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The research introduces a Pheromone-based Ant Trusted Routing Algorithm (PATRA), 

aimed at improving routing efficiency and security in Wireless Sensor Networks (WSN). 

The approach will combine Ant-Colony Optimization (ACO) with reputation-based 

mechanisms to ensure trusted data delivery through the selection of more trustworthy and 

energy-efficient nodes. Packet Delivery Ratio (PDR), Energy Consumption, Packet Loss 

Rate, and the number of received packets are considered for the performance metrics that 

are observed through extensive simulations with a range of environments, including the 

possibility of malicious nodes. The results indicate that PATRA consistently outperforms 

conventional approaches like Quality of Service - Particle Swarm Optimization (QOS-

PSO), Ant Colony Optimization Routing Control (ACORC), and Trust-Aware Node 

Activity Routing Protocol (TANARP) by maintaining a high PDR, reduced energy 

consumption, and lower packet loss rates with a maximization of received packets. These 

further demonstrate that PATRA possesses robustness regarding the impact of malicious 

nodes and network lifetime. The simulation experiments also confirm that the proposed 

approach outperforms the previous approaches by a large margin in security, efficiency, and 

reliability, and is thus a promising approach to be employed for secure and energy-efficient 

WSNs. 
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) face significant 

challenges in network routing due to the large number of 

devices involved, unpredictable and unstable connections, and 

their deployment in physically unsecured environments. This 

makes security a key concern. The Pheromone Ant Secure 

Routing Algorithm addresses these issues by leveraging 

principles from Ant Colony Optimization (ACO), specifically 

designed for WSNs with a focus on security. In this approach, 

"ant" agents (small control packets) are used to discover and 

select optimal paths throughout the network. Additionally, the 

Pheromone-Based Lifetime Routing Algorithm (PATRA) is 

introduced, aiming to enhance energy efficiency through 

optimized routing, improve network resilience in dynamic 

conditions, and ensure high data integrity for secure 

communication [1]. 

WSNs often struggle with balancing energy consumption, 

adaptability, and security due to their dynamic and resource-

constrained environments. Existing approaches have typically 

fallen short in addressing these challenges effectively [2]. This 

gap led to the development of PATRA, which offers a more 

comprehensive solution by optimizing energy efficiency, 

adaptability, and security in routing [3]. 

Ensuring routing security in WSNs is crucial for 

maintaining the integrity and confidentiality of data, which is 

vital for their use in various applications such as monitoring of 

the environment, healthcare, defense, and many more. This 

study highlights the importance of advancing routing security 

measures to improve the practicality and reliability of WSNs 

in real-world deployments [4]. 

Figure 1 illustrates the basic structure of ant colony routing. 

However, when applying this approach to WSNs, certain 

security and efficiency concerns must be addressed: 

• Resource Efficiency: Nodes within WSNs are often

constrained by limited power, memory, and computational 

capabilities. Therefore, the routing algorithm should be 

lightweight, reducing the number and size of control packets 

as well as minimizing the computational load on each node. 

• Dynamic Adaptability: WSNs are prone to rapid and

unpredictable changes due to environmental factors, node 

mobility, or nodes joining and leaving the network. As a result, 

the algorithm must be capable of adapting to these changes 

swiftly to maintain reliable and continuous service. 

• Security Considerations: Due to the open nature of

wireless communication, WSNs are vulnerable to a range of 

attacks, including eavesdropping, replay attacks, man-in-the-

middle attacks, and even physical tampering with the nodes. A 

secure routing algorithm must take these risks into account by 

safeguarding the confidentiality and integrity of both the 
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control packets and pheromone tables. Additionally, it should 

authenticate node communications, detect, and defend against 

malicious entities that attempt to misroute data or compromise 

the network's routing infrastructure [5]. 

 

 
 

Figure 1. Fundamental structure of ant colony-lifetime 

routing 

 

1.1 The algorithm for WSN Pheromone Ant Secure 

Routing 

 

Designing a secure and efficient routing algorithm for 

WSNs based on ant pheromone trail concepts involves 

multiple phases [6]. Below is a simplified version of how a 

Pheromone Ant Secure Routing Algorithm could be structured 

specifically for WSNs, keeping in mind the unique challenges 

of network topology, node capacity, and security requirements: 

• Data Encryption: To ensure the confidentiality of 

control messages, encrypting the data packets traveling 

through the network is essential. This ensures that even if 

packets are intercepted, the information, such as pheromone 

values or destination addresses, remains secure and 

inaccessible to unauthorized parties [7]. 

• Node Authentication: Verifying that the participating 

nodes are legitimate members of the network is crucial. 

Cryptographic techniques, such as digital signatures or MAC 

codes, can be employed to authenticate the 'ant' packets and 

pheromone updates, ensuring they come from trusted sources 

[8]. 

• Resilience to Attacks: The algorithm should be capable 

of maintaining its integrity in the face of attacks. It should 

incorporate mechanisms to detect and counteract false routing 

information introduced by malicious nodes, preventing the 

propagation of such data and safeguarding legitimate routing 

paths [9]. 

• Route Diversity: To mitigate the risk of relying on 

specific nodes or paths (which could become security 

vulnerabilities), the algorithm could diversify the routes used 

for different packets. This strategy would maintain multiple 

viable routes, ensuring continued operation even if some 

routes are less efficient or compromised [10]. 

Developing such a system requires balancing security and 

efficiency, ensuring that the added computational and 

communication overhead for security features does not exceed 

the resource constraints of WSN nodes. Additionally, robust 

testing and adaptation are essential, as different WSN 

deployment environments and threat models will demand 

unique adjustments and optimizations [11]. 

 

1.2 Research of the Pheromone Ant Secure Routing 

Algorithm in WSN 

 

The Pheromone Ant Secure Routing Algorithm, inspired by 

ant colony behavior and adapted for network routing, 

particularly in WSNs, represents a unique fusion of biological 

principles with technological applications. However, as with 

many innovative methods, there are several research gaps and 

challenges that need to be addressed. Overcoming these gaps 

is essential to improve the reliability, efficiency, and security 

of the algorithm in real-world scenarios. Exploring these areas 

further can lead to significant advancements in the practical 

deployment and effectiveness of such algorithms in WSNs and 

similar networks [12]. 

 

1.2.1 Efficiency in large-scale networks 

Efficiency in large-scale networks is a significant concern, 

particularly when using complex algorithms like the 

Pheromone Ant Secure Routing Algorithm in environments 

such as WSNs. As network size increases, several challenges 

and efficiency issues arise that demand innovative research 

and optimization solutions. 

• Gap: Ant-based routing generates significant overhead 

due to the continuous transmission of ant packets for route 

discovery and maintenance. As the network scale expands, this 

complexity and resource consumption grow exponentially. 

• Research Opportunity: Developing methods to 

enhance the scalability and efficiency of the algorithm in 

large-scale WSNs while maintaining route optimality and 

ensuring security features remain intact. 

 

1.2.2 Security against sophisticated attacks 

Ant-based routing algorithms, especially within WSNs, 

encounter significant security challenges. Despite their 

dynamic and adaptive nature, these algorithms are vulnerable 

to various advanced attacks. Addressing these security 

concerns is critical to ensure reliable and secure 

communication in WSNs [13]. 

• Gap: Although these algorithms implement basic 

security measures, they remain susceptible to sophisticated 

attacks, such as advanced man-in-the-middle attacks, Sybil 

attacks, or coordinated intrusions by malicious nodes. 

• Research Opportunity: Developing advanced intrusion 

detection systems specifically designed for ant-based routing 

protocols, as well as improving the algorithm's resilience 

against a broader spectrum of security threats [14]. 

