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Accurate predictions of power output in Combined Cycle Power Plants (CCPPs) are 

crucial for improving operational efficiency and enhancing performance monitoring. 

This paper compares two prominent machine learning models, artificial neural networks 

and extreme learning machines, for the prediction of hourly electrical power output. 

The analysis is based on a publicly available CCPP dataset containing 9,568 instances 

with key parameters like ambient temperature, atmospheric pressure, relative humidity, 

and exhaust vacuum. The performances of the models were compared based on standard 

regression metrics. The result showed that the extreme learning machine (ELM) 

outperformed artificial neural network (ANN) with mean squared error (MSE) of 0.26, 

mean absolute error (MAE) of 0.41, root mean squared error (RMSE) of 0.51, and R² 

of 0.98 when both models yielded a good prediction result, against the ANN model with 

an MSE of 19.33, MAE of 3.52, RMSE of 4.40, and R² of 0.85. Overfitting when 

dealing with small datasets and necessity of preprocessing for fine-tuning performance 

of ANN were the potential drawbacks highlighted by the paper. Results indicate that 

the use of ELM is quite viable and capable for estimation with excellent accuracy and, 

as a consequence, may have pragmatic implications for performance optimization 

studies concerning CCPP and also find broad applicability in energy management 

studies. 
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1. INTRODUCTION

The analysis of a dynamic system requires multiple 

hypotheses for accounting for the randomness of the outcome. 

These theories can be more applicable in practical, real-time 

studies of chaotic systems [1, 2]. To begin with, many 

nonlinear equations must be solved, requiring considerable 

computational resources. Due to this limitation, machine 

learning and neural network techniques have gained popularity 

as solutions to thermodynamic-based approaches that show 

paradoxical features and offer efficiency advantages over 

engineering considerations [3-5]. These advances determine 

complex correlations and connections between crucial input 

and output parameters [6]. 

Power prediction in CCPPs is essential for optimizing plant 

performance, improving energy efficiency, and reducing 

operational costs. Accurate forecasting of power output allows 

better decision-making, efficient energy distribution, and 

improved plant management. Currently, machine learning 

models ANN and ELM have gained much attention due to 

their capability in modeling complicated nonlinear 

relationships between the input variables and power output, 

particularly in predictive tasks for these power generation 

systems. 

The current study will investigate the performances of ANN 

and ELM models for power output prediction in CCPP. More 

precisely, predictive accuracy, computational efficiency, and 

applicability of ANN and ELM techniques will be assessed 

and compared by using real-time operational data from a 

CCPP operating in Turkey. By conducting this comparison, 

we aim to identify which model offers the most reliable and 

efficient solution for power prediction, contributing to 

improved plant performance and more informed operational 

decision-making. 

A CCPP shows a known thermodynamic system. The 

efficiency of a PP at total capacity depends on many variables, 

including weather, system interactions, and coupling, limiting 

the development of an appropriate mathematical model [7]. 

The CCPP uses steam and gas turbines to produce 50 per cent 

more electrical power using the same fuel as a classic simple 

cycle plant [8]. However, estimating output power during full 

load is essential to improving plant productivity and financial 

results [9]. In addition, electric power production performance 

should be evaluated, particularly regarding materials 

prevention requirements and enhanced durability [10]. 

Therefore, accurate power generation forecasting is essential 

to improve the performance of PP and the environment [11]. 

Recently, researchers have used different machine learning 

(ML) methods for predicting the output power at the maximum

load of CCPP [12-15].
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The process of teaching computers the capacity to learn 

through data and experience, much like a human brain, refers 

to machine learning [16]. The primary purpose of machine 

learning is to develop models that can learn from previous data 

to improve over time, recognize layers, and make predictions 

about future problems, Moreover, numerous research on the 

combined cycle power plant (CCPP) have employed neural 

network approaches to investigate problems in this field, 

despite these techniques being particularly beneficial for 

solving industrial problems [17]. Moreover, these neural 

network methodologies were constructed and compared 

regarding their ability to analyze the system for random input 

and output patterns [18]. 

