological products have been developed for 

teaching science and technology from elementary to higher 

education, aiming to introduce computational thinking and 

programming through the use of physical components and 
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social interaction. These tools motivate students to learn 

coding and foster greater interest in STEM disciplines. Most 

of these platforms support activities such as block-based 

programming, assembling sensors and actuators on 

microcontrollers, network connectivity, and remote data 

sharing [24, 25]. Technological resources help students 

understand the foundation of science and how it has been used 

technically in the world; for example, robotics allow students 

to understand the fundamentals of basic programming and 

develop their computational thinking with STEM education in 

an attractive way [26, 27]. 

Researchers recommend adding technological resources in 

various courses to help better understand the topics and 

implicitly strengthen computational thinking skills: 

abstraction, decomposition, generalization, algorithm, design, 

data, and representation; Common technological resources are 

educational robotics, code-based (C++, Python, Arduino, etc.) 

and block-based (Scratch, Alice, mBlock, etc.) programming 

languages [28, 29]; also, sensors (distance, temperature, 

humidity, etc.), actuators (motor, display, LCD, etc.) and 

LEDs are added, which allow the development of activities 

that involve engineering processes [30, 31]. Therefore, schools 

and universities that incorporate STEM into their curricula are 

already fostering the development of computational thinking 

in various aspects throughout the teaching process. In other 

words, the integration of STEM disciplines naturally 

encourages the cultivation of computational thinking skills 

[32]. 

 

2.3 Technological projects in engineering classrooms 

 

The experiences and learning of university students play a 

crucial role in fostering a shift towards a culture of 

sustainability. Higher education should, therefore, contribute 

to the development of sustainability competencies, such as 

critical and creative thinking, problem-solving, the ability to 

take action, collaboration, and systemic thinking. These skills 

help shape potential change agents who can build more 

sustainable societies, particularly within their own 

environments [33].  

Several international studies, including those by prominent 

organizations like the OECD, highlight the need for a 

significant shift in teaching methods within university 

classrooms. Achieving competency-based learning 

(encompassing knowledge, abilities, skills, and attitudes 

across various contexts) and the holistic development of 

individuals, as sought by our current educational system, 

requires fostering motivation and creating meaningful, 

transferable, functional, and lasting learning experiences [34]. 

To this end, it is recommended to adopt active and 

contextualized methodologies that encourage student 

participation, involvement, and the application of knowledge 

in real-world situations [35].  

Combining problem-solving methods and technology 

involves the creation of realistic projects that develop, 

simultaneously and integrate, the curricula of scientific-

technological subjects [36]. Thus, the development of a final 

product or prototype generates a process of complex open 

tasks that involve research, solving authentic problems, and 

designing strategies and/or experiments; these strategies 

applied in the classroom increase the motivation and 

confidence of students, improving their attitudes towards 

learning and reducing absenteeism, above all generating 

greater identity and sensitivity to solve the real needs of 

society and the community or city where they live [37]. 

The development of technological projects in the classroom 

stems from the urgent need to transform university education 

and align it with modern advancements. This strategy 

incorporates elements that help boost motivation, enhance 

academic performance, foster entrepreneurship and creativity, 

and strengthen the training of ethical, responsible, and 

effective professionals. These efforts aim to prepare students 

for success in the era of knowledge and complexity, 

contributing to greater social equity [38]. This could imply that 

environments that motivate innovation from an industry 

perspective should be introduced into teaching and that 

consider solutions to problems of interest in society involving 

the economy, ecology, and equity of all communities [39]. 

Likewise, in engineering education, strategies have been 

incorporated to exploit creativity, which corresponds to the 

moment of the “big event” that leads to the occurrence of great 

creative leaps, fundamental in innovation and education of the 

new century, without forgetting the quality of teaching as a 

motivating and renewing entity of teaching methods and 

instructional materials [40]. 