 

1.2.3 Real-time operation and dynamic adaptation 

Real-time operation and dynamic adaptation are crucial in 

routing protocols, particularly in ant-based routing for WSNs, 

to ensure efficient and continuous service. These networks 

experience frequent changes in node availability, topology, 

and environmental conditions, making it essential for routing 

protocols to adapt swiftly to maintain optimal performance. 

• Gap: The highly dynamic nature of WSNs, where nodes 

can frequently change status or new security threats can arise, 

presents a challenge for ant-based algorithms, which may not 

adapt rapidly enough to sustain optimal performance. 

• Research Opportunity: Exploring real-time adaptation 

techniques and predictive adjustments that respond to network 

behavior trends or changing environmental conditions to 

enhance the algorithm’s responsiveness and effectiveness [15]. 
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1.2.4 Energy efficiency 

Energy efficiency is crucial in WSNs due to the constrained 

power resources of sensor nodes, often deployed in remote 

locations where battery replacement or recharging is difficult. 

In ant-based routing, various factors contribute to energy 

consumption, and optimizing these factors is essential for 

extending the network's operational lifespan [16]. 

• Gap: WSN nodes typically have limited power supplies, 

and the frequent transmission and processing of ant packets 

can deplete these resources rapidly. 

• Research Opportunity: Improving the energy efficiency 

of ant routing protocols by introducing adaptive control 

mechanisms for ant packet transmission rates, potentially 

based on the nodes' current energy levels or operational 

priorities, to conserve energy and extend network longevity 

[17]. 

 

1.2.5 Integration with existing technologies 

Integrating ant-based routing protocols with existing 

technologies in WSNs is crucial for their practical 

applicability and efficiency. This integration poses challenges 

due to the unique characteristics of WSNs and the existing 

technological frameworks, yet it presents exciting research 

opportunities [18]. 

• Gap: Many WSNs operate in environments that involve 

multiple protocols and technologies, creating uncertainty 

about how well ant-based routing algorithms can be integrated 

with these systems. 

• Research Opportunity: Investigating hybrid approaches 

that combine ant-based routing with other protocols to harness 

the strengths of various systems, and analyzing the 

compatibility issues that emerge during such integrations to 

enhance overall network performance and adaptability. 

 

1.2.6 Quantitative performance assessment 

Quantitative performance assessment is essential for 

evaluating the effectiveness, efficiency, and practical viability 

of ant-based routing protocols in WSNs. This involves 

systematically measuring performance against various 

quantitative metrics that align with the specific objectives and 

limitations of WSNs. 

• Gap: A comprehensive quantitative evaluation 

comparing ant-based routing protocols with conventional 

methods across diverse performance metrics and network 

conditions is often lacking. 

• Research Opportunity: Conducting extensive 

simulations and real-world testing to analyze the performance 

impacts and trade-offs of ant-based routing protocols, offering 

clearer insights into when and how these algorithms should be 

optimally utilized in different network scenarios [19]. 
 

1.2.7 Robustness in diverse environments 

The robustness of ant-based routing protocols in various 

deployment scenarios of WSNs is vital, given the diversity of 

environments—from industrial settings and urban areas to 

remote, harsh conditions. A routing protocol’s ability to 

maintain performance across these varied conditions is a 

strong indicator of its reliability [20]. 

• Gap: WSNs are deployed in environments with differing 

characteristics and challenges, such as varying levels of 

electromagnetic interference, physical obstacles, or extreme 

weather conditions. 

• Research Opportunity: Conducting tests and refining 

ant-based routing algorithms in a wide range of environmental 

conditions, while developing adaptive mechanisms that 

automatically adjust algorithm parameters to ensure optimal 

performance in diverse scenarios. 

Addressing these research gaps can significantly improve 

the robustness and reliability of ant-based secure routing 

systems. WSNs, with their nodes collecting and transmitting 

environmental data to a sink node or control center, are widely 

used in fields such as environmental monitoring, healthcare, 

and military applications. However, due to their particular 

operating conditions, WSNs are susceptible to attacks like 

wormhole, Sybil, and selective forwarding [21]. 

Consequently, the WSN routing algorithm’s security and 

reliability must be rigorously studied. Many existing routing 

algorithms focus on resource constraints, such as energy 

efficiency and network lifespan, with less attention paid to 

security. These algorithms often leave networks vulnerable to 

attacks by malicious nodes. Mitigating the harmful effects of 

these malicious nodes and their behavior can strengthen 

routing security. While encryption, key management, and 

authentication help, they cannot fully protect against internal 

malicious nodes [22]. 

Trust-based security mechanisms, which establish trust or 

reputation scores among network nodes, can help address 

these internal threats. Unfortunately, reputation-based routing 

in WSNs has not been widely studied. Most WSN routing 

algorithms prioritize data transmission efficiency, energy 

consumption, transmission delay, and network security within 

resource constraints. Figure 2 represents the functional 

flowchart of reputation and trust in WSNs. 

 

 
 

Figure 2. Functional flow chart of reputation and trust in 

WSNs 

 

Various routing methods, such as data-centric, location-

based, and hierarchical routing, have been studied extensively. 

For example, Abhay et al. [23] improved WSN routing 

protocols using a combination of ACO and fuzzy inference 

systems to assess route quality and energy efficiency. The 

directed diffusion protocol, coupled with fuzzy logic, 

enhanced energy efficiency. However, ACO offers superior 

automatic route correction, which is more effective than fuzzy 

systems that rely on trial-and-error calibration. Zhu et al. [24] 

developed an energy-efficient WSN routing algorithm using 

the Harmony Search (HS) meta-heuristic, which excels in 

global search with minimal parameterization. While HS-based 

routing addresses energy efficiency, it neglects security. Like 

other methods, it remains vulnerable to attacks from malicious 

nodes that can disrupt routing when security is compromised 

[25, 26]. 
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Mahendra et al. [27] introduced a Distributed Energy-

Balanced Uneven Clustering (DEBUC) routing protocol for 

WSNs, which uses inter-cluster multi-hop routing and uneven 

clustering to balance energy consumption. By creating clusters 

of varying sizes, energy usage among cluster heads is 

optimized by adjusting cluster nodes based on relay load, 

ensuring that all cluster heads deplete energy evenly. DEBUC 

employs time-based competitive clustering to divide nodes 

into smaller clusters at the proximity of the base station, but it 

does not address event-based networks where environmental 

factors affect data production. Xu et al. [28] have presented the 

Trust Energy-Efficient Routing Protocol (TERP), designed to 

enhance both trustworthiness and energy efficiency in WSNs. 

Inspired by the Destination-Sequenced Distance-Vector 

(DSDV) protocol, TERP builds on the Bellman-Ford 

algorithm by preventing routing loops using sequence 

numbers. TERP improves network performance by increasing 

data flow and extending node lifespans, ensuring more secure 

data transmission between nodes. 

Zhu et al. [29] optimized WSN routing through an ant-

colony-based approach, focusing on energy constraints and 

real-time performance. They introduced direction-based 

pheromones to guide ant colonies toward nodes, addressing 

network energy limits. However, the study does not prioritize 

security in routing protocols. Sun et al. [30] developed 

CRT2FLACO, a protocol on clustering routing which 

combines ACO with fuzzy logic to balance load and extend 

network lifespan. By evaluating residual energy, nearby nodes, 

and base station distance, the protocol efficiently saves 

transmission energy. While CRT2FLACO enhances energy 

savings and load balancing, its empirical rules and lack of 

focus on communication security pose limitations. This 

research introduces the Multi-Attribute Pheromone Ant 

Secure Routing Algorithm (MPASR), which addresses 

security and energy challenges in WSNs by incorporating 

node reputation values. Combining residual node energy, 

transmission latency, and reputation scores, this method 

enhances network security, resilience, and longevity. 