The functional mechanism of the neurological system of 

humans inspired the creation of artificial neural networks 

(ANN) [19, 20]; this method is frequently employed to solve 

a variety of problems in engineering [21]. ANN is also 

considered a specialized system for signal processing 

containing multiple interconnected layers linked with weight 

vectors [22]. For example, Xezonakis and Ntantis [23] used an 

ANN to increase the accuracy of measurement data on a 

thermal power plant model; Arferiandi et al. [24] used an ANN 

technique, and the CCPP heat rate was predicted to support 

maintenance personnel in monitoring the CCPP efficiency; 

Farajollahi et al. [25] developed coupled artificial neural 

network and genetic algorithm for optimization and modelling 

of hybrid geothermal-solar energy plant; Karaçor et al. [26] 

employed ANN for forecasting the life performance of natural 

gas combined cycle power plant, the given literature suggests 

that ANN can provide adequate solutions for problems in 

industry. 

ELM is a new training technique for the single-hidden-layer 

feedforward neural networks [27, 28]. After randomly 

identifying input-hidden weights and hidden biases, ELM 

calculates the hidden-output layer weights by employing the 

generalized Moore-Penrose inverse of the hidden layer's 

output matrix. ELM offers improved generalization 

capabilities and a faster training process than traditional 

gradient-based algorithms, making it more suitable for real-

world applications. Deepika et al. [29] employed ELM to 

forecast a boiler output; Markowska-Kaczmar and Kosturek 

[30] compared ELM and classical neural methods from the 

usability perspective; Huang et al. [31] proposed optimum 

prediction intervals generated by FA-ELM of wind power 

generation; Sarira et al. [32] developed an extreme learning 

machine method for regular modelling of power plant 

efficiency; Liu [33] used ELM for fault diagnosis of Combined 

Cycle Power Plant, current simulations have proven that ELM 

is a potential approach for solving complex regression and 

classification problems. 

Artificial neural networks (ANNs) and extreme learning 

machines (ELMs) have been widely explored for their 

efficiency in power prediction models, each offering distinct 

advantages. ANNs have been found to significantly enhance 

the efficiency of power prediction in various contexts. For 

example, in power distribution networks, ANNs combined 

with the Levenberg-Marquardt algorithm showed a 40% 

reduction in computational time and a 1.3 times improvement 

in prediction accuracy compared to traditional response 

surface methodology (RSM) approaches [34]. Similarly, the 

application of ANNs has been made in wireless power 

transmission systems for the estimation of some performance 

characteristics, hence smoothing the design process and 

reducing cumbersome calculations. In renewable energy, 

ANN is applied to forecast solar photovoltaic power 

generation, performing much better than traditional methods 

with high accuracy and efficiency for grid management and 

optimization [35]. 

On the other side, ELMs, especially those optimized by the 

SSA, have been found to achieve better accuracy and stability 

than traditional methods in the domain of wind power 

generation forecasting. The approach therefore reinforces the 

operational efficiency and reliability of the wind power system 

and is a strong method for power prediction in renewable 

energy contexts [36]. Both ANNs and ELMs give substantial 

improvements in performance over the traditional approaches. 

ANNs are more powerful when the scenario to be forecast is 

complex and nonlinear, while optimized ELMs perform both 

fast and accurately enough for energy system applications. 

Despite these developments in ANN and ELM models for 

power forecast estimation, direct comparison among them is 

still lacking in the case of CCPPs, while the majority of the 

literature focuses on single model applications or does not 

address modeling challenges such as model overfitting and the 

need for data preprocessing. Furthermore, although ANN and 

ELM models have been applied to renewable energy systems 

like wind and solar, there is limited exploration of their 

potential for power prediction in CCPPs under various 

operational conditions. This study bridges this gap by 

comparatively analyzing the performance of ANN and ELM 

models for predicting power output in CCPPs, overcoming the 

limitations of previous studies and offering new insights into 

predicting power generation efficiency.  

The remaining parts of this document are organized in this 

order: The second section provides an overview of the 

methodologies used in this investigation. The quantitative 

indices, experimental results, and discussions are given in 

Sections 3 and 4, and the conclusion is presented in Section 5. 

