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Breast cancer detection using medical imaging remains a challenging task due to the large 

volume of mammograms and the inherent class imbalance in datasets. This study proposes 

a novel regions of interest (ROIs)-based approach using RSNA screening mammography 

breast cancer detection dataset. By focusing on specific ROIs within the mammograms, the 

computational load is reduced while allowing the model to concentrate on the most critical 

areas. Additionally, SMOTE Tomek Link is applied to mitigate the class imbalance by 

generating synthetic samples for the minority (cancerous) class and removing noisy or 

overlapping samples. Three dataset splits were created: Split 1 (5:1 ratio of normal to cancer 

cases), Split 2 (3:1), and a fully balanced Random Under-Sampling (RUS) dataset. Various 

CNN models, including InceptionV3, ResNet152V2, DenseNet201, and EfficientNetB7, 

were evaluated on different dataset splits. Our results demonstrate that the EfficientNetB7 

model, in conjunction with ROI extraction and SMOTE Tomek Link, achieves the highest 

accuracy of 97.41% on the Split 2 dataset, highlighting the effectiveness of these 

preprocessing techniques in enhancing deep learning-based breast cancer detection. 
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1. INTRODUCTION

Breast cancer is a major global health concern and one of 

the most common malignancies affecting women globally [1-

3]. After lung cancer, breast cancer ranks as the second most 

prevalent cause of death among women [4]. Breast cancer 

incidence continues to rise according to statistics from 

respectable health organizations, emphasizing the essential 

need for early detection and intervention. Early detection not 

only improves treatment outcomes but also increases the 

probability of a full recovery. Studies show that women 

diagnosed with breast cancer in its early stages have 

substantially better survival rates, enabling more effective and 

less invasive treatments [5]. 

Despite advancements in medical imaging technologies, 

accurate breast cancer detection remains a challenging task. 

The complexity lies in the vast volume of mammographic 

images and the relatively small size of abnormalities compared 

to surrounding breast tissue [6]. Moreover, the imbalanced 

nature of breast cancer datasets, where normal cases 

significantly outnumber cancerous ones, exacerbates the 

problem by skewing model predictions towards the majority 

class [7]. One of the key issues in breast cancer detection is 

how to efficiently process large volumes of medical images 

while maintaining a high level of accuracy in detecting 

malignancies. Manual examination of such datasets is time-

consuming, labor-intensive, and prone to human error [8]. This 

highlights the need for automated methods that can accurately 

identify suspicious regions within images without 

overwhelming medical practitioners with data overload [9]. 

Breast cancer detection methods can be broadly classified 

into two types: region-of-interest (ROI)-based and patch-

based approaches [10]. ROI-based methods focus on isolating 

specific areas of the image that are most likely to contain 

abnormalities, excluding irrelevant regions to streamline 

analysis. In contrast, patch-based methods divide the image 

into smaller segments, conducting feature extraction or 

detection on each segment individually [11]. Determining 

whether patch-based or ROI-based methods are better depends 

on various factors including the specific application, dataset 

characteristics, computational resources, and the desired 

balance between accuracy and efficiency [12]. Patch-based 

methods often offer more granularity and flexibility in 

analyzing images as they operate on smaller segments or 

patches, allowing for detailed feature extraction and 

potentially capturing local patterns effectively. However, they 

may require processing multiple patches across the entire 

image, which can be computationally intensive and time-

consuming, especially for high-resolution images [13]. On the 

other hand, ROI-based methods focus only on the regions of 

interest containing relevant information, potentially reducing 

computational overhead and processing time. Choosing ROI 

is a common step in medical image analysis across all imaging 

modalities [14]. By isolating the target areas, ROI-based 
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approaches may also enhance the signal-to-noise ratio and 

improve the efficiency of subsequent analysis steps. However, 

identifying accurate ROIs upfront can be challenging, and 

there is a risk of overlooking important information present in 

other parts of the image. 

This study proposes a ROI-based approach combined with 

oversampling techniques to address these challenges. By 

focusing on specific areas within the mammograms that are 

likely to contain abnormalities, the ROI-based method reduces 

the computational load and allows the model to concentrate on 

the most critical parts of the image [15]. Additionally, SMOTE 

Tomek Link, an oversampling technique, is applied to handle 

the dataset imbalance by generating synthetic samples for the 

minority (cancerous) class while removing noisy or 

overlapping samples between the classes [16]. This combined 

approach not only improves the model's ability to detect 

cancerous regions but also mitigates the effects of class 

imbalance, leading to more reliable predictions. 