Reputation values are calculated using direct and indirect 

credit values, and nodes with high coincidence rates are 

excluded to minimize computation. This strengthens the 

network’s defense against internal threats while improving 

communication quality and security. The paper proposes an 

improved ACO method, integrating node reputation, residual 

energy, and delay in transmission to balance security and 

energy consumption, preventing node failure. The article 

provides an introduction to trustworthy routing algorithms, 

presents MPASR for secure routing in WSNs, and concludes 

with the analysis of simulation experiment findings. 

 

 
2. RELATED WORK  
 

Sharma et al. [31] reviewed various clustering 

methodologies that have been so far proposed in WSNs, 

focusing on uneven clustering in order to address the hot-spot 

problems arising due to non-uniform power consumption by 

the nodes. In this work, different clustering algorithms have 

been studied for energy efficiency, load balancing among 

cluster heads, and prolonging network lifetime. It deals with 

the novelty of rigorous analysis of uneven clustering 

properties and algorithms that achieve significant 

improvement in the reliability and communication range. The 

negative aspect is that the methods used in uneven clustering 

can result in complexities within cluster formation and its 

maintenance, which might increase the computational 

overhead. Dubey et al. [32] presented a hybrid algorithm, 

PPO-ACO, which selects the optimal path in IoT-based WSNs 

integrated with 5G technology. The innovation of PPO and 

ACO combines reinforcement learning with swarm 

intelligence in order to improve energy efficiency, security, 

and address the stochastic nature of the network. In this way, 

the proposed approach provides better performance on node 

activeness and energy consumption compared to other 

techniques. The major drawback of this integration includes 

computational complexity that might influence the 

performance in real-time when PPO integrates ACO for large-

scale networks. Kumar and Thomas [33] proposed an efficient 

MASP data gathering scheme that helps in enhancing the 

energy efficiency of network lifetime by utilizing a mobile 

sink(s) in WSN. It contributes to novelty by using an improved 

ACO and integer linear programming on data collection path 

incorporation with residual energy, channel noise, and delay. 

On the improvement of this technique, more energy will be 

saved and the higher throughput is achieved that also gets 

affirmed from NS2 simulations. However, its sink node 

mobility is bounded and hence less scalable or adaptive upon 

handling dynamic network scenarios. Alqarni et al. [34] 

proposed a routing strategy using discrete differential 

evolution and ant colony optimization in order to address 

energy consumption and routing delay issues in WSNs. In this, 

the authors made a worthy contribution to a formal model for 

optimizing cluster head selection and proposed a mobile sink-

based routing algorithm to balance the load in order to extend 

the lifetime of the network. The experimental results reflect 

that the considerable network lifetime of 54%, reduction of 

transmission delay of 63%, and energy consumption of 47% 

have a trade-off in implementation complexity with discrete 

differential evolution coupled with ACO and, therefore, more 

computational overhead. Kumar et al. [35] proposed the 

hybrid Whale-Ant Optimization Algorithm, WAOA, for 

achieving energy-efficient routing in WSNs. The novelty is the 

selection of the cluster head by Whale Optimization Algorithm 

and the usage of Ant Colony Optimization for finding the 

optimal routing. This algorithm demonstrates very good 

performance when compared with the state-of-the-art methods 

and outperforms them, improving both network lifetime and 

energy efficiency. A drawback is that the hybrid approach may 

increase algorithmic complexity, making it challenging to 

implement in resource-constrained environments. 

El Khediri et al. [36] propose a hybrid ABC and ACO-based 

clustering and routing approach for improving the energy 

efficiency in WSNs. The novelty of the idea is considering 

residual energy, distance, and node centrality for CH election 

and path optimization through ACO. This technique has 

proved to have a highly increased network lifetime and energy 

consumption compared to the conventional clustering 

protocols. However, it requires many optimization parameters, 

which can be difficult to tune and implement. In this paper, 

Sachithanandam et al. [37] present a Deep Reinforcement 

Learning-Enhanced Hybrid African Vulture and Aquila 

Optimizer for dynamic clustering and energy management in 

WSNs. This paper provides two novelties, where firstly, it 

couples global and local search capabilities of the African 

Vulture and Aquila Optimizers, respectively. Next, real-time 

adaptation uses deep reinforcement learning. Results will be 

an energy-efficient one for about 20% higher without complex 

integration of these sorts of advanced optimization techniques. 
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Deploying these will also be a complex task in real and 

practical terms. Wang et al. [38] proposed an improved ACO 

algorithm for node energy consumption optimization in WSNs. 

They have introduced a pseudo-random proportional rule with 

the purpose of enhancing state transitions in order to avoid 

algorithm stagnation. Much improvement was realized in 

choosing optimal paths with shorter length and high energy, 

hence resulting in a 52% increment of the search speed. 

However, a drawback is the potential trade-off between 

achieving energy efficiency and handling dynamic topology 

changes effectively. Ketshabetswe et al. [39] proposed the 

BACREED algorithm, a hybrid of ACO and CS, for energy-

efficient routing in WSNs. The novelty is the integration of 

FELACS with CS for data compression and optimization of 

routing. Simulation results prove its superiority in energy 

efficiency and reduction of path length compared to existing 

methods. One disadvantage of this could be the sensitivity to 

parameter tuning that this algorithm might have in its 

adaptability on various configurations of the network. 

 

 

3. ANT COLONY OPTIMISATION (ACO)  

 

 
(a) 

 
(b) 

 

Figure 3. (a) Path selection initialization; (b) The ants 

finding the shortest path 

 

Ant Colony Optimization (ACO) leverages the foraging 

behavior of ants as a metaheuristic to solve combinatorial 

optimization problems. In ACO, algorithms mimic the 

behavior of real ants. As illustrated in Figure 3, ants deposit 

pheromone trails while searching for food, which other ants 

can detect and follow back to their colony. These pheromones 

guide the ants to the most efficient route between the nest and 

the food source. Over time, the ants collectively discover the 

shortest path [40]. Figure 3(a) shows the initial state where 

ants are randomly exploring different paths. Figure 3(b) 

depicts the final state, where the ants have established and are 

following the optimal, shortest path based on the pheromone 

trails. This process illustrates how ACO algorithms evolve and 

optimize solutions by using pheromone-based feedback, just 

as ants refine their foraging paths. 

ACO was initially applied to solve the Travelling Salesman 

Problem (TSP). In the TSP, the objective is to find the shortest 

possible route that visits each city exactly once and returns to 

the starting city. The ACO approach for solving the TSP uses 

multiple ants to explore potential routes among N cities. The 

next city that each ant visits is determined by a combination of 

the distance between cities and the intensity of the pheromone 

trail [41]. 

 

3.1 Dynamic path selection 

 

Dynamic path selection introduces a probabilistic approach 

driven by historical and dynamic factors, ensuring a more 

adaptive decision-making process [42]. The probability of ant 

𝑘 choosing path 𝑖 → 𝑗 is redefined as given in Eq. (1).  

 

𝑆𝑖𝑗
𝑘 (𝜏) =

𝜎𝑖𝑗(𝜏) ⋅ 𝜉𝑖𝑗

∑  𝑝∈nodes𝑘
 𝜎𝑖𝑝(𝜏) ⋅ 𝜉𝑖𝑝

 (1) 

 

where, 𝑆𝑖𝑗
𝑘 (𝜏): Selection probability for node 𝑗 from node 𝑖 by 

ant 𝑘  at time 𝜏 , 𝜎𝑖𝑗(𝜏): Adaptation factor, representing the 

cumulative influence of historical pheromones and dynamic 

weights, 𝜉𝑖𝑗 : Priority score based on node-specific metrics 

(e.g., energy, distance, or reliability) and nodes𝑘: The set of all 

nodes accessible from 𝑖 for ant 𝑘. 