 

 

3. METHODOLOGY 

 

3.1 Research design 

 

The methodology employed in this research follows a 

mixed qualitative and quantitative approach, utilizing a post-

test quasi-experimental design. Participants were selected 

through intentional non-probabilistic sampling proportional to 

the number of students in each professional program involved. 

Two groups were formed: one composed of 37 Industrial 

Engineering students from the National Autonomous 

University of Tayacaja Daniel Hernández Morillo (UNAT), 

and another of 49 Systems Engineering students from the 

National University of Huancavelica (UNH). Both groups 

consisted of first-year students, aged between 16 and 17, 

enrolled in the Information Management course during the 

2022-II academic period. The intervention consisted of 

activities specifically designed to strengthen computational 

thinking skills through the development of technological 

projects addressing contextual and local problems. These 

activities included the design and programming of algorithms, 

configuration of sensors and actuators, and the creation of 

applications using the mBlock platform. The assessment of 

computational thinking skills was conducted using the 

Computational Thinking Test (CTT) by Román-González 

[41], previously validated in terms of criterion and 

convergence. Results were analyzed to identify significant 

differences in skill development between students of both 

programs, considering curricular and contextual differences 

that could influence the outcomes. 

The CTT has been validated for criteria and convergence 

[42, 43] by 20 experts who reviewed and evaluated the 

instrument. It includes 28 items, each designed and 

categorized into five dimensions: computational concept 

addressed, item environment interface, style of response 

alternatives, presence or absence of nesting, and the required 

task. The instrument is tailored to the cognitive level of the 

students, who are predominantly 16 to 17 years old and in their 

first year of university studies. Table 2 displays the items from 

the Román-González test related to the skills of abstraction, 

decomposition, generalization, algorithmic design, and 

243



 

evaluation [44, 45]. A correct answer is scored as one point, 

while an incorrect answer receives zero points. Therefore, the 

maximum possible scores are as follows: 16 points for 

abstraction, 16 points for decomposition, 19 points for 

generalization, 28 points for algorithmic design, and 14 points 

for evaluation. 

 

Table 2. Items of the test to assess computational thinking 

skills 

 
Computational 

Thinking Skills 

Number 

of Items 

Marcos Román-González 

Test Items 

Abstraction 16 
1 al 3, 7, 11 al 15, 21 al 23 

y 25 al 28 

Decomposition 16 
4 al 7, 10 al 13, 15, 21 al 23 

y 25 al 28 

Generalization 19 
4 al 6, 8 al 12, 14, 15, 17, 

18, 20, 22, 23 y 25 al 28 

Algorithmic design 28 1 al 28 

Evaluation 14 
3, 7, 10, 11, 15, 16, 19, 20, 

23 al 28 

 

3.2 Proposal for technological projects 

 

Figure 1 illustrates the framework for developing 

technological projects in the classroom aimed at enhancing 

computational thinking in engineering students, particularly in 

relation to ICT. This proposal draws on the technological 

principles of constructionism [46] and follows Pólya's 

problem-solving method [47], which consists of four phases: 

understanding the problem, developing the plan, executing the 

plan, and reviewing the solution. 

The scheme represents the direction and sequence of 

execution of the technological project; where, in the 

“understanding the problem” phase, activities are carried out 

to strengthen the abstraction skill; In the “make the plan” 

phase, activities are carried out to strengthen decomposition 

and generalization skills; in the “execute the plan” phase, 

activities are carried out to strengthen the algorithmic design 

skill; and in the “review the solution” phase, activities are 

carried out to strengthen the evaluation skill. 

 

 
 

Figure 1. Execution scheme for technological projects 

 

Given the nature and vocation of engineering students 

related to ICT, various technological projects have been 

proposed that focus on solving problems within the 

community or context where the students reside. These types 

of projects have been effective in motivating students of all 

genders to engage in project execution within the classroom, 

as they tackle real-world issues that are directly relevant to 

people's lives, addressing the needs of their city or region and 

contributing to community well-being and protection [48, 49]. 

