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  Conventional healthcare systems are traditionally challenged by fragmented data, lack of 

predictive insights, and security concerns, which spouse their effectiveness and efficiency. 

This paper will cover these gaps by developing an integrated Smart Healthcare System 

leveraging the power of the Internet of Things and Artificial Intelligence processes. To that 

end, we have proposed a holistic model that integrates several advanced methodologies to 

help in enhanced disease prediction and patient monitoring, with data security and privacy 

protection. We further apply the Hybrid Machine Learning (ML) models specifically; 

Random Forest Classifier integrated with k-means clustering for the prediction of diseases. 

This will cluster patients according to their similarity in health characteristics and provide 

an accurate disease risk prediction with an accuracy of 85-90%. Accordingly, Long Short 

Term Memory (LSTM) networks will be used for deeper timestamp series analyses with 

the following input sets: predicted disease probabilities, time-stamped health monitoring 

data, and patient lifestyle information sets. This model is outstanding both in regard to 

forecasting disease progression and in detecting anomalous health events with less than a 

5% false positive rate. For protection and integrity of the data, we will use an Ethereum 

blockchain framework with respective smart contracts. The approach will provide secure, 

immutable health data storage and controlled, traceable access in full compliance with the 

requirements of various data protection regulations, such as GDPR. What's more, 

differentially private computations on encrypted data samples are guaranteed by combining 

homomorphic encryption methods with differential privacy techniques. The former ensures 

that in any kind of data analysis, at the point of execution, individual patient privacy is 

maintained, while the latter ensures an accurate, aggregated health data insight for different 

scenarios. By incorporating these methods, a robust smart healthcare system would be 

developed, one which, other than the ability to predict and monitor the progression of a 

disease very precisely, was able to protect patients' data and respect privacy. The same work 

has far-reaching implications in achieving better patient outcomes through earlier 

interventions and provision of increased security to the data, apart from enhancing trust in 

digital solutions for healthcare.  
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1. INTRODUCTION 

 

The coming of the Internet of Things and Artificial 

Intelligence has disrupted many sectors, not excluding 

healthcare, where the cure perhaps has been very hard. 

Traditional healthcare systems are normally inefficient, 

characterized by siloes of data, and low ability to predict. 

These deficiencies therefore call for the development of 

sophisticated, integrated models that take advantage of 

advanced technologies in improving disease prediction, 

patient monitoring, and security of data and privacy protection. 

Recent advances in machine learning and deep learning for 

medical diagnosis and prognosis look very promising. Hybrid 

models, combinations of different algorithms, hold great 

potential to predict the possibilities or occurrence of a disease 

with reasonable accuracy. In this work, we have combined a 

Random Forest Classifier with k-means clustering to segment 

patients into clusters of persons with similar health 

characteristics to improve the accuracy in the prediction of 

disease probabilities. 

Predicting disease occurrence, however, is not the whole 

solution. Its continuous monitoring, coupled with accurate 

forecasting of the progression of a disease, is equally 

important. Long Short-Term Memory (LSTM) networks 

constitute a kind of RNN specifically applied to timestamp 

series analysis and have shown a great deal of efficacy in 

predicting future health events from historical data samples. 

LSTMs combine probabilistic outputs of disease risk, time-
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stamped health monitoring data, and patient lifestyle 

information to yield insight into disease progression and early 

anomaly detection. This information is very sensitive for a 

patient in this domain; thus, its handling is very important from 

the integrity and security point of view. Blockchain 

technology helps in offering decentralized, immutable ledgers 

to store health data samples securely and have them accessed 

in a controlled manner. This research has ensured that patients' 

data is retained securely with the Ethereum blockchain and 

smart contracts, while the access to the data will be transparent 

and traceable with strict adherence to rigid data protection 

regulations like General Data Protection Regulation. 

Moreover, this research has also established privacy through 

Homomorphic Encryption and Differential Privacy techniques. 