The integration of ROI-based methods with SMOTE 

Tomek Link for breast cancer detection is a novel contribution 

in this field. While ROI-based methods have been explored in 

medical image analysis, most studies have focused on either 

ROI extraction or oversampling techniques in isolation. Our 

approach stands out by addressing two critical issues 

simultaneously: focusing on the region’s most likely to contain 

abnormalities and dealing with the class imbalance inherent in 

breast cancer datasets. In contrast to traditional patch-based 

methods that divide the entire image into smaller sections for 

analysis, our ROI-based method specifically isolates the most 

relevant areas, which reduces both computational costs and the 

risk of false positives. Moreover, the use of SMOTE Tomek 

Link further enhances the model's performance by balancing 

the dataset, allowing the CNN architectures to learn effectively 

from both normal and cancerous cases. By addressing both 

data imbalance and precise feature extraction, this study sets a 

new standard for breast cancer detection, making it a 

promising approach for clinical applications where accuracy 

and efficiency are paramount. 

 

 

2. RELATED WORKS 

 

Mammography and ultrasonography are widely used as 

imaging modalities for the early detection of breast cancer. 

Mammography is a process that uses low-dose X-rays to 

capture images of the breast for diagnosing breast cancer from 

various projection angles. Meanwhile, ultrasonography is a 

non-radioactive and low-invasive procedure that captures 

images from various angles using probe pressure [17]. While 

both techniques are crucial in breast cancer diagnosis, 

mammography remains the gold standard, particularly with 

recent technological advancements such as digital 

mammography, tomosynthesis, and artificial intelligence 

(AI)-based CAD systems, which have significantly improved 

accuracy and sensitivity in cancer detection. 

Recent studies have focused on improving mammography 

using deep learning and machine learning approaches. In the 

study by Jafari and Karami [18], a Convolutional Neural 

Network (CNN) approach is employed for diagnosing breast 

cancer using mammography images. CNNs have emerged as 

a dominant trend in the healthcare sector due to their powerful 

feature extraction capabilities. This approach leverages pre-

trained CNN models for feature extraction, followed by 

classification using various machine learning algorithms, 

including k-Nearest Neighbors (k-NN), Support Vector 

Machine (SVM), Random Forest (RF), and Neural Network 

(NN). The dataset used in this study is the RSNA Screening 

Mammography Dataset. Additionally, the dataset includes key 

features such as age, implantation, Breast Imaging Reporting 

and Data System (BIRADS), and density, which are used to 

enhance the classification process. The results of this study 

demonstrate that the Neural Network-based model achieved 

the highest accuracy, reaching 92% for breast cancer diagnosis 

on the RSNA dataset. 

In a study by Alsubai et al. [19], the authors propose a robust 

model for improving breast cancer classification. Their 

approach leverages advanced techniques like Deep CNN and 

InceptionV3 for feature extraction, Modified Scalable-

Neighborhood Component Analysis for feature fusion, and 

Genetic-Hyper Parameter Optimization for tuning model 

parameters. This comprehensive approach aims to enhance 

both the accuracy and efficiency of breast cancer 

prognostication. Key contributions of the model include the 

extraction of significant features, optimization of distance-

learning objectives, and identification of optimal 

hyperparameter values for classification. The model's 

performance was evaluated using multiple metrics, achieving 

a high accuracy rate of 99.87% on the CBIS-DDSM dataset, 

demonstrating its efficacy in distinguishing between normal 

and affected breast cancer cases. Consequently, in this 

research, the RSNA and CBIS-DDSM datasets will be 

employed for further evaluation. 

In the study by Alrubaie et al. [20], a deep learning model 

incorporating advanced feature selection techniques was 

employed for breast cancer detection using ultrasound images. 

The researchers utilized CNN and VGG16 for feature 

extraction, alongside Principal Component Analysis (PCA) 

for dimensionality reduction. By combining these methods, 

the study achieved classification accuracies ranging from 93% 

to 97%, highlighting the model's ability to identify relevant 

patterns in breast cancer diagnosis. To enhance the precision 

of the model, the dataset was preprocessed using ROI 

technique, which involved cropping the ultrasound images to 

focus on the most significant areas for analysis. This 

preprocessing step ensured that the model concentrated on the 

most informative regions, thus improving its performance in 

detecting cancerous tissues. The integration of feature 

extraction with CNN and VGG16, combined with PCA for 

feature selection, demonstrates a well-rounded approach to 

maximizing classification accuracy while reducing 

computational complexity. 