Table 3 presents the technological projects aimed at offering 

alternative solutions from the classroom, addressing the 

specific needs of the province of Tayacaja in the Huancavelica 

region of Peru. These projects aimed to foster awareness and 

social sensitivity among first-year university students, from an 

educational perspective, resulting in the creation of prototypes 

or models that represent potential solutions. 

The projects covered a range of topics, including 

greenhouse cultivation monitoring, water quality monitoring, 

physical security, solid waste management, student health 

monitoring, animal protection from predators, educational 

support tools, and automatic crop irrigation. Throughout the 

execution of these projects, students utilized microcontrollers, 

sensors, actuators, and programming with the mBlock 

platform. 

The execution of technological projects was carried out in 

the Information Management course during a 16-week 

academic semester in the 2022-II period, with 4 hours of 

weekly sessions. The framework of Pólya's problem-solving 

method structured the activities into four distinct phases: 

“understand the problem” (5 weeks), “make the plan” (3 

weeks), “execute the plan” (6 weeks), and “review the 

solution” (2 weeks). In the “understand the problem” phase, 

students identified key elements of the challenges presented, 

such as the scope and context of the problem, and represented 

these elements through mind maps and problem statements. In 

the “make the plan” phase, they developed detailed strategies 

to address the identified problems, including the design of 

circuits, selection of hardware components (e.g., Arduino 

boards and sensors), and preliminary algorithm outlines. 

During the “execute the plan” phase, students implemented 

their designs, programmed the hardware using the mBlock 

platform, and debugged their systems to ensure functionality. 

Finally, the “review the solution” phase focused on iterative 

testing and evaluation, where students critically assessed the 

performance of their prototypes, optimized both hardware and 

software components, and presented their findings to peers and 

instructors for feedback. 

Projects were carried out in groups of 3 to 5 students to 

encourage collaboration and teamwork, while also ensuring 

that every participant had hands-on experience with the tools 

and methods used. Students were tasked with documenting 

their progress and sharing code snippets for review and 

debugging during class sessions. Each group also showcased 

their final prototype through a presentation that included 

visual demonstrations and a detailed explanation of the 

problem-solving process. This collaborative and iterative 

approach ensured that the technological projects not only 

aligned with the course objectives but also provided a 

comprehensive, practical learning experience. 
 

 

4. RESULTS 
 

4.1 Execution of technological projects to strengthen 

computational thinking 
 

To illustrate the execution details of the technological 

project and the enhancement of computational thinking skills, 

the project titled “Implementation of a Water Level 

Monitoring Prototype in the Viñas Reservoir in the City of 

Pampas, Tayacaja Province” was selected. Figure 2 displays 

the results of the project's execution, aligned with the problem-

solving phases. These phases include understanding the 

problem, developing the plan, executing the plan, and 

reviewing the solution, showcasing how each phase 

contributed to the successful development of the prototype. 
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Table 3. Proposal of technological projects and electronic devices 

Technological Projects Sensors Career 

Monitoring of vegetable production in greenhouses, Pampas, 

Tayacaja province, Huancavelica region 
Sensor DHT11 

Industrial 

engineer 

Implementation of a water level monitoring prototype in the 

Viñas reservoir in the city of Pampas, Tayacaja province 
Ultrasonic Sensor HC-SR04 

Implementation of a control and security system in a market Infrared Sensor PIR HC-SR501 

Prototype of automatic on/off for public lighting, Huancavelica 

region 
LDR Sensor (Light Dependent Resistor) 

Solid waste monitoring in the Huancavelica region. Ultrasonic Sensor HC-SR04 

Automatic Distance Detection Alarm Prototype for Vehicles in 

Pampas. 
Ultrasonic Sensor HC-SR04 

Systems 

engineer 

Sensor-Equipped Smart Cane for Visually Impaired Individuals 

in Pampas. 
Ultrasonic Sensor HC-SR04 

Monitoring of temperature and humidity with an automated 

irrigation system in vegetable production in the city of Pampas, 

Tayacaja, Huancavelica. 