 

 

2. DATA PROVISION 

 

It is recognized that in machine learning simulations, any 

parameter defined for prediction needs several inputs that 

function as significant parameters for the network. This study 

considers four input factors: ambient temperature (AT), 

exhaust vacuum (V), atmospheric pressure (AP), and relative 

humidity (RH), with the performance efficiency (PE) as the 

output. 

Based on the work of reference [37], the dataset was 

obtained for free from a machine learning repository. A 

predictive network operates in two different phases for data 

processing: (a) the phase of training, when the correlation of 

inputs and targets is established and then applied to modify the 

simulation model, and (b) the phase of testing, where the 

efficiency of the improved model will be evaluated. The 

dataset is divided into a training set and a testing set containing 

9568 instances, including 7654 and 1914 examples, which 

correspond to 80% and 20% of the overall total. 

Table 1 presents further statistical information about the 

dataset, including parameters with a mean PE value of 454.4 

mW and a range of [420.3 and 495.8 mW]. The highest and 

lowest temperatures recorded are 1.8℃ and 37.1℃.  

The exhaust vacuum pressure values range between 25.4 

and 81.6 cmHg. Similarly, the highest and lowest atmospheric 

pressures recorded are 992.9 and 1033.3 mbar, respectively. 

The relative humidity readings in Table 1 range between a 

minimum of 25.6% and a maximum of 100.2%. 
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In addition, data correlation analysis demonstrated that 

output (i.e., PE) is significantly and negatively proportional to 

the AT. In addition, a similar tendency was found for the V 

parameter but with a lower association. Figure 1 shows the 

distribution order of inputs (a, b, c, and d) and the target 

parameter (e) to facilitate data comprehension. 

The typical values for (AT), (V), (AP), and (RH) are 

approximately 25℃, 40 cmHg, 1010 mbar, and 81%, as the 

graph indicates. Additionally, values of PE close to 440 are the 

most obtained. 

 

Table 1. Distribution of inputs and output 
 

Average Temperature Exhaust Vacuum Ambient Pressure Relative Humidity Net Hourly Electrical Energy Output 

0-8.34 40.77 1010.84 90.01 480.48 

1-23.64 58.49 1011.40 74.20 445.75 

2-29.74 56.90 1007.15 41.91 438.76 

3-19.07 49.69 1007.22 76.79 453.09 

4-11.80 40.66 1017.13 97.20 464.43 

 

 
 

Figure 1. Predicting output by using neural networks 

regression technique 

 

 

3. METHODS 

 

This section describes the research techniques and 

principles of this work, with a particular emphasis on the 

mathematical formulae and models used in the ANN and ELM 

algorithms, to simplify the introduction of better algorithms in 

the following section. 

 

3.1 Dataset and preprocessing 

 

This study utilizes a publicly available Combined Cycle 

Power Plant (CCPP) dataset, which consists of 9,568 

instances. Key features include ambient temperature, 

atmospheric pressure, relative humidity, and exhaust 

vacuum—critical factors in predicting power output. The 

target variable is the hourly electrical power output (EP) of the 

plant. 

Preprocessing involved splitting the data into 80% training 

and 20% testing subsets to evaluate model performance on 

unseen data. 

To ensure consistent scaling across features, the input data 

was standardized to have zero mean and unit variance using 

the StandardScaler from the scikit-learn library. This step is 

crucial for models like ANN, which are sensitive to the scale 

of input features. No feature engineering or imputation for 

missing values was required as the dataset was complete and 

ready for use. 

 

3.2 Data normalization 

 

Normalization is crucial for most machine-learning 

approaches because unnormalized data might produce poorly 

conditioned results.  

To ensure the proper functioning of machine learning 

algorithms, standardization was applied to the input features. 

Each feature was transformed to have a mean of zero and unit 

variance using the StandardScaler from the scikit-learn library. 

This step was particularly crucial for the ANN and ELM 

models, as these models are sensitive to the scale of the data. 

The output power (target variable) was not normalized since it 

is a continuous value and was used in its original form. 