 

3.2 Reinforcement and decay 

 

Reinforcement and Decay Allows for the gradual forgetting 

of outdated paths while reinforcing effective ones [43]. The 

dynamic update rule for the adaptation factor 𝜎𝑖𝑗(𝜏)  is 

expressed as Eq. (2).  

 

𝜎𝑖𝑗(𝜏 + 1) = 𝜎𝑖𝑗(𝜏) ⋅ 𝑒−𝛼 + 𝜔 ⋅ Ψ𝑖𝑗
𝑘 (𝜏) (2) 

 

where, 𝑒−𝛼Exponential decay to reduce the weight of older 

information, 𝜔  Reinforcement constant, determining the 

impact of new updates and Ψ𝑖𝑗
𝑘 (𝜏): Success score contributed 

by ant 𝑘  for path 𝑖 → 𝑗 , based on factors such as energy 

efficiency and reliability. 

 

3.3 Success score 

 

Success score combines energy, distance, and reliability to 

provide a holistic evaluation of paths [44]. The success score 

Ψ𝑖𝑗
𝑘 (𝜏) for a path 𝑖 → 𝑗 is computed as Eq. (3). 

 

Ψ𝑖𝑗
𝑘 (𝜏) =

1

1 +
Dist𝑖𝑗

Energy
𝑗

⋅ Reliability
𝑗

 
(3) 

 

where, Dist𝑖𝑗  Distance between nodes 𝑖  and 𝑗 , 

Energy
𝑗
Residual energy of node 𝑗 and Reliability

𝑗
 Historical 

reliability of node 𝑗, representing its consistency in forwarding 

data. 
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3.4 Pheromone reinforcement 

 

Pheromone reinforcement Δ𝜓𝑖𝑗(𝑡) represents the amount of 

pheromone deposited on the edge connecting nodes 𝑖  and 𝑗 

[45]. This value is calculated using Eq. (4). 

 

Δ𝜓𝑖𝑗(𝑡) =
1

1 + 𝑊𝑖𝑗 ⋅ 𝑃𝑗

 (4) 

 

where, 𝑊𝑖𝑗 denotes the traffic weight on the edge, and 𝑃𝑗 is the 

priority index of node 𝑗. The equation ensures that paths with 

lower congestion and higher priority receive stronger 

reinforcement, supporting efficient routing decisions. 

 

3.5 Pheromone update 

 

Pheromone update 𝜓𝑖𝑗(𝑡 + 1) determines how pheromone 

levels on an edge evolve over time [46]. The Eq. (5) is 

expressed as: 

 

𝜓𝑖𝑗(𝑡 + 1) = 𝜓𝑖𝑗(𝑡) ⋅ (1 − 𝜆) + Δ𝜓𝑖𝑗(𝑡) (5) 

 

where, 𝜆  represents the evaporation rate, reducing the 

influence of outdated pheromone trails. Δ𝜓𝑖𝑗(𝑡) adds the 

newly deposited pheromone, ensuring that recent successful 

paths are reinforced. This dynamic update balances 

exploration and exploitation in the system. 

 
 

4. REPUTATION-BASED MECHANISMS AND ACO IN 

WSNS  

 

Figure 4 shows the integrated approach of reputation-based 

mechanisms with ACO concepts, which play a crucial role in 

enhancing the efficiency and reliability of the WSN. The 

sensing field has sensor nodes cooperating in order to sense 

the environment. Reputation-based mechanisms assign trust 

scores to sensor nodes in the network based on their previous 

record of reliability, energy efficiency, and accuracy of data. 

High-rated reputation nodes are prioritized as routers because 

of the integrity and high transmission of data while lowering 

malicious or faulty ones. Reputation-based evaluation is 

dynamic with the status in view, reinforcing the establishment 

of trust in reliable nodes to be isolated from those of little 

dependability [47]. 

From sensor nodes to the sink node via the data transmission 

cloud, routing decisions will be made by ACO principles. By 

drawing inspiration from the method through which ants find 

the best path, ACO will consider the number of pheromones 

on different transmission paths according to the energy 

consumed, distance, and reputation of each node. The paths 

with higher pheromone levels, which represent efficient and 

reliable communication, are reinforced, while the others 

gradually fade away because of evaporation. It ensures that the 

most optimal and trustworthy routes are continually used for 

data transmission [48]. 

The aggregated data in the sink node is sent to the internet 

management system for processing and storage. ACO-guided 

routing and reputation scores ensure that only the best-quality 

data reaches this stage, reducing overhead and increasing the 

performance of the system. This processed information is 

accessed by the end-user using internet-enabled devices, based 

on a secure, efficient, and reliable WSN infrastructure [49]. 

This work will highlight how the integration of reputation-

based mechanisms and ACO works out the optimal solution to 

build a reliable, secure, and energy-efficient network in 

application areas like environmental monitoring, industrial 

automation, and smart city solutions. 

 

4.1 Evaluation of node reputation 

 

Figure 5 depicts a hierarchical architecture for the 

reputation-based node evaluation and ACO routing of WSN. 

There exist five layers that can perform the tasks in the light 

of their specification and will jointly ensure data 

communication takes place well and with dependability. The 

top layer consists of the reputation layer which updates the 

nodal trustworthiness w.r.t performance evaluation about 

energy efficiency, transmission accuracy, etc., in the earlier 

rounds. This layer assigns a reputation score to every node, 

which forms the basis for routing decisions [50]. 

 

 
 

Figure 4. Reputation-based mechanisms and ACO for WSN architecture 
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Figure 5. Hierarchical architecture for reputation-based node evaluation and ACO routing 

 

Organization Layer: Essentially monitors the state of the 

nodes by examining various parameters like the availability of 

resources, the degree of activities, etc. This is, in fact, a 

coordination layer for integrating the information of the 

reputation layer for an informed routing strategy. ACO 

operates in the ant lifetime routing control layer, performing 

message routing. It dynamically computes the paths by 

combining pheromone levels with the reputation score of the 

nodes, always reinforcing the best routes at the expense of less 

useful paths that get dropped gradually [51]. 

The Node Layer provides the actual routing of packets 

according to optimized routes given by the control layer. This 

maintains flawless communications among the nodes 

according to reputation-based routing policies. Finally, the 

object layer checks the behavior of each node regarding 

specified mechanisms for routing and reputation, respectively. 

It is further utilized to allow end-to-end users' interaction with 

the network. All these layers together provide the basis for 

efficient, secure, and reliable communication in WSN. 

 

4.2 Node reputation evaluation 

 

Node reputation, 𝑅𝑖  can be defined as the level of 

dependability of node i during transmissions that are 

successful with priority weight assignment within a certain 

timeframe derived using Eq. (6). 

 

𝑅𝑖 =
∑  𝑇

𝑡=1   (𝑆𝑖 ⋅ 𝑃𝑖)

𝑇
 (6) 

 

Here, 𝑅𝑖 is the reputation score of nodes i, which gives an 

idea about the reliability of the node in the network. 𝑆𝑖 is the 

number of successful data transmissions carried out by node 𝑖. 
𝑃𝑖  is the priority weight of node 𝑖, which depends on factors 

like energy and trustworthiness. 𝑇 is the total time considered 

for reputation calculation to capture the comprehensive 

performance of the node [52]. 

 

4.3 Node state monitoring 

 

Node state 𝑆𝑖 decides the working condition of a node based 

on analyzing its energy level and congestion factor. The value 

of it is calculated by the use of Eq. (7). 

 

𝑆𝑖 = 𝐸𝑖 ⋅
1

𝐶𝑖
 (7) 

 

where, 𝑆𝑖 is the state value of node 𝑖, reflecting its capability 

for routing. Further, 𝐸𝑖 is the residual energy at node 𝑖 and 𝐶𝑖 

is the congestion level at node 𝑖, representing its current load. 
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This will ensure that nodes with more energy and lower 

congestion have higher probabilities of getting selected for 

routing, again improving network efficiency [53]. 