DHT11 Sensor 

The monitoring system for animal safety in the Huancavelica 

region. 
LDR Sensor (Light Dependent Resistor) 

Monitoring and control of humidity and temperature in the 

greenhouse in the Huancavelica region. 
Sensor DHT11 

Home automation for the security and tranquility of homes in 

the city of Pampas, Tayacaja, Huancavelica. 
Infrared Sensor PIR HC-SR501 

Implementation of a biosafety prototype against COVID-19 in 

the professional school of systems engineering. 
Infrared Sensor PIR HC-SR501 

Monitoring of solid waste in homes in the city of Pampas, 

Tayacaja, Huancavelica. 
Ultrasonic Sensor HC-SR04 

(a)  (b) 
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(c) 

 
(d) 

 

Figure 2. Execution of the technological project: (a) activities of the understanding the problem phase; (b) activities of the plan 

development phase; (c) activities of the plan execution phase; (d) activities of the solution review phase 

 

Table 4 outlines the activities undertaken to strengthen the 

five computational thinking skills in alignment with the 

problem-solving phases. During the “understand the problem” 

phase, abstraction skills were enhanced as students focused on 

identifying the key elements of the problem. In the “make the 

plan” phase, both decomposition and generalization skills 

were developed, enabling students to break down the problem 

into manageable parts and recognize patterns. The “execute 

the plan” phase focused on algorithmic design, where students 

created step-by-step solutions. Finally, in the “review the 

solution” phase, evaluation skills were strengthened as 

students assessed the effectiveness and efficiency of their 

solutions. 

In the development of technological projects, Arduino 

boards and the mBlock platform were used as the main tools 

to strengthen computational thinking skills. Arduino boards 

were employed for implementing electronic circuits that 

integrated sensors and actuators, allowing students to interact 

directly with real hardware and understand basic concepts of 

electronics and programming. For instance, in the water level 

monitoring project, students configured the HC-SR04 distance 

sensor to measure water levels, programmed the Arduino 

board to process the collected data, and activated an alert 

system based on predefined parameters. The mBlock platform, 

based on block programming, facilitated the creation of 

algorithms and visual applications, enabling students to 

simulate and control the designed systems. This tool was also 

key in introducing advanced programming logic concepts, 

such as the use of conditional structures, loops, and functions. 

These activities not only helped develop skills such as 

abstraction, decomposition, and algorithmic design but also 

fostered creativity and problem-solving by providing a 

practical and visually intuitive environment. 

 

4.2 Computational thinking assessment 

 

The following sections present the results of the statistical 

analysis related to the evaluation of the enhancement of 

computational thinking skills—specifically, abstraction, 

decomposition, generalization, algorithmic design, and 

evaluation—through the development of technological 

projects in the classroom for industrial and systems 

engineering students. These results provide insights into the 

effectiveness of using technological projects as a method for 

strengthening these critical skills within the educational 

context. 
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Table 4. Activities developed to strengthen computational thinking skills 

 

Problem-Solving Phases Computational Thinking Skills 

Understand the problem 

Abstraction 

The teacher developed exercises on the skill of abstraction [14] and provided instructions to elaborate on the 

problematic situation of the project assigned to the group. The students consulted the scientific databases: Google 

Academic, Dialnet, Scielo, and ALICIA; After reviewing the selected information regarding the problematic 

situation of the Viñas reservoir overflow, they represented the causes and effects on a mental map; thus, managing 

to abstract the complex problem; They also prepared a paragraph with the most important points of the problem 

to be solved; each paragraph was referenced. 

Prepare the plan 

Decomposition 

The teacher developed exercises on the decomposition skill [14], and the students created or decomposed a list 

of activities: 

Understand the important points of the causes of the problem of the overflow of the reservoir. 