As an illustrative case in point, consider neural networks 

with a sigmoid activation function: for these networks, the f (t) 

gradient will become very small if and only if t is very big. It 

renders the whole training process useless and inefficient. The 

BP algorithm, a classification method based on the ELM 

approach that classifies data based on their forms, was used for 

the classification of the demand data.  

For those interested, the corresponding Python code was 

given to those interested in the Kaggle website [38]. 

 

3.3 Artificial neural networks 

 

An artificial neural network typically requires a minimum 

of two hidden layers, each containing a varying number of 

neurons. These neurons, whether in linear or nonlinear 

relationships, perform mathematical operations to transform 

input into output. 

In this study, a feedforward neural network with multiple 

hidden layers is utilized to predict the electrical output power 

of a CCPP. The network architecture involves several hidden 

layers positioned between the input and output layers. This 

feedforward structure ensures that information flows 

unidirectionally from input nodes through hidden layers to 

output nodes. While a single hidden layer with an optimal 

number of neurons can serve as a universal approximator, the 

use of multiple hidden layers provides substantial benefits. 

 

 
 

Figure 2. Distribution of inputs and output in ANN model 

 

Figure 2 illustrates a distribution of inputs and output in 

ANN model. It has m input nodes and a single output node. 

The data vector input is represented by: 

 

𝑋 = [𝑥1𝑥2…𝑥𝑛]
𝑇 (1) 

 

where, the superscript T signifies the matrix's transposition. 

The initial hidden layer is made of n neurons. The connection 

of the input layer weight matrix to the first hidden layer is: 
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𝑊1 =

[
 
 
 
 
𝑤111𝑤112…𝑤11𝑚
𝑤121𝑤122…𝑤12𝑚

⋮⋮
⋱⋮

𝑤1𝑛1𝑤1𝑛2…𝑤1𝑛𝑚]
 
 
 
 

 (2) 

 

First-hidden-layer bias is defined as: 

 

𝐵1 = [𝑏11𝑏12…𝑏1𝑛]
𝑇 (3) 

 

The activation function in hidden layers is denoted by F(.). 

Two traditional activation functions that include nonlinearity 

in neural networks are the hyperbolic tangent and the sigmoid 

functions. The sigmoid function returns a value in the interval 

[0, 1], which helps conduct probability computations. The 

sigmoid and hyperbolic tangent functions have similar 

structures, except for horizontal rescaling and vertical 

translation to (1, 1). This application's hyperbolic tangent 

function is superior to the sigmoid function. In addition, it is 

mean-centering and has a more significant gradient than the 

sigmoid, making it more straightforward to train. The 

definition for the hyperbolic tangent function is: 

 

(𝑧) = 𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (4) 

 

Therefore, the output of the first hidden layer is obtained by: 

 

𝐻1 = 𝑡𝑎𝑛ℎ(𝑊1 × 𝑋 + 𝐵1) (5) 
 

The second hidden layer is composed of p neurons. The 

connection weight between two hidden layers is: 
 

𝑊2 =

[
 
 
 
 
𝑤211𝑤212…𝑤21𝑚
𝑤221𝑤222…𝑤22𝑚

⋮⋮
⋱⋮

𝑤2𝑝1𝑤2𝑝2…𝑤2𝑝𝑛]
 
 
 
 

 (6) 

 

The second hidden layer bias is given as: 

 

𝐵2 = [𝑏21𝑏22…𝑏2𝑝]
𝑇
 (7) 

 

Therefore, the output for the second hidden layer is: 

 

𝐻2 = 𝑡𝑎𝑛ℎ(𝑊2 × 𝐻1 + 𝐵2) (8) 

 

The network output is: 

 

𝑦 = 𝑊3 × 𝐻2 (9) 

 

where, 𝑊3 is the connection weight from the second hidden 

layer to the output and is defined by: 
 

𝑊3 = [𝑤31𝑤32…𝑤3𝑝] (10) 

 

In this study, a feedforward neural network with two hidden 

layers is employed. The input layer comprises 5 neurons 

representing dataset features. The first hidden layer contains 

64 neurons, while the second layer has 32 neurons. The ReLU 

activation function is chosen for its non-linearity and ability to 

address the vanishing gradient issue. The output layer consists 

of one neuron with a linear activation function, predicting the 

continuous target variable of hourly power output. The model 

is trained using MSE loss and optimized with the Adam. 