These methods document the various computations on 

encrypted data without really exposing sensitive information, 

ensuring that individual patient privacy is retained while the 

resultant, valuable, aggregated data insights can serve a host 

of different scenarios. This paper comes up with an integrated 

model combining these advanced methodologies in order to 

build a robust Smart Healthcare System. The proposed model 

in the present study enhances predictive accuracy in health 

monitoring systems while ensuring data security and privacy. 

It would be a comprehensive and integrated approach to 

significantly improving patient outcomes, building trust in 

digital healthcare solutions, and paving the way for more 

intelligent, efficient, and secure healthcare systems. 

 

1.1 Motivation and contribution 

 

The multifaceted challenges in modern healthcare systems 

make this research very timely. Conventional healthcare 

infrastructures possess fragmented data sources, lack adequate 

predictive analytics, and have huge security vulnerabilities-all 

of which badly hamper appropriate disease management and 

care delivery to patients, influencing health outcomes and 

reducing efficiency. This integration of IoT devices with 

Artificial Intelligence in their functions presents a great 

opportunity for the eventual revolutionization of healthcare 

delivery. Assured enhanced accuracy in disease prediction but 

continuous patient monitoring with robust data protection is 

achievable by leveraging IoT and AI to ensure a more cohesive, 

predictive, and secure healthcare environment. It is to address 

these critical needs that this research has been driven to 

develop an innovative model that will integrate advanced 

machine learning techniques, timestamp series analysis, 

blockchain technology, and privacy-preserving methodologies 

into a comprehensive smart healthcare system. The major 

contributions from the research are related to the development 

of an integrated model that substantially improves the current 

state of healthcare technology. In the first instance, this work 

presents a novel approach to disease prediction with the help 

of Hybrid Machine Learning Models-Random Forest 

Classifier with k-means clustering. The application of this 

model, therefore, will let patients fall under clusters having 

similar health characteristics and enable a more efficient 

prediction about the occurrence of diseases with an accuracy 

of 85-90%. All this granularity in prediction is very important 

for determining high-risk patient groups and tailoring 

preventive measures. 

It also applies Long Short-Term Memory networks in the 

analysis of timestamp series data for diseases to be predicted, 

combining probabilities with time-stamped health monitoring 

data and patient lifestyle information. This will aid the system 

in predicting the progression of diseases accurately and 

detecting anomalies in health, therefore performing timely 

interventions for better patient outcomes. Subsequently, it is 

enhanced by the integration of LSTM networks that solve 

dynamic characteristics of health data with its continuance and 

adaptive monitoring, which forms a very important part in any 

effectual management of diseases. Another integral fact about 

this research relates to blockchain technology, which has been 

integrated into enhancing security and integrity in data storage. 

The model proposed will use Ethereum Blockchain and Smart 

Contracts, technologies that will ensure a rather safe storage 

of health data, and access to it can thus be controlled and traced 

minutely. This approach safeguards patients' information from 

third-party access, besides adhering to the stringent data 

protection regulations, for instance, the GDPR. Blockchain 

technology helps solve a very critical issue-and that is data 

tampering and unauthorized access-by providing transparent 

and immutable records of all transactions for data. 

The research takes into consideration these privacy 

concerns through the application of Homomorphic Encryption 

and Differential Privacy. It is a special type of encryption 

called homomorphic encryption, which allows one to do 

computations on encrypted data without really knowing what 

it is. In this case, it is going to guarantee that no sensitive 

information related to specific patients will be disclosed in the 

process of data analyses. Differential privacy does this through 

the addition of noise into the insights derived from aggregated 

data and makes them unable to identify particular patients, yet 

remaining accurate and useful. This dual privacy-preserving 

approach in the analytics phase makes certain that high-

accuracy computability in the system is coupled with valuable 

health insight generation, wherein Patients' confidentiality is 

not compromised. In a nutshell, this work substantially 

contributes to smart healthcare by fusing cutting-edge ML/DL 

techniques with secure blockchain and privacy-preserving 

methodologies. Besides enhancing the predictive abilities and 

monitoring accuracy, the proposed model ensures data 

security and privacy are not compromised. Facing the 

limitations of conventional healthcare systems, the research 

works toward further improving intelligent health care 

delivery, Making it more efficient and secure for better patient 

outcomes and increased trust in digital health solutions. Their 

inventive combination gives a big advance in the development 

of next-generation healthcare systems to meet all kinds of 

challenging demands experienced in modern healthcare 

surroundings. 