While this study demonstrated the effectiveness of CNN 

models in breast cancer detection, it did not address the issue 

of class imbalance within the dataset, which can lead to biased 

model predictions. Our study improves upon this limitation by 

incorporating oversampling techniques, specifically SMOTE 

Tomek Link, to balance the dataset and enhance detection 

accuracy. In the study by Alrubaie et al. [20], a breast cancer 

dataset with significant class imbalance—355 benign 

instances and 214 malignant instances—posed challenges for 

accurate machine learning predictions. To address this, the 

researchers applied SMOTE-Tomek Link, a data 

preprocessing technique that combines Synthetic Minority 

Over-sampling Technique (SMOTE) to generate synthetic 

minority class samples and Tomek Link to remove noisy or 

overlapping samples between classes, thereby improving data 

balance. The study utilized Naive Bayes and SVM models to 

predict breast cancer, and performance was evaluated using 
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accuracy, sensitivity, and Area Under the Curve (AUC) 

metrics. Results showed that the SVM model achieved 96.80% 

accuracy, with matching sensitivity and AUC values, while the 

Naive Bayes model achieved 95.00% accuracy, with 94.00% 

sensitivity and an AUC of 95.00%, demonstrating an overall 

improvement in classification performance due to the data 

preprocessing approach. 

 

 

3. METHODOLOGY 

 

3.1 Dataset 

 

The RSNA screening mammography breast cancer 

detection dataset is a large dataset specifically designed for 

developing machine learning models for breast cancer 

detection. It consists of 54,713 mammographic images from 

around 11,000 patients, with each patient having at least four 

images taken from different projection angles and laterality to 

ensure comprehensive coverage of the breast tissue. The 

dataset includes crucial metadata such as age, implantation 

status, BIRADS scores, and breast density, which are 

important features for classification and risk assessment. The 

mammograms were originally stored in DICOM format and 

later resized to 512×512 pixels and converted to 8-bit 

grayscale to standardize the images for deep learning model 

training. The example of the images is shown in Figure 1. 

Figure 1 illustrates a visual comparison between mammogram 

images representing two distinct classes: the normal class (first 

row) and the cancer class (second row). In the first row, images 

depict mammograms from patients classified as normal, 

meaning no cancerous regions are detected. These images 

exhibit smooth, uniform breast tissue without any apparent 

masses or irregularities. The mammograms show clear areas 

with no signs of abnormal growth or suspicious features. In 

contrast, the second row contains mammograms from the 

cancer class, where cancerous regions are present. These 

images demonstrate noticeable differences compared to the 

normal class, with visible irregular masses or calcifications 

that may indicate the presence of malignant tumors. These 

abnormalities are typically denser and have an uneven shape, 

which is characteristic of cancerous tissue in mammograms. 

The visual differences between the normal and cancerous 

mammograms highlight the importance of feature extraction 

and detection, as well as the role of the deep learning model in 

distinguishing between these two classes to support early and 

accurate diagnosis. 

 

 
 

Figure 1. Sample images from the RSNA dataset [21] 

 

3.2 Proposed method 

 

The proposed method of this study shown in Figure 2. It 

begins by utilizing the RSNA dataset, a widely recognized 

collection of mammographic images for breast cancer 

detection. The original RSNA dataset appears highly 

imbalanced as only about 1.8% of the images fall into the 

cancer class. To prepare the data for analysis, the dataset 

undergoes data splitting using two distinct ratios. The first split 

follows a 5:1 ratio, resulted 5,790 of normal class and 1,158 of 

cancer class. A second split with a 3:1 ratio is also employed, 

resulted 3,474 normal class and 1,158 cancer class. 

Additionally, a Random Under Sampling (RUS) technique is 

applied to address the issue of class imbalance in the dataset. 

This involves reducing the number of majority class samples, 

ensuring that the model does not become biased towards one 

class during training. The class distribution of dataset shown 

in Figure 3. Once the dataset is balanced, the images proceed 

through a preprocessing stage. During preprocessing, the 

images are converted to grayscale, which simplifies the image 

by removing color information and highlighting the most 

critical structures. This is a crucial step for reducing 

computational complexity while preserving key details 

necessary for detecting abnormalities. Following this, a ROI 

extraction method is applied to isolate specific areas of the 

mammograms that are most likely to contain cancerous lesions. 