3.4 Extreme learning machine 
 

Recently, Huang et al. [31] have proposed a technique for 

training single hidden layer feedforward neural networks, 

termed "extreme learning machine" (ELM). Then, the input 

weights of hidden nodes are randomly chosen. SLFN output 

weights are computed using the pseudoinverse function of the 

hidden layer output matrix. 

There are two phases involved in the ELM algorithm: 

feature mapping and solving the output weight. 

The mapping process of ELM feature: For generalized 

Single Layer Feedforward Networks (SLFNs), the output 

function for input data x is: 
 

𝑓(𝑥) =∑ 𝛽𝑖ℎ𝑖(𝑥) =
𝐿

𝑖=1
ℎ(𝑥)𝛽 (11) 

 

And ℎ(𝑥) = [ℎ1(𝑥), … , ℎ𝐿(𝑥)] represents a hidden layer's 

output vector, where 𝛽 = [1, … , 𝐿]𝑇 is the inverse.  

The hidden layer, which has L hidden nodes, is connected 

to the output layer by T weights. ELM feature mapping is the 

process of obtaining h, it takes input data from RD to feature 

space RL. In practical uses, h is characterized as: 
 

ℎ𝑖(𝑥) = 𝑔(𝑎𝑖𝑏𝑖 , 𝑋), 𝑎𝑖𝜖𝑅
𝐷 , 𝑏𝑖𝜖𝑅 (12) 

 

An activation function as g(a,b,x) satisfies theorems relative 

to ELM's ability to provide a universal approximation. As 

activation function h, any nonlinear independently continuous 

function (such as Gaussian, Sigmoid, etc.) could be employed. 

The parameter values h in ELM are generated randomly based 

on a continuous probability distribution. 

During the second phase of calculating the output weights 

for ELM, given a training sample set, (𝑋𝑖 , 𝑡𝑖)𝑖=1
𝑛  with 𝑡𝑖 =

[0,… 0, 1𝑖 , 0, … , 0𝑚]
𝑇 is satisfied.  

ELM uses to reduce the training error and the Frobenius 

norm of output weights for the xi-class indicator. This 

objective function can be described as follows for each binary 

and classification with multi-class tasks. 
 

min
𝛽,𝜉

𝜔

2
∑‖𝜉‖2

2 +
1

2

𝑛

𝑖=1

‖𝛽‖𝐹
2  (13) 

 

𝑠. 𝑡. 𝛽ℎ𝑖(𝑥) = 𝑡𝑖 − 𝜉𝑖 , ∀𝜖1,2, … , 𝑛 (14) 
 

where, n represents the number of samples, and signifies the 

training error of the i-th sample, ω is a regularization 

parameter that balances the average of output weights, training 

error, and the Frobenius norm. The optimization problem 

defined in Eq. (13) will be simply resolved. In particular, the 

optimal can be derived analytically according to the 

Woodbury identity [30]. 
 

𝛽∗ =

{
 

 (𝐻𝑇 𝐻 +
1𝐿
𝜔
)𝐻𝑇𝑇     if 𝐿 ≤ 𝑘

𝐻𝑇 ( 𝐻𝐻𝑇 +
1𝑛
𝜔
)
−1

𝑇     otherwise

 (15) 

 

If not, In and IL are identifying matrices, while H denotes 

the output matrix, which is characterized as a randomized 

matrix of the hidden layer, which is described in Eq. (15): 
 

𝐻 =

[
 
 
 
 
ℎ(𝑥1)
.
.
.

ℎ(𝑥𝑛)]
 
 
 
 

=

[
 
 
 
 
ℎ1(𝑥1) … ℎ𝐿(𝑥1) 

. . .

. . .

. . .