 

 

2. REVIEW OF EXISTING MODELS FOR 

HEALTHCARE ANALYSIS 

 

(1) Machine learning methods for intelligent healthcare 

principles and advantages 

ML, particularly by way of hybrid models, deep learning, 

and clustering, has increasingly been used to predict the onset 

and progression of diseases as well as risk stratification of 

patients. Methods of applying the Random Forest Classifier 

with k-means clustering, like in this study, provide a multi-

step approach where patients are first clustered by health 

characteristics and these clusters will increase predictive 

accuracy for disease probability. It allows for more precise 

definition of the 'at-risk' groups and helps in more directed 

healthcare delivery. In addition, LSTM networks are used for 

temporal analysis in healthcare which facilitates the 
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continuous monitoring of disease progression and anomaly 

detection. The long-term dependencies in health data can be 

captured by the LSTM model, which is very useful when 

interventions need to be provided on time, which can be based 

on real-time health changes. Limitations Machine learning 

models require massive computational resources, especially 

deep architectures that include LSTMs, which leads to huge 

amounts of memory and processing requirements. Further, as 

noted NLP in healthcare is a vital feature extraction and 

interpretation of clinical data in terms of clinical outcomes, but 

it requires significant computational ability. If not well 

supported by a robust computational infrastructure, this makes 

health care applications large scale or even real time 

challenging. Metaheuristic algorithms for routing for energy 

efficiency suffer with high computational 

complexity. Systematic Comparison Hybrid ML models like 

Random Forest Classifier integrated with clustering, as 

applied in this study, are seen with notable improvements in 

predicting accuracy above the traditional single-step 

classification methods. Comparative studies, reported lower 

prediction accuracy at 86.1% with an indication of the 

advantage of combining clustering with classification towards 

better specificity for identification of a high-risk group. Here, 

for anomaly detection, the employed LSTM model was good, 

as it showed a lower value of 0.038 in MAE against 0.060 

reported by other methods. It can be easily seen that LSTM 

indeed has strong ability to learn temporal dependencies 

important for the domain of healthcare. 

(2) Blockchain-based security methods principles and 

benefits 

The implementation of blockchain technology, in particular 

with smart contracts, can establish an immutable and 

decentralized record of healthcare data, thus further enhancing 

the integrity, security, and compliance of data with regulatory 

frameworks, such as GDPR. Ethereum Blockchain with smart 

contracts, as applied in this paper, enables the secured storage 

of health data and controlled access to prevent unauthorized 

access and tampering of the data samples. This is also highly 

traceable, ensuring accountability for every access of the data 

samples. Blockchain enabled key management and blockchain 

for access control in IoT-based healthcare systems make 

evident how blockchain protects IoMT devices using strong 

authentication, thereby enhancing the privacy of healthcare 

data samples. Limitations However, blockchain 

implementations are usually computationally intensive, as 

seen in where blockchain-based EMR sharing, 

notwithstanding all the advantages it had, was marred by high 

computational overhead and latency-related issues. Moreover, 

blockchain systems usually tend to be expensive, and 

managing blockchain infrastructure may severely limit 

scalability. This is especially problematic in environments of 

high transactions such as smart health where fast and scalable 

solutions are a requirement. Systematic Comparison 

Compared to this research, the integrity on data is better 

provided by the Ethereum Blockchain-based model, at 100% 

compared to 98% and 96% as compared with other models. 

That kind of approach access control with smart contracts also 

limits all unauthorized attempts at access, thus providing more 

security layers. Alternative solutions, such as lightweight 

encryption in IoT data sharing though efficient, suffer from 

severe encryption overheads, implying a trade-off between 

efficiency and security in resource-constrained devices & 

deployments. 