 

4.4 Message routing optimization 

 

The decision model determines the probability 𝑃𝑖𝑗  for the 

choice of node  𝑗  as a subsequent hop from node  𝑖  as the 

combined result of pheromone levels, heuristic factors, and 

node reputation. Its value is obtained from Eq. (8). 

 

𝑃𝑖𝑗 =
(𝜏𝑖𝑗)

𝛼
⋅ (𝜂𝑖𝑗)

𝛽
⋅ 𝑅𝑗

∑  𝑘∈neighbors   (𝜏𝑖𝑘)𝛼 ⋅ (𝜂𝑖𝑘)𝛽 ⋅ 𝑅𝑘

 (8) 

 

Here, 𝑃𝑖𝑗  represents the probability of selecting node 𝑗 as a 

successor node from node 𝑖 . 𝜏𝑖𝑗  is pheromone level on the 

route between nodes i and j, 𝜂𝑖𝑗 may be the heuristic value, 

most of the time the inverse value of the distance between 

nodes 𝑖 and 𝑗, and also 𝑅𝑗, which represents node j's reputation 

score, reflecting its reliability. In addition, 𝛼 and 𝛽  are the 

weighted parameters of the relative importance of the 

pheromone level and heuristic values, respectively [54]. 

 

4.5 Node reputation assessment 

 

It emphasizes the relationship between a node's 

performance-that is, successful transmissions, its priority 

weight, and time of observation. It ensures nodes with higher 

performance and trustworthiness are given better reputations 

for routing decisions [55]. Each node's reputation 𝑅𝑖  can be 

calculated using the given in Eq. (9). 

 

𝑅𝑖 =
𝑆𝑖 ⋅ 𝑃𝑖

𝑇
 (9) 

 

where, 𝑅𝑖 is defined as the Reputation score of nodes 𝑖, which 

signifies its reliability, 𝑆𝑖 is given as the number of successful 

data transmissions by node 𝑖, 𝑃𝑖  is defined as Priority weight 

assigned to node 𝑖,  based on factors such as energy and 

trustworthiness and 𝑇  total time duration over which the 

reputation is evaluated. 

The beta distribution is a continuous probability distribution 

that is defined on the interval [0, 1]. It is a general tool that has 

been widely used to model random variables representing 

probabilities, proportions, or uncertainties in Bayesian 

statistics and other applications [56]. The Beta distribution is 

parameterized by two shape parameters, α, and β, which 

determine its shape. The probability density function of the 

Beta distribution is given by Eq. (10). 

 

𝑓(𝑥; 𝛼, 𝛽) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
,  0 < 𝑥 < 1 (10) 

 

where, 𝛼 > 0  is represented as the Shape parameter 

controlling the behavior near 0, 𝛽 > 0 is depicted as Shape 

parameter controlling the behavior near 1 and 𝐵(𝛼, 𝛽)  is 

identified as the beta function, defined as Eq. (11). 

 

𝐵(𝛼, 𝛽) = ∫  
1

0

𝑡𝛼−1(1 − 𝑡)𝛽−1 𝑑𝑡 =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
 (11) 

 

where, Γ is the Gamma function. 

Figure 6 demonstrates a framework integrating feedback 

mechanisms and the PATRA (Pheromone-based Ant Trusted 

Routing Algorithm) reputation model for evaluating node 

performance in a Wireless Sensor Network (WSN). Nodes, 

represented as 𝑁𝑜𝑑𝑒_1, 𝑁𝑜𝑑𝑒_2, . . . , 𝑁𝑜𝑑𝑒_𝑁, are connected 

through servers (𝑆𝑒𝑟𝑣𝑒𝑟_1 𝑎𝑛𝑑 𝑆𝑒𝑟𝑣𝑒𝑟_2) to facilitate secure 

communication. Feedback data from these nodes is collected 

and processed using the feedback collector. This feedback 

captures communication performance metrics such as 

successful transmissions, energy utilization, and congestion 

levels [57]. 

This feedback captures communication performance 

metrics such as successful transmissions, energy utilization, 

and congestion levels. The PATRA model then analyzes this 

information to assign a reputation score to each node. The 

assigned reputation score reflects the node's reliability and 

trustworthiness, which guides routing decisions. This iterative 

feedback mechanism ensures the dynamic update of local 

parameters, reinforcing trust in nodes with high performance 

while penalizing unreliable nodes. By continuously refining 

node reputation and optimizing routing, this architecture 

improves WSN security, data integrity, and energy efficiency 

[58]. 

 

 
 

Figure 6. Node reputation assessment framework using PATRA 
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4.5.1 Indirect value of reputation 

In many WSNs, the variable node distributions often 

generate significant overlaps of sensing ranges among 

different nodes. Figure 7(a) describes how the entire area of 

interest is completely enclosed by the three nodes. A fourth 

node completely overlapping the sensing range in Figure 7(b) 

would fall into the category of Figure. 

Thus, its removal will save the network much energy with 

little loss of either overall trust or performance. A high number 

of unnecessary nodes could be removed by ensuring no 

overlapped coverage for these nodes, saving energy for 

extending the lifetime of a resource-constrained WSN without 

losing efficiency. The aim here is to ensure that only those 

nodes absolutely necessary remain operational for optimized 

energy and network security [59]. 

 

      
(a)                                         (b) 

 

Figure 7. Node overlap coverage analysis (a) Three nodes 

cover everything; (b) Four nodes cover everything [59] 

 

The node reputation assessment framework discussed here 

assesses the trustworthiness of nodes in a WSN by feedback 

mechanisms and the PATRA reputation model. This 

framework will integrate direct and indirect feedback from 

nodes to dynamically compute their reputation scores, which 

are crucial for secure and efficient routing [60]. The reputation 

score Ri of node i is a weighted combination of its direct 

feedback ( 𝐹𝑖
direct ) and indirect feedback 𝐹𝑖

indirect  and it is 

expressed by the Eq. (12). 
 

𝑅𝑖 = 𝜔𝑑 ⋅ 𝐹𝑖
direct + 𝜔𝑖 ⋅ 𝐹𝑖

indirect (12) 
 

where, 𝜔𝑑  and 𝜔𝑖 are weight factors for direct and indirect 

feedback, respectively, such that 𝜔𝑑 + 𝜔𝑖 = 1 . This 

combination ensures both observed interactions and 

recommendations from trusted neighbors contribute to the 

reputation assessment [61, 62]. 

 

4.5.2 Direct feedback calculation 

Direct feedback evaluates the node's performance based on 

its immediate interactions. It is defined as given in Eq. (13). 
 

𝐹𝑖
direct =

𝛼𝑖

𝛼𝑖 + 𝛽𝑖
 (13) 

 

where, 𝛼𝑖 is defined as: the number of successful interactions 

observed for node 𝑖 and, 𝛽𝑖  described as number of 

unsuccessful interactions observed for node 𝑖. Basically, the 

ratio that reflects a node's reliability about its share of 

successful interactions against its total number of interactions. 

Individuals with a higher number of successes (𝛼𝑖) are then 

rewarded with higher direct feedback scores [63].  

 

4.5.3 Indirect feedback calculation 

Indirect feedback aggregates opinions from neighboring 

nodes about the target node 𝑖. It is computed as given Eq. (14). 

𝐹𝑖
indirect =

∑  𝑗∈𝑁𝑖
 𝑤𝑗 ⋅ 𝑅𝑗

∑  𝑗∈𝑁𝑖
 𝑤𝑗

 (14) 

 

where, 𝑁𝑖 is set of neighbouring nodes which give feedback 

about node 𝑖, 𝑤𝑗  is a description of the weight assigned to 

feedback given by node 𝑗 - normally it will be proportional to 

𝑗′𝑠  reputation - and 𝑅𝑗  is described by the following. 