Design the circuit composed of the Arduino board and the distance sensor. 

Program the Arduino to read the distance of the water level. 

Develop the graphical interface for monitoring water level monitoring through the mBlock platform. 

Integrate the sensors and graphic interface into a model that represents the overflow of the vineyard reservoir. 

Generalization 

The teacher developed exercises on generalization skills, such as pattern recognition [14]; he also gave 

instructions on ways to search for background information related to the project “Implementation of a water level 

monitoring prototype in the Viñas reservoir in the city of Pampas in the province of Tayacaja.” The students 

consulted the scientific databases: Google Academic, Dialnet, Scielo, and ALICIA; where they identified the 

components or activities or patterns that they would use in their projects; for example, the use of sensors, 

monitoring parameters, circuit design, etc. 

Execute the plan 

Algorithmic design 

The teacher developed exercises on developing algorithms and programs in mBlock [14]. The students executed 

the activities planned in the previous phase, and implemented the circuit composed of the Arduino board and 

distance sensor; They also developed a monitoring application through mBlock; where, they represented the 

reservoir of vineyards, with objects that represent rain, sun, cloud, water and the measured values of the distance 

from the water level; For the development of the application they used control blocks (yes, else, repeat, etc.) to 

make decisions when the water level rises to the surface; The water level reading was carried out with the HC-

SR04 distance sensor; During the development of these activities, the programming logic and programming 

sequence were observed; In this way they developed the skill of algorithmic design. 

Review the solution 

Evaluation 

The teacher developed exercises on the method and techniques for evaluating the results [14]. At the end of the 

project, the students obtained a prototype or product; the integration of the hardware components (circuits, 

microcontrollers, and sensors) and software (graphical user interface in mBlock or application) was carried out 

through a model, where they represented a physical scenario simulating the monitoring of the Viñas reservoir in 

the city of Pampas of the province of Tayacaja. They verified the operation by component and its integrity; When 

difficulties arose in operation during the tests, they proceeded to evaluate the prototype starting from the hardware 

component, to find the problem and then continue with the program codes until the error was found. 

Also, the evaluation was carried out during the progress of the execution of the technological project in each 

problem-solving phase, with the help of the classroom teacher; In this way, the students perfected the evaluation 

skill. 

 

Table 5. Sample means and standard deviation 

 
Computational Thinking Skills Career N Average Standard Deviation 

Abstraction 
Industrial engineering 37 51.8581 19.36855 

Systems engineering 49 61.6071 18.22172 

Decomposition 
Industrial engineering 37 49.6622 19.81610 

Systems engineering 49 60.8418 17.10565 

Generalization 
Industrial engineering 37 50.3549 20.13821 

Systems engineering 49 63.6945 16.51258 

Algorithm design 
Industrial engineering 37 51.5449 18.77726 

Systems engineering 49 66.6910 16.78884 

Evaluation 
Industrial engineering 37 48.0689 19.96680 

Systems engineering 49 63.2645 18.20972 

 

Table 5 shows the results of sample means and standard 

deviation of computational thinking skills for students 

studying industrial engineering and systems engineering. 

To decide the type of parametric or non-parametric 

statistical test, normality analysis with Shapiro Wilk is used 

due to having less than 50 students in the sample in each 

career. Table 6 shows the normality tests with Shapiro-Wilk. 

According to Table 6 the results of normality tests, it is 

concluded that all those with a P value greater than 0.05 

(significance) have a normal distribution (a parametric test is 

applied). In those who do not have this condition, a non-

parametric test is used Mann-Witney U test for independent 

groups. 

Table 7 shows the t Student test for independent groups and 

determines whether there are differences between systems 

engineering and industrial engineering students for abstraction 

and decomposition. 

From the Table 7 results of the previous table in abstraction 
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and decomposition skills there are significant differences 

(p<0.05), so it can be stated that systems engineering students 

developed these skills better than industrial engineering 

students. 