(3) Federated learning and privacy-preserving 

techniques 

Principles and Benefits Modern health care systems rely on 

privacy-preserving methodologies, for example federated 

learning and differential privacy for secure data sharing that 

does not compromise the confidentiality of patients. Federated 

learning is understood to mean collaborative learning of 

models across distributions of health data without transferring 

raw data to a central server, and because of this, sensitive 

information remains localized and improves privacy, Data 

offered protection by the application of homomorphic 

encryption and differential privacy methods used in this 

research. In case of homomorphic encryption, data 

computation on encrypted data is very important to ensure that 

at the time of analysis, there is a guarantee of patient privacy. 

Differential privacy adds noise to the set of data in such a way 

that it minimizes the identification of patients in the data; 

however, the noise added does not affect the amount of 

required precision in any given analysis. Limitations 

Federated learning is computationally expensive and requires 

robust network infrastructures and high data transfer rates, but 

it preserves privacy. Homomorphic encryption is also 

computational-costly; hence processing time is typically 

delayed in real-time healthcare applications. Comparative 

Systematic In contrast with other works, the privacy metrics 

obtained in this research, specifically the minimal privacy loss 

ϵ=0.7 and high private result accuracy at 97%, indicate 

significant improvements over traditional models based solely 

on federated learning alone which often display greater 

privacy loss and reliance on network infrastructure. The two-

layer mechanism of privacy used here in this context achieves 

a high level of privacy preservation with minimal utility loss 

compared to privacy frameworks that use only one technique. 

(4) IoT and cloud-based integration for scalable 

healthcare systems 

Principles and Benefits IoT devices and cloud computing 

are the basics of scalable, real-time smart health care. Green 

health care frameworks cloud-based support large-scale health 

monitoring. This is due to the storage and processing of large 

amounts of patient data in the cloud, made possible through 

IoT devices facilitating real-time data collection. AI-enabled 

edge computing represents another method through data 

processing near to the source location, thus fastening data 

processing and overall system response time. Limitations 

Despite the advantages of scalability in IoT-cloud frameworks, 

they have a tendency to be prone to network security risks 

since data in motion security relies on a robust cloud 

infrastructure. Additionally, edge devices lack in 

considerations about their provision of computation power and 

energy efficiency, thus curtailing their applications into 

resource-intensive ones. Green IoT frameworks also depend 

on device security, which is also seen to be problematic in less 

structured environments. 

 

2.1 Systematic comparison 

 

More precisely, compared with the centralized cloud 

models, edge computing reduces latency and improves 

response delays at the cost of reduced computational power, 

which remains limited in edge devices & deployments. The 

framework of cloud-IoT applied in the present work offsets the 

constraints, thus maintaining a balance between scalability, 

security, and privacy with the aid of blockchain-based checks 

on data integrity and robust privacy-preserving techniques. 

Conclusion of Systematic Comparison Systematic assessment 
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of the presented approaches shows that each category presents 

its own point of strength, while the computational 

requirements, reliance on strong infrastructures, and expenses 

go across all. The integrated model developed within this 

study-a hybrid of ML, LSTM networks, Ethereum Blockchain 

with smart contracts, and privacy-preserving encryption-

builds a bridge over the existing solution weaknesses and 

simultaneously solves them. The proposed solution 

incorporates an advanced learning machine, decentralized 

security frameworks, and robust privacy protection. These 

features make it a better competitor against standalone 

approaches and, therefore, offer a comprehensive, scalable, 

and secure smart healthcare system that meets the multifaceted 

demands of modern healthcare environments. 

 

2.2 Summary of review analysis 

 

A critical review of the recent studies in this regard has 

brought out the diversified approaches and methodologies 

adopted within the domain of smart healthcare, which in one 

way has contributed to the overall progress but at the same 

time also offers a separate set of limitations and challenges. 