Reputation score of nodes 𝑗, in the opinion of its neighbours. 

In this way, indirect feedback takes care that opinions from 

more reputable nodes (𝑤𝑗) will have greater weights and this 

reduces the impact of untrustworthy nodes [64]. 

 

4.5.4 Dynamic updates and adaptation 

To make the reputation scores reflect the most recent 

behavior, the feedback parameters 𝛼𝑖 and 𝛽𝑖 are periodically 

updated by using a weakening factor ℎ and it is determined by 

the Eq. (15). 
 

𝛼𝑖 = ℎ ⋅ 𝛼𝑖  and 𝛽𝑖 = ℎ ⋅ 𝛽𝑖 (15) 
 

where, 0 < ℎ ≤ 1 . This decay mechanism weakens the 

influence of older interactions and emphasizes more recent 

observations in the reputation assessment process [65]. 
 

4.5.5 Joint information entropy 

The joint entropy 𝐻(𝑋, 𝑌) defines the total uncertainty or 

information content of the combined random variables 𝑋 and 

𝑌. It determines the weighted sum of the logarithms of the joint 

probabilities 𝑃(𝑥, 𝑦) of the outcomes of 𝑋 𝑎𝑛𝑑 𝑌. It defined 

as given in Eq. (16). 

 

𝐻(𝑋, 𝑌) = − ∑  

𝑥∈𝑋

∑  

𝑦∈𝑌

𝑃(𝑥, 𝑦) ⋅ log2 𝑃(𝑥, 𝑦) (16) 

 

where, 𝐻(𝑋, 𝑌) is the Joint entropy of random variables 𝑋 and 

𝑌, 𝑃(𝑥, 𝑦) is described the joint probability of outcomes 𝑥 and 

𝑦 and 𝑋, 𝑌 is represented the random variables with respective 

sets of possible outcomes [66]. 

 

4.5.6 Node information entropy 

The information entropy H (X) gives the uncertainty 

(information) that is concentrated within a single node: H is 

computed by the sum over all states X that can take the given 

node, weighted by the corresponding probability P, and further, 

by the logarithm of such probability. This provides a measure, 

among other things, of the amount of randomness or variety 

within the node's individual sets of observed behavior-simply 

expressed by Eq. (17). 

 

𝐻(𝑋) = − ∑  

𝑥∈𝑋

𝑃(𝑥) ⋅ log2 𝑃(𝑥) (17) 

 

H(X) is considered to be the information entropy of node X, 

which for a random variable having X representing possible 

states of the node shows P(x) to be its probability. 

 

4.5.7 Dynamic trust calculation with adaptive uncertainty 

adjustment 

The dynamic trust value of node 𝑖 for node 𝑗, which fuses 

successful and failed interactions with an uncertainty 

adjustment factor. The equation innovatively incorporates a 

scaling coefficient (𝜅) to adapt the influence of uncertainty 

based on interaction density, enhancing the reliability and 
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robustness of trust evaluations in dynamic network 

environments by using the given Eq. (18). 

 

𝑇𝑖𝑗 =
𝛼𝑖𝑗 + 𝜅 ⋅ 𝛾

𝛼𝑖𝑗 + 𝛽𝑖𝑗 + 𝜅 ⋅ (𝛾 + 1)
 (18) 

 

where, 𝑇𝑖𝑗  is represented as the trust value of node 𝑖 for node 

𝑗; it denotes the degree to which 𝑗 is regarded by 𝑖 as reliable. 

Furthermore, 𝛼𝑖𝑗  denotes the total number of successful 

interactions that have taken place between node 𝑖 and node 𝑗; 
𝛽𝑖𝑗 is defined as the total number of failures associated with 

the interactions between node 𝑖 and node 𝑗;  𝛾  refers to a 

baseline uncertainty factor that considers incomplete evidence 

of interactions; 𝜅,  on the other hand, is a dynamic scaling 

coefficient which defines how much importance needs to be 

given to uncertainty as characterized by 𝛾  with regard to 

density of interaction or network condition [67]. 

 

4.5.8 Updating of communication behaviour 

Dynamic updating of communication behavior adaptively 

updates the trust values of the nodes in a network based on 

their recent interactions. This ensures that the assessment of 

trust captures the most recent behavior while it gradually 

discounts outdated interactions. The updated trust value is 

computed as given in Eq. (19). 

 

𝑇𝑖𝑗
(𝑡+1)

= 𝜆 ⋅ 𝑇𝑖𝑗
(𝑡)

+ (1 − 𝜆) ⋅ NewInteraction𝑖𝑗 (19) 

 

where, 𝑇𝑖𝑗
(𝑡+1)

 is the updated trust value of node 𝑖 for node 𝑗 at 

time 𝑡 + 1, 𝑇𝑖𝑗
(𝑡)

 is the previous trust value of node 𝑖 for node 

𝑗 at time 𝑡, 𝜆 is given by the forgetting factor (0 < 𝜆 ≤ 1), 

which determines the weight of the past trust when updating. 

NewInteraction𝑖𝑗is defined by the trust score derived from the 

newest interaction between nodes 𝑖 and 𝑗,  depending on 

whether it resulted in success or failure [68]. 

 

4.5.9 Holistic evaluation of reputation value 

A holistic approach in reputation value integrates the 

following factors: Direct and indirect feedback, uncertainty for 

calculating the overall reputation score of a node. This would 

render the assessment balanced and robust to the reliability of 

a node in the network and it’s determined by the Eq. (20). 

 

𝑅𝑖 = 𝜔𝑑 ⋅ 𝐹𝑖
direct + 𝜔𝑖 ⋅ 𝐹𝑖

indirect + 𝜔𝑢 ⋅ 𝑈𝑖  (20) 

 

𝑅𝑖 is the overall description of the holistic reputation score 

of node 𝑖 about overall reliability, 𝐹𝑖
direct is the representation 

for the direct feedback score with respect to node  𝑖  for its 

interaction, 𝐹𝑖
indirect is the description of an indirect feedback 

score for node 𝑖  based on recommendations by the 

neighboring nodes. Ui-described uncertainty factor for node i 

to model incomplete or insufficient evidence on interaction 

evidence. 𝜔𝑑 , 𝜔𝑖 , 𝜔𝑢 represented weight coefficients 

controlling direct feedback, indirect feedback, and uncertainty 

respectively such that (𝜔𝑑 + 𝜔𝑖 + 𝜔𝑢 = 1). 

 

4.6 Residual energy 

 

Residual energy is the energy left in a node after its 

operational and communication activities in a network. It is 

one of the critical parameters in energy-constrained networks, 

such as WSNs, where efficient usage of energy is very 

important for a longer lifetime and reliability of the network, 

and it is represented by Eq. (21). 

 

𝐸residual = 𝐸initial − (𝐸transmit + 𝐸receive + 𝐸idle

+ 𝐸processing) 
(21) 

 

This, 𝐸residual, represents the residual energy of the node. On 

the other hand, 𝐸initial is defined as the energy a node possesses 

at the time it is deployed; 𝐸transmit - energy during transmission 

of data; 𝐸receive - meaning thereby the amount of energy wasted 

by this particular node due to reception of that packet, while 

𝐸idle represents energy utilized in idle mode during conditions 

that have a node neither in transmit nor receive state, 𝐸processing 

defines energy consumption for data processing or 

computational work [69]. 

 

4.7 Latency in communication 

 

Communication delay is a factor that greatly affects the 

wireless sensor network routing protocol. Higher delays will 

have a great impact on network communication. In this study, 

node distance and communication latency 𝜏𝑖𝑗  will be 

examined. Node communication latency may be represented 

by physical distance. Although nodes are close, node voltages 

may be close to the minimum of the sensor. This may greatly 

minimize node communication. The two nodes are far apart. 