Table 6. Normality tests with Shapiro-wilk 

Computational Thinking Skills Career 
Shapiro-Wilk 

Statistical gl p-value 

Abstraction 
Industrial engineering 0.969 37 0.385 

Systems engineering 0.960 49 0.093 

Decomposition 
Industrial engineering 0.957 37 0.163 

Systems engineering 0.969 49 0.217 

Generalization 
Industrial engineering 0.963 37 0.256 

Systems engineering 0.937 49 0.011 

Algorithm design 
Industrial engineering 0.954 37 0.131 

Systems engineering 0.932 49 0.007 

Evaluation 
Industrial engineering 0.939 37 0.044 

Systems engineering 0.928 49 0.005 

Table 7. t student test for independent samples 

Independent Samples Test 

Levene's test for equality of variances t test for equality of means 

F p-value t gl p-value (bilateral) 

Abstraction Equal variances 0.13 0.72 -2.4 84 0.019 

Decomposition Equal variances 1.37 0.24 -2.8 84 0.006 

Table 8. Mann-Whitney U test for non-parametric 

Test Statisticsa 

Generalization Algorithm design Evaluation 

Mann-Whitney U test 552.500 486.500 516.000 

Wilcoxon W 1255.500 1189.500 1219.000 

Z -3.099 -3.673 -3.426

Pvalue. asymptotic (bilateral) 0.002 0.000 0.001
a. Grouping variable: Career

Table 8 shows the Mann-Whitney U test to determine 

differences in generalization, algorithmic design, and 

evaluation skills. 

From Table 8, it is evident that there are significant 

differences (P-value < 0.05) in the skills of generalization, 

algorithmic design, and evaluation. The data indicate that 

systems engineering students demonstrated superior 

development in these skills compared to industrial engineering 

students. 

5. DISCUSSION

The implementation of technological projects utilizing 

resources such as Arduino boards, sensors, actuators, and the 

mBlock programming environment proved to be an effective 

approach for students beginning their engineering studies. 

This aligns with previous studies that have applied similar 

educational strategies to strengthen computational thinking 

(CT) skills and problem-solving abilities [50]. Designing 

technological projects to address local issues not only 

motivated students and raised awareness about their 

community but also ensured equitable participation among 

both male and female students from Industrial and Systems 

Engineering disciplines. These activities included creating 

programs in mBlock, configuring sensors, programming 

Arduino boards, and developing functional prototypes in a 

collaborative classroom setting [51]. 

Each phase of Pólya's problem-solving framework 

contributed to the development of specific CT skills. In the 

"understanding the problem" phase, students developed 

abstraction skills by representing complex issues using mind 

maps and simplifying them into basic representations [52, 53]. 

This process helped students focus on essential elements of the 

problem and ignore irrelevant details. 

During the "preparation of the plan" phase, students honed 

their decomposition skills by breaking down the problem into 

smaller, manageable subproblems. These included activities 

such as acquiring electronic components, designing and 

implementing hardware, and planning the development of 

software solutions. Additionally, this phase fostered 

generalization skills, as students were encouraged to identify 

patterns or similarities with previous problems [54, 55]. 

The "execution of the plan" phase was pivotal for the 

development of algorithmic design skills. Students 

systematically followed a sequential process to complete 

tasks, which included programming the Arduino with sensors, 

developing algorithms, debugging programs, and integrating 

all components into a cohesive prototype. This step-by-step 

approach exemplifies core aspects of algorithmic thinking and 

problem-solving [56]. 