By focusing only on these regions, the model becomes more 

efficient at detecting abnormalities while reducing noise from 

irrelevant parts of the image. 

 

 
 

Figure 2. Proposed method 

 

To further address the issue of class imbalance, a hybrid 

resampling method combining the SMOTE and Tomek Link 

is applied. SMOTE works by generating synthetic samples for 

the minority class (cancerous images) through interpolation 

between existing minority samples. This approach effectively 

increases the representation of the minority class, reducing the 

bias towards the majority class. However, while SMOTE 

addresses the imbalance, it can introduce noisy or overlapping 

data points. To counteract this, Tomek Link is employed as a 

cleaning technique. It identifies pairs of samples (one from the 
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minority class and one from the majority class) that are closest 

to each other and misclassified by the classifier, known as 

Tomek Links. These pairs are removed to increase the 

separation between classes. By combining SMOTE and 

Tomek Link, the method not only oversamples the minority 

class but also removes borderline examples that may lead to 

model confusion, thus creating a cleaner and more distinct 

decision boundary. This hybrid approach offers an advantage 

over other oversampling techniques by simultaneously 

increasing minority class representation and reducing noise 

and class overlap, improving the model’s ability to accurately 

distinguish between cancerous and non-cancerous images. 

The core of the analysis involves the use of several pre-

trained CNN models, including InceptionV3, 

InceptionResNetV2, ResNet152V2, Xception, DenseNet201, 

and EfficientNetB7. These models have been previously 

trained on large image datasets, which allows them to perform 

highly effective feature extraction from medical images. In 

this study, these pre-trained models are fine-tuned to detect 

breast cancer within the extracted ROIs from the 

mammograms. By leveraging transfer learning, the research 

takes advantage of the powerful feature representations 

learned by these models, ensuring that they can accurately 

identify subtle patterns associated with breast cancer. 

Finally, the performance of these models is evaluated using 

a range of standard metrics to assess their effectiveness in 

detecting breast cancer. Metrics such as accuracy, precision, 

recall, and F1-score are likely used to provide a 

comprehensive evaluation of each model's ability to correctly 

classify the images. This performance evaluation allows the 

study to determine the most effective approach for detecting 

breast cancer using the combination of ROI extraction, data 

balancing techniques, and pre-trained CNN models. This 

detailed methodology demonstrates the rigorous approach 

taken to develop an accurate and robust system for breast 

cancer detection. 

 

 
 

Figure 3. Class distribution 

 

3.3 Experimental setting 

 

This experimental setup ensure that the models are well-

optimized to achieve high accuracy and robustness in 

detecting breast cancer, especially in a dataset with significant 

class imbalance. The dataset is divided into two parts, with 

80% allocated for training and 20% for testing, while 10% of 

the training data is set aside as validation data to monitor 

performance and prevent overfitting. The dataset is processed 

using various CNN architecture models, with optimized 

hyperparameters as detailed in Table 1. These include a 

learning rate of 0.0001, a batch size of 32, 100 epochs, the 

Adam optimizer, and the ReLU activation function to ensure 

optimal performance. The chosen learning rate allows for fine-

tuned weight adjustments, while the batch size balances 

memory usage and computational efficiency. The Adam 

optimizer is selected for its adaptability and ability to handle 

noisy gradients, aiding faster convergence, and the ReLU 

activation function enables the model to effectively capture 

non-linear relationships within the data. The entire experiment 

is conducted using Python on a DGX A100 server equipped 

with 40GB of RAM, leveraging GPU acceleration to handle 

large-scale computations. This setup ensures the model can 

efficiently process high-resolution mammographic images, 

reducing training time and overcoming memory constraints, 

while enabling high performance in breast cancer detection. 

 

Table 1. Hyperparameter setting 

 
Hyperparameter Value Task 

Learning Rate 0.0001 

Ensures stable 

convergence and 

avoids overshooting 

the optimal weights. 

Batch Size 32 

Balances memory 

efficiency and stable 

gradient updates for 

large datasets. 

Epochs 100 

Allows sufficient 

time for model 

convergence 

without overfitting. 

Optimizer Adam 

Adam’s adaptive 

learning rates 

accelerate 

convergence, 

particularly for deep 

models. 