Thus, here a distance concept is suggested towards a better 

representation of communications latency given in Eq. (22).  

 

𝜏𝑖𝑗 = [[
1

𝑉0 − 𝑉𝑚𝑖𝑛
∗ (𝜔𝑖𝑗)2]−1] (22) 

 

𝑉0  is 3 V and matches the wireless sensor network node 

voltage during system operation. The critical voltage Vmin is 

commonly 2.7 V. Also, Eq. (23) defines 𝜔𝑖𝑗  as the Manhattan 

metric distance between nodes i and j. The equation above 

accounts for energy-distance correlation and voltage volatility. 

The formula quickly adjusts the effective distance between 

nodes as voltage drops, which is useful. For distance between 

two objects with P number properties, let i = (𝑢𝑖1, 𝑢𝑖2,..., 𝑢𝑖𝑝) 

and j = (𝑢𝑗1, 𝑢𝑗2,..., 𝑢𝑗𝑝). Manhattan, L1, or taxicab distance 

measures i-j. The total of their absolute coordinate disparities 

[70-73]. 

 

𝜔(𝑖, 𝑗) = |𝑢𝑖1 − 𝑢𝑗1| + ⋯ … … … … … + |𝑢𝑖𝑝 − 𝑥𝑗𝑝| (23) 

 

4.8 ACO reputation 

 

ACO reputation mechanism integrates the behavioral 

principles of ants, such as pheromone trails and path 

optimization, with reputation-based assessments to enhance 

routing efficiency and reliability in WSNs. The concept 

leverages the dynamic adjustment of pheromone levels 

influenced by node reputation, residual energy, and 

transmission delay, ensuring secure and energy-efficient data 

transmission [74-76]. 

 

4.8.1 Reputation-based pheromone update 

The pheromone concentration (𝜌𝑖𝑗)  of a path between nodes 

𝑖 and 𝑗 is updated concerning node reputation (𝜇𝑖𝑗), residual 

energy (𝜉𝑖𝑗), and communication delay τij given in Eq. (24).  

 

𝜌𝑖𝑗 = 𝜃1 ⋅ 𝜇𝑖𝑗 + 𝜃2 ⋅ 𝜉𝑖𝑗 − 𝜃3 ⋅ 𝜏𝑖𝑗 (24) 
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where, 𝜌𝑖𝑗  is the concentration of pheromones for determining 

the attractiveness of the route, 𝜇𝑖𝑗 describes a reputation value 

at node's reliability based on the historic records analyzed 

previously; 𝜉𝑖𝑗   defines the amount of residual energy at the 

current instant for enforcing energy-efficient routing, and 𝜏𝑖𝑗 

denotes communication delay that has to be minimized so as 

not to allow high-latency paths in the network, and lastly, 

𝜃1, 𝜃2, 𝜃3 are weight coefficients needed for giving relevance 

to the corresponding parameters to balance their effects [77-

80]. 

 

4.9 The specific process of a proposed Pheromone-Based 

Lifetime Routing Algorithm (PATRA) 

 
To have the optimization of ant colonies and determination 

of node reputation values, multiple ants must be dispatched 

along each path to record the information of the node attribute. 

These pheromone values play an important role in identifying 

the optimal path. A flowchart showing how this is done is 

represented in Figure 8, showing the dispatch of the ants to the 

collection of data regarding the nodes and pheromone update 

for recording to the determination of the best path. 

 

4.9.1 Algorithm: ACO for reputation-based routing 

This Algorithm 1 describes the ACO process for finding the 

optimal path based on node reputation in a Wireless Sensor 

Network (WSN). 

Step 1: Initialize parameters 

• Set the total number of ants (𝑚), maximum iterations 

(𝑇max), and initialize pheromone levels (𝜌𝑖𝑗) for all paths. 

• Define weight coefficients (𝜃1, 𝜃2, 𝜃3) for reputation, 

residual energy, and delay. 

• Initialize the ant counter 𝐴 = 0. 

Step 2: Increment the ant counter 

• Increment 𝐴 by 1: 𝐴 = 𝐴 + 1. 

Step 3: Check If All Ants Are Processed 

• If 𝐴 > 𝑚, proceed to Step 8. Otherwise, continue. 

Step 4: Choose the next node 

• For the current node, evaluate the probability of 

choosing the next node 𝑗 using the ACO probabilistic formula 

as shown in the equation  

𝑃𝑖𝑗 =
(𝜌𝑖𝑗)𝛼⋅(𝜂𝑖𝑗)𝛽

∑  𝑘∈neighbors  (𝜌𝑖𝑘)𝛼⋅(𝜂𝑖𝑘)𝛽,   

where, 𝜌𝑖𝑗: Pheromone level on the path 𝑖 → 𝑗, 𝜂𝑖𝑗: Heuristic 

value based on node reputation, residual energy, and delay, 

𝛼, 𝛽 : Weight parameters for pheromone and heuristic 

influence. 

Step 5: Check target node 

• If the selected node is the target, go to Step 6. 

• Otherwise, repeat Step 4 for the next node. 

Step 6: Modify pheromone levels 

• Update pheromone levels on the path using the 

reputation-based pheromone update formula as shown in the 

equation 

𝜌𝑖𝑗 = (1 − 𝜃) ⋅ 𝜌𝑖𝑗 + 𝜃 ⋅ (𝜃1 ⋅ 𝜇𝑖𝑗 + 𝜃2 ⋅ 𝜉𝑖𝑗 − 𝜃3 ⋅ 𝜏𝑖𝑗),  

where, 𝜇𝑖𝑗 is the reputation of node 𝑗, 𝜉𝑖𝑗  is represented by the 

residual energy of node 𝑗 , 𝜏𝑖𝑗  is described as the 

Communication delay to node 𝑗  and 𝜃  is identified as 

evaporation coefficient. 

Step 7: Update Iteration Counter 

• Increment the iteration counter: 𝑡 = 𝑡 + 1. 

• If 𝑡 > 𝑇max, proceed to Step 8. 

• Otherwise, return to Step 2. 

Step 8: Compare and Output Results 

• Compare the paths traversed by all ants. 

• Select the path with the highest cumulative 

pheromone level and reputation score as the optimal path. 

• Output the results. 

End 

The algorithm terminates after identifying the optimal path. 

 

 
 

Figure 8. The proposed optimal wireless sensor network ant-lifetime routing algorithm using multi-phase pheromone
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5. RESULTS AND DISCUSSION  

 

Table 1 lists the key simulation parameters used for 

evaluating the ACO-based routing framework in WSNs. It 

includes values such as network size, area dimensions, energy 

metrics, and protocol configurations necessary for modeling 

and analyzing the system's performance. 

Figure 9 provides a glimpse of nodes scattered around a 

rectangular area of 100m × 100m, thus showing the randomly 

deployed pattern of sensor nodes. Each dot represents a sensor 

node, placed to depict the way nodes are dispersed over the 

sensing field of interest. 

This deployment is to check the network performance on 

coverage, connectivity, and reliability issues under different 

configurations. It will help analyze how node placement 

affects data transmission efficiency and energy utilization key 

considerations in the design of effective WSNs. The x- and y-

axes are set to represent the coordinates within the simulation 

area; thus, through the coordinate positions of every node, one 

can further analyze various network behaviors. 