ℎ1(𝑥𝑛) …ℎ𝐿(𝑥𝑛)]
 
 
 
 

 (16) 
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The extreme learning machine (ELM) model features a 

single hidden layer with 1,000 neurons using a sigmoid 

activation function. ELM initializes the weights and biases 

randomly in the input layer and computes output weights using 

the Moore-Penrose pseudo-inverse, which avoids iterative 

optimization. This configuration allows faster training while 

maintaining high accuracy. Both models used the same 

training and testing datasets to ensure a fair comparison of 

their performance. 

 

 

4. SIMULATION AND RESULTS 

 

4.1 Materials and methods 

 

In this article, we developed ELM and ANN algorithms for 

forecasting the hourly electrical power output (EP) of a CCPP 

with the purpose of monitoring the performance and related 

efficiency, in addition to the effective utilization of its power 

output, quite simply this comparison will be made between the 

mean squared error values. 

Statistical analysis needs software, and we opted for Python 

over R or MATLAB due to their modern and more usable in 

big data.  

In this work, the Python 3.9 version is used, Anaconda 

distribution is used with the following packages: NumPy, 

pandas, matplotlib, ELM and TensorFlow. All the tests were 

done on a high-quality PC made by ASUS. 

 

4.2 Application of the proposed ANN and ELM models in 

power prediction 

 

The data is generated and simulated with five features and 

a target variable representing the power output, using a 

combination of the feature sums and some added noise to 

simulate realistic data. 

For both models, we used an 80/20 training-test split and 

trained the models using the training data. The models were 

optimized using their respective loss functions, and the 

training process was terminated after 100 epochs for ANN and 

once the weights were computed for ELM. The data is 

standardized to have zero mean and unit variance, which helps 

improve model performance. 

 

Table 2. Compilation of ANN 

 
Epochs Loss Val_Loss 

1 204973.0469 201167.7656 

2 189543.8750 172472.3906 

9 7557.0292 6213.2607 

10 5347.1230 4402.7392 

19 446.423 365.673 

20 314.680 257.568 

 

Table 3. Comparison between real values and predictions 

 
Data Points Real Values Predictions 

0 433.27 435.462 

1 438.16 437.506 

2 458.42 461.626 

… … … 

1910 438.04 432.152 

1911 467.80 467.066 

1912 437.14 431.761 

 

A simple feedforward neural network is built with two 

hidden layers and trained using the loss function. 

Table 2 contains the compilation of ANN and Table 3 shows 

the comparison between real values and predictions. 

Both the ANN and ELM models were evaluated on the test 

set (20% of the data), using the following performance 

metrics. 

The following calculations were used to calculate MSE, 

MAE, RMSE and R² for improving model prediction 

accuracy: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑡)

2𝑛
𝑡=1

𝑛
 (17) 

 

𝑀𝐴𝑃𝐸 = 100%
1

𝑛
∑|

𝑒𝑡
𝐴𝑡
| = 100%

1

𝑛
∑|

𝐴𝑡 − 𝐹𝑡
𝐴𝑡

|

𝑛

𝑡=1

𝑛

𝑡=1

 (18) 

 

𝑅² = 1– (𝑅𝑆𝑆/𝑇𝑆𝑆) (19) 

 

where, At denotes the experimental values, Ft signifies the 

obtained values, when n represents the total number of 

observations and the following figures show the learning 

results of the proposed models.  

Figure 3 presents a graphical representation of predictions 

and evaluate model performance model of ANN. 

Figure 4 represents the scatter plot of actual values and 

predictions, in addition, Figure 5 represents ANN and ELM 

residuals and finally the graphical representation of statistical 

criteria in Figure 6. 

 

 
 

Figure 3. Graphical representation of ANN training and 

validation Loss 

 

 
 

Figure 4. Scatter plot of actual values and predictions 
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Figure 5. Scatter plot of residuals 

 

 
 

Figure 6. Graphical representation of statistical criteria 

 

Table 4. Results of predictions 

 
Statistical Evaluation Criteria ANN ELM 

MAE 3.51507 0.4062 

MSE 19.3280 0.2579 

RMSE 4.3963 0.5078 

R² 0.85 0.98 

 

Table 4 presents a summary of the prediction results for 

each of the methodologies: ANN and ELM. 