Activation 

Function 
ReLU 

Introduces non-

linearity, essential 

for capturing 

complex image 

patterns. 

CNN 

Architectures 

InceptionV3, 

ResNet152V2, 

DenseNet201, 

Xception, 

EfficientNetB7 

Selected due to their 

proven performance 

in medical image 

analysis and feature 

extraction. 

 

3.4 Performance metrics 

 

The performance of the models was evaluated using 

accuracy, precision, recall, and F1 score. These metrics were 

derived from the model’s confusion matrix, which is based on 

the values of True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN), as shown in Eqs. (1)-

(4). Each metric provides a different perspective on the 

model’s ability to correctly classify cancerous and non-

cancerous regions, offering a comprehensive assessment of its 

performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 
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Recall=𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

4. RESULT AND DISCUSSION  

 

4.1 Result of image preprocessing and ROI extraction 

 

This section presents a comparison of the image between 

the original dataset and the image cutting result obtained from 

the ROI extraction, shown in Figure 4. The process starts with 

converting the image to a grayscale scale, performing a pixel 

value filter with a threshold value of 0.05, performing the 

object selection process and cutting the selected area as well 

as resizing the image for 400 × 250 feature modeling. The ROI 

extraction removes unnecessary parts of the mammogram, 

retaining only the areas crucial for classification or detection 

tasks. This preprocessing step helps reduce computational 

complexity and focuses the model's attention on regions where 

abnormalities are likely to occur. 

The performance comparison of breast cancer detection 

using CNN both with and without ROI extraction across 

various datasets shown in Table 2. RSNA original dataset 

achieves 50% accuracy both with and without ROI extraction, 

indicating no significant improvement from applying ROI 

extraction to this particular dataset. Data split 1 and Data split 

2 showed ROI extraction significantly improves accuracy. 

Without ROI, accuracy is around 55-58%, but with ROI 

extraction, accuracy jumps to 82-86%. This indicates that ROI 

extraction enhances the model's ability to focus on relevant 

features, leading to better performance. Similar to the RSNA 

original data, there is no improvement with ROI extraction as 

both methods yield a 50% accuracy rate on RSU dataset. 

 

 
(a) Image size of 512 × 512 from original dataset 

 
(b) Image size of 400 × 250 from ROI 

 

Figure 4. Comparison results of original dataset and ROI extraction 
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Table 2. Result of breast cancer detection using CNN 
 

Dataset Without ROI Extraction (%) With ROI (%) 

RSNA original 

data 
50 50 

Data split 1 55.82 82.33 

Data split 2 58.19 85.78 

RUS 50 50 

 

4.2 Result of breast cancer detection with SMOTE-Tomek 

Link resampling on CNN pretrained model 
 

The optimized results of breast cancer detection using the 

SMOTE-Tomek Link oversampling technique combined with 

CNN, both with and without ROI extraction highlighted on 

Table 3. Data split 1 used SMOTE-Tomek Link and CNN, the 

accuracy without ROI is 70.91%, but with ROI extraction, the 

accuracy jumps to 87.07%. This indicates a substantial 

performance improvement of over 16% with ROI extraction. 

While on the data split 2, the model achieves 79.31% accuracy 

without ROI and 91.38% with ROI extraction. The ROI 

extraction improves accuracy by around 12%. 
 

Table 3. Optimized result of breast cancer detection using 

SMOTE-Tomek Link and CNN 

 
Dataset Without ROI With ROI 

Split 1 70.91 87.07 

Split 2 79.31 91.38 

 

Table 4. Optimized accuracy results of data split 2 with ROI 

extraction 
 

Pretrained 

Model 

Without SMOTE-

Tomek Link (%) 

With SMOTE-

Tomek Link (%) 

InceptionV3  84.70 92.24 

InceptionresnetV2 79.96 91.81 

ResNet152V2 84.48 91.59 

Xception 80.39 92.24 

DenseNet201 87.93 93.10 

EfficientNetB7 96.77 97.41 

 

Table 5. Optimized precision result of data split 2 with ROI 

extraction 

 
Pretrained 

Model 

Without SMOTE-

Tomek Link (%) 

With SMOTE-

Tomek Link (%) 