Finally, in the "reviewing the solution" phase, students 

enhanced their evaluation skills by rigorously testing and 

debugging their prototypes. They used criteria such as 

readability, optimization, and performance to refine their 

solutions until achieving the desired outcomes [52, 57]. This 

iterative process not only strengthened their ability to assess 

technical outputs but also fostered critical thinking. 
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A comparison of outcomes between industrial and systems 

engineering students reveals important differences in CT skill 

development. Systems Engineering students showed superior 

improvements in abstraction and algorithmic design skills, 

likely due to their curriculum's emphasis on hardware and 

software technology from the first year of study. In contrast, 

Industrial Engineering students exhibited more moderate 

gains, which may be attributed to their program’s focus on 

management-oriented problem-solving approaches [26, 27]. 

These findings highlight the importance of tailoring CT-based 

interventions to the specific needs and strengths of each 

academic discipline. 

In summary, the results demonstrate that technological 

projects aligned with Pólya's framework effectively strengthen 

CT skills in engineering students. They also underscore the 

importance of integrating contextually relevant, hands-on 

activities to enhance both technical and cognitive skills. Future 

research should further explore these differences, examining 

how curricular design and student backgrounds influence CT 

skill development. 

 

 

6. CONCLUSIONS 

 

The findings of this study highlight the importance of using 

technological projects to strengthen computational thinking 

skills in engineering students. Beyond the specific activities 

performed, such as algorithm development and programming, 

this pedagogical approach proved effective in fostering 

fundamental skills like abstraction, decomposition, 

algorithmic design, and evaluation. These skills are not only 

essential in STEM disciplines but also critical for training 

future professionals capable of solving complex problems and 

contributing to technological development within their 

communities. 

Additionally, a significant difference was observed in the 

development of these skills between Systems Engineering and 

Industrial Engineering students, reflecting the impact of 

technology-oriented curricula on the effectiveness of such 

interventions. This finding underscores the need to tailor 

educational strategies to the characteristics and requirements 

of each academic program. 

The implications of this study extend beyond the classroom, 

as the use of context-specific projects not only motivates 

students but also promotes sensitivity to local problems, 

reinforcing their commitment to developing practical solutions 

for their environment. This presents opportunities to expand 

this approach to other disciplines and institutions, exploring its 

scalability and applicability in diverse contexts. 

Finally, this study emphasizes the need to integrate 

technological tools and innovative methodological approaches 

in engineering education, contributing to the development of 

key competencies for the 21st century. However, future 

research should address the identified limitations, including 

exploring longer interventions and analyzing other 

technological tools, to further enrich our understanding of how 

to enhance computational thinking in educational contexts. 

This study has several limitations that should be 

acknowledged to provide a balanced perspective. First, the 

intervention was conducted over a relatively short duration (16 

weeks), which may not fully capture the long-term 

development of computational thinking skills. Second, the 

sample was limited to students from two specific universities 

in the Huancavelica region of Peru, which may introduce 

potential biases related to the local context and reduce the 

generalizability of the findings to other regions or educational 

settings. Third, the intentional non-probabilistic sampling 

method used in this study, while appropriate for the scope of 

the research, may limit the representation of the broader 

population of engineering students. Additionally, the 

technological projects developed were tailored to address local 

community problems, which could pose challenges to the 

scalability or replication of these projects in different 

geographical or institutional contexts. 

Future studies should aim to expand on the findings of this 

research by exploring the integration of technological projects 

in diverse cultural and educational contexts. For instance, 

conducting similar studies in regions with varying levels of 

technological infrastructure or educational policies could 

provide valuable insights into the adaptability and 

effectiveness of these interventions. Additionally, future 

research could examine the impact of incorporating alternative 

technological tools, such as Raspberry Pi, micro:bit, or cloud-

based platforms, to further enhance computational thinking 

skills. Comparative studies between different engineering 

disciplines or even non-STEM fields could also yield a broader 

understanding of how computational thinking methodologies 

can be tailored to various academic and professional domains. 

Finally, longitudinal studies assessing the long-term retention 

and application of computational thinking skills acquired 

through these projects would contribute significantly to the 

field, offering evidence of their enduring impact on students’ 

academic and professional development. 
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