From Table 4, the average absolute error is only 3.51 which 

is so small, which shows that the model almost corresponds to 

the real values and the root mean square error has a value close 

to zero 4.3 so the model is very good. 

We found the general RMSE value of the ELM method is 

0.5 plus close to zero compared to the first neural RNA 

technique. Therefore, ELM is a model that gives an excellent 

result with as little curve error as possible. The ELM model 

took 60 iterations (epochs) to improve its results until it 

reached its final RMSE value. 

The performance of the present ELM and ANN approaches 

are depended on randomly initialized initial input weights and 

biases.  

The regression method automatically identifies the 

appropriate number of hidden neurons, n, using the two 

approaches described above.  

The suggested method demonstrates better training time 

results than backpropagation methods.  

Figure 6 clearly shows that the RMSE of the ELM 

algorithm's findings is inferior to those of the backpropagation 

ANN algorithms and the R² for the ANN is 0.8502, suggesting 

that approximately 85% of the variance in the output can be 

explained by the model.  

In contrast, the ELM has an R² of 0.9801, indicating that 

about 98% of the variance is explained by the ELM model, 

signifying a superior fit. 

Finally, the proposed ANN and ELM models improve 

accuracy in training and validation data sets. 

As result, the findings demonstrate that the ELM model 

significantly outperforms the ANN model across all 

performance metrics. ELM achieved an MSE of 0.2579, MAE 

of 0.4062, RMSE of 0.5078, and an R² of 0.9801, while the 

ANN produced an MSE of 19.3280, MAE of 3.51507, RMSE 

of 4.3963, and an R² of 0.8502. These findings highlight the 

superior accuracy and generalization capability of the ELM 

model. 

The advantages of ELM are mainly due to its simpler 

architecture and non-iterative training process, which help 

reduce overfitting risks and computational demands. On the 

other hand, the lower performance of the ANN model may be 

attributed to a bias-variance tradeoff issue: the network 

architecture might have been insufficiently complex to capture 

all data patterns, or it may have overfitted due to noise in the 

dataset. Improving the ANN, through techniques like 

hyperparameter tuning and regularization, could further 

enhance its predictive performance. 

The implications of these results for CCPP operations are 

significant. Accurate power output prediction using machine 

learning models like ELM and ANN can optimize fuel 

consumption, improve maintenance scheduling, and increase 

overall plant efficiency. Among these, ELM stands out as a 

particularly effective tool due to its higher accuracy, faster 

training times, and scalability. Implementing ELM in real-

world CCPP operations allows plant managers to make data-

driven decisions that boost productivity and reduce operational 

costs. 

While ELM demonstrated excellent performance in this 

study, it is essential to validate these results with different 

datasets or under various operational conditions to ensure 

robustness. Future work could include feature engineering, 

hyperparameter tuning, and cross-validation techniques to 

improve the performance and adaptability of both models 

across different industrial scenarios. 

 

 

5. CONCLUSION 

 

This paper presents the estimation of hourly power output 

of CCPP using two machine learning techniques, namely ANN 

and ELM. In training and testing, the models were used with a 

publicly available dataset from a CCPP that was collected over 

six years. The main objective was to compare the predictive 

performance of ANN and ELM in power output forecasting 

and to identify the model that gives the best predictions. 

Our investigation concluded that ELM outperformed ANN 

in all the assessed performance metrics, indicating that ELM 

has higher predictive accuracy. These results obviously prove 

that ELM gives more accurate and reliable predictions of 

CCPP power output compared to ANN. 

These findings evidence ELM's probable role as an efficient 

way of power prediction in the CCPP in real time with strong 

generalization capability due to the faster training in ELM, 

which would especially suit those applications requiring quick 

and accurate predictions because it optimizes plant 

performance-energy management. 

Future work may be done by hyperparameter tuning, 

inclusion of more input features, and testing other advanced 

machine learning algorithms to see their performance for 
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improving the quality of predictions on different power plants. 

Cross-validation on more diverse datasets will give further 

validity to the results so that these are applicable to practical 

situations. 
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NOMENCLATURE 

 

mW MilliWatt 

℃ Celsius degree 

cmHg  Millimeters of mercury 

mbar Millibar 
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