InceptionV3  97.41 98.71 

InceptionresnetV2 96.98 98.28 

ResNet152V2 98.71 98.28 

Xception 99.14 99.14 

DenseNet201 99.57 99.14 

EfficientNetB7 99.57 97.41 
 

The impact of applying the SMOTE-Tomek Link 

oversampling technique on the accuracy of various pretrained 

models of data split 2 for breast cancer detection using ROI 

extraction shown on Table 4. Across all models, the accuracy 

improves significantly after using SMOTE-Tomek Link, 

which addresses the issue of class imbalance. EfficientNetB7 

demonstrates the highest performance, with accuracy rising 

from 96.77% to 97.41%, while DenseNet201 and InceptionV3 

also show notable improvements. Even models with lower 

initial accuracy, like InceptionResNetV2 and Xception, 

achieve over 91% accuracy after oversampling. This 

highlights the effectiveness of combining ROI-based detection 

with oversampling techniques to enhance model performance, 

particularly in imbalanced medical imaging datasets. 

Table 5 presents the optimized precision results for various 

pretrained models on data split 2 before and after applying the 

SMOTE-Tomek Link technique for ROI-based breast cancer 

detection. Most models show slight improvements in precision 

after oversampling, with InceptionV3 improving from 97.41% 

to 98.71% and InceptionResNetV2 from 96.98% to 98.28%. 

Xception maintains a consistent precision of 99.14% both 

before and after applying SMOTE-Tomek Link. Interestingly, 

EfficientNetB7 experiences a slight drop in precision from 

99.57% to 97.41% post-oversampling, despite maintaining the 

highest precision before applying the technique. Overall, these 

results demonstrate that applying the SMOTE-Tomek Link on 

data split 2 generally enhances precision, though the extent of 

improvement varies depending on the model used. 

 
4.3 Comparison result of the previous studies 

 

Table 6 highlights a comparison between previous studies 

and our approach using EfficientNetB7 with ROI extraction 

and the SMOTE-Tomek Link oversampling technique for 

breast cancer detection. Our method outperforms both 

previous studies in terms of accuracy, recall, precision, and 

F1-Score, achieving 97.41% across all metrics. In contrast, the 

study by Huynh et al. [10, 22], which also used EfficientNet, 

reported a slightly lower accuracy of 95.6% but did not 

provide other performance metrics like recall or precision, 

limiting the ability to fully assess its model’s effectiveness. 

Jafari and Karami [18] achieved 92% accuracy and 96% recall 

using concatenated CNN features, but their precision and 

accuracy lagged behind our results. The implications of these 

findings are significant, by incorporating both ROI-based 

detection and the SMOTE-Tomek Link technique to address 

class imbalance, our approach demonstrates enhanced overall 

model performance, particularly in handling challenging cases 

of minority class detection (e.g., positive cancer cases). This 

suggests that oversampling methods, combined with advanced 

feature extraction models like EfficientNetB7, are crucial for 

improving the robustness and reliability of breast cancer 

detection systems.  

 

Table 6. Comparison results of the previous studies 

 
Methods Accuracy (%) Recall (%) Precision (%) F1-Score (%) 

EfficientNet [22] 95.6 - - - 

Concatenate features from CNN + NN [18] 92 96 92 - 

EfficientNetB7 with ROI and SMOTE+Tomek Link 97.41 97.41 97.41 97.4 

 

 

5. CONCLUSIONS 

 

This study proposes the use of ROI in the detection of breast 

cancer, assessing various image proportion schemes to address 

the significant imbalance observed in the original dataset. The 

original dataset, along with three modified versions—Split 1, 
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Split 2, and RUS datasets—were evaluated for effectiveness. 

The Split 1 and Split 2 datasets were derived by extracting data 

at ratios of 5:1 and 3:1, respectively, from the original dataset, 

resulting in progressively less severe imbalances. The RUS 

dataset represents a balanced version achieved through RUS 

method. Experimental results reveal that the Split 2 ratio 

scheme yields superior accuracy compared to the other 

datasets, with the EfficientNetB7 model achieving the highest 

accuracy of 97.41% after applying SMOTE+Tomek Link 

oversampling. Although the study yielded promising 

outcomes, opportunities for further refinement exist. Future 

work could include incorporating more advanced data 

augmentation techniques to enhance dataset diversity. 

Additionally, deploying the system in a real-world clinical 

setting and testing its efficacy on a larger and more varied 

dataset could significantly contribute to its validation, 

enhancing its robustness and generalizability for practical 

applications. 
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