 

Table 1. Simulation parameters for ACO in WSNs 

 
SI. No Parameter Value 

1 Number of Nodes 100 

2 Simulation Area 100m x 100m 

3 Transmission Range 100m 

4 Initial Energy 1J 

5 Packet Size 1024 bytes 

6 Data Rate 250 kbps 

7 Simulation Time 500 seconds 

8 Node Mobility Random Waypoint 

9 
Energy Consumption per 

Transmission 
0.01J 

10 Routing Protocol AODV 

 

Table 2. The various redundant nodes with respect to 

different configuration 

 
Node Coincidence Threshold 5m 10m 20m 

1.2 0 0 0 

1.57 2.2 2.2 2.2 

1.757 2.2 5.3 0 

2.5 2.2 14 0 

2.75 2.2 18.5 0 

 

 
 

Figure 9. Simulation experiments Wireless Sensor Network 

node deployment diagram 

Table 2 presents the number of redundant nodes under 

various node coincidence thresholds (5m, 10m, and 20m). It 

demonstrates how increasing the threshold impacts 

redundancy, providing insights into optimizing node usage, 

reducing energy consumption, and improving efficiency in 

WSNs. 

 

5.1 Performance comparison of proposed and 

conventional methods for Packet Delivery Ratio 

 

Figure 10 represents the performance analysis of the 

proposed PATRA in comparison with other conventional 

techniques, such as QOS-PSO, ACORC, and TANARP, based 

on the PDR with respect to malicious nodes. The X-axis 

represents the number of malicious nodes in the network, y-

axis shows PDR in percentage, which essentially shows the 

ratio of delivered packets to the total transmitted ones. The 

graph shows that PATRA maintains a higher PDR in 

compared to conventional techniques throughout and even 

with increased malicious node numbers. 

 

 
 

Figure 10. Performance analysis of Packet Delivery Ratio 

with malicious nodes [59] 

 

This better performance is due to PATRA's dynamic 

reputation-based routing mechanism and adaptive pheromone 

updates that prioritize the use of reliable nodes and thus limit 

malicious activities. However, on the other side, there is a 

more pronounced effect on the decline of the PDR value, 

especially in the case of classic methods, since those 

algorithms are more susceptible to disrupting malicious nodes 

because either their routing method is stationary or less 

adaptable. Thus, the figure proves how robust and effective 

PATRA is in providing guaranteed, reliable data transmission 

over these adverse network conditions. 

 

5.2 Energy efficiency comparison of proposed and 

conventional methods 
 

Figure 11 shows that PATRA has always had low energy 

consumption, in contrast to traditional approaches, thus 

proving its energy efficiency. With the increase in malicious 

nodes, conventional approaches, such as ACORC and 

TANARP, present a steep energy consumption rate due to 

their inability to handle malicious activities which are 

subjected to high retransmissions and redundant 

communication. In contrast, PATRA tries to keep energy 
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consumption at a minimum by utilizing its reputation-based 

routing mechanism, which gives the highest priority to the 

nodes that have higher reliability and residual energy levels, 

thus preventing unnecessary transmissions and prolonging 

network lifetime. 

This efficient exploitation of energy assures the continuity 

in network performance, while it solves one of the greatest 

challenges in WSNs: The energy exhaustion challenge. The 

figure illustrates how PATRA can come out best in optimizing 

the utilization of energy in handling malicious activities. 

 

 
 

Figure 11. The performance analysis between the proposed 

method and with conventional with respect to average energy 

consumption [59] 
 

5.3 Packet loss rate analysis of proposed and conventional 

methods 
 

Figure 12 compares the performance of the proposed 

PATRA, Pheromone-based Ant Trusted Routing Algorithm, 

with conventional methods like QOS-PSO, ACORC, and 

TANARP for packet loss rate versus time. In this plot, the x-

axis represents the time in simulation, and the y-axis 

represents the packet loss rate in percentage. 
 

 
 

Figure 12. The performance analysis between the proposed 

method with conventional methods with respect to the packet 

loss rate (%) 

It can be seen from this simulation that the proposed method 

of PATRA keeps its packet loss rate lower, while the 

conventional methods start significantly increasing towards 

the end of this simulation under conditions involving high 

network traffic and potentially malicious activities. The 

increased packet loss of methods like TANARP and ACORC 

is due to the less adaptability of these methods: They have 

static routing mechanisms which cannot give priority to 

reliable and trustworthy nodes, effectively. 

In contrast, PATRA demonstrates a more stable packet loss 

rate due to its adaptive routing strategy, which incorporates 

node reputation, energy levels, and pheromone updates. By 

favouring reliable nodes and dynamically adjusting routing 

paths, PATRA minimizes packet loss even under challenging 

network conditions, ensuring higher reliability in data 

transmission. The figure highlights the effectiveness of 

PATRA in reducing packet loss, contributing to overall 

network efficiency and performance. 

 

5.4 Packet loss rate comparison for varying node counts 

 

Figure 13 shows the packet loss rate comparison of the 

proposed PATRA with other traditional methods, such as 

QOS-PSO, ACORC, and TANARP, for different numbers of 

nodes. The x-axis shows the number of nodes in the network, 

and the y-axis represents the packet loss rate in percentage. 

It is observed from the bar graph that, out of all methods, 

the proposed PATRA method gives the minimum packet loss 

rate for all node counts. With an increase in nodes, the packet 

loss rate for all approaches goes up due to increased traffic and 

congestion within the network. However, conventional 

methods give very high packet loss rates, especially those 

related to TANARP and ACORC due to their inefficient 

handling of congestion and dynamic routing challenges. 

In turn, the performance of PATRA outperforms PATRA 

based on a reputation-based routing mechanism and adaptive 

pheromone updates, giving the former first priority over the 

latter. It gives high preference to nodes that are reliable and 

efficient, hence making it transmit packets through optimum 

paths in an attempt to minimize packet loss. This is further 

affirmed that PATRA will be well scalable with robustness by 

minimizing the packet loss even in big-scale and complex 

networks. 

 

 
 

Figure 13. Packet loss rate comparison analysis 
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5.5 Comparison of the number of received packets across 

methods 

 

Figure 14 illustrates the performance comparison of the 

proposed PATRA with that of other conventional methods like 

QOS-PSO, ACORC, and TANARP using the number of 

packets received during the simulation. The x-axis represents 

the instances of the simulation, while the y-axis shows the 

number of packets received. 

 

 
 

Figure 14. Performance analysis of the number of received 

packets 

 

In the proposed PATRA method, the number of received 

packets is considerably higher throughout the simulation 

compared to conventional methods. This may be because 

PATRA can select reliable nodes by using a reputation-based 

routing mechanism and adaptive pheromone update for 

efficient and secure data transmission. In contrast, all the 

conventional methods, namely TANARP and ACORC, show 

a gradual increase in packet reception at the beginning but fail 

to maintain stability under higher simulation instances due to 

their low adaptability to network dynamics and malicious node 

activities. 

 

 

6. CONCLUSION  

 

The research work has been conducted on the life-time 

enhancement of nodes in WSN using the proposed algorithm. 

It has improved data transmission security, energy 

consumption, local convergence, flexibility, accuracy, and 

dependability of nodes by using the proposed PATRA method. 

Adopting the ant colony method to find a quick and effective 

multipath to deliver the packet from source to destination will 

help you achieve this. Due to this process, the coincidence 

rates and data updates at nodes have improved. The proposed 

model is used to compute and formulate the residual node 

energy and the transmission delay. Based on the simulation 

results, the proposed algorithm works better than other 

methods when looking at packet delivery rates of 0.45% for 

QOS-PSO, 0.25 for ACORC, and 0.86% for TACOP to 

compare. Apart from this, average energy consumption is 

reduced in the proposed method as compared to conventional 

methods of 0.52%, 0.56%, and 0.45% of QOS-PSO, ACORC, 

and TACOP, respectively. In this paper, a simulation analysis 

has been carried out by considering the packet loss rate. The 

proposed method has better performance in comparisons to 

conventional methods, such as 0.12 for QOS-PSO. 0.65% for 

ACORC and 0.45% for TACOP to be compared. 
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