Pradhan et al. [1] discussed the role of AI together with 5G 

communication in showing how the synergy of these two can 

further enhance real-time decision-making and security in 

healthcare systems. This method has huge potential but is 

sadly limited because of its high implementation costs and 

strong dependence on 5G infrastructure. In the domain of 

healthcare, as evidenced by Zhou et al. [2], NLP played a 

relevant role in enhancing the interpretation of data through 

better feature extraction and analysis. However, the 

complexity and large computational resources demanded by 

the techniques of NLP restrict their application. Alruwaili et 

al. [3] shows that blockchain enabled smart Health care system 

using jelly fish search optimaizatipn algorithm for disease 

detection with high accuracy. Limitations Federated learning 

is computationally expensive and requires robust network 

infrastructures and high data transfer rates, but it preserves 

privacy, according to Akter et al. [4]. 

Saini et al. [5] proposed a lightweight smart-contract-based 

transaction prioritization scheme, which can optimize the 

handling of electronic medical records. This would increase 

scalability issues wherein high transaction volumes for 

different scenarios are to be taken into consideration. 

Thapliyal et al. [6] shows how blockchain provides protection 

with strong authentication, and how it will be suitable for 

healthcare domains. Raina and Jha [7] work with Hidden 

Markov model enhanced with probabilistic approach for better 

prediction. 

Syu et al. [8] discussed AI-empowered edge computing, 

which provided improved data processing speeds and 

increased accuracy; however, such work is still fundamentally 

limited in capability and power consumption by edge devices 

and deployments. Wu et al. [9] applied blockchain in secure 

sharing of electronic medical records, ensuring privacy but 

with high computational overhead. Islam and Bhuiyan [10] 

used a cloud and IoT-based green healthcare framework, thus 

ensuring scalable solutions but are dependent on the security 

of the Cloud and the IoT devices. Mallick et al. [11], who 

combined blockchain with geospatial web services, improved 

efficiency in data management and was limited to problems 

like accuracy in data and scalability. Ali et al. [12] contributed 

a comprehensive survey about federated learning for privacy 

preservation, focusing more on better privacy and 

collaborative learning at the cost of robust sets of network 

infrastructures. 

Wazid et al. [13] focused on ransomware attacks against a 

blockchain-enabled security framework that offers higher 

security but is encumbered with issues of complexity and cost. 

Li et al. [14] proposed a federated learning approach for the 

preservation of privacy concerning healthcare data analysis, 

achieving effective analysis but relying on federated 

infrastructure. Abdeen et al. [15] reviewed the various 

elements involved in smart health systems, overlooking them 

from a general perspective and, hence, identifying key 

challenges and possibilities but failing to provide solutions. 

Egala et al. [16] investigated intelligent blockchain 

applications that enhance security and privacy but emerge with 

integration complexities and high computational burdens. 

Almas et al. [17] proposed context-based adaptive fog 

computing that enhances the trust of time-critical systems and, 

as a result, has limitations on fog infrastructure capabilities. 

Gao et al. [18] worked on resource allocation assisted by IoTs, 

which ensured efficient management and thus became 

dependent on IoT infrastructures. Li et al. [19] designed a fog 

computing healthcare access control scheme that has secure 

management but high cost and complexity. Hajjej et al. [20] 

proposed efficient motion detection with deep learning that 

provided an accurate analysis, but high computational power 

and sensor accuracy are prerequisites. Bao et al. [21] have 

presented the IoT healthcare secure data sharing method-based 

lightweight encryption that gives high efficiency but suffers 

due to encryption overhead bounds. Lin et al. [22] have used 

neurocomputing for smart home energy management; it 

showed improvements in forecasting and management but 

depended on AI models and accuracy of data. Rana et al. [23] 

used metaheuristic algorithms to achieve energy efficiency for 

optimization of routing in health systems at very high 

computational costs. Islam et al. [24] reviewed various IoT 

device capabilities and protocols; this provided insights but 

did not mention any implementation strategy in detail. Fan et 

al. [25] contributed to the topics of smart city security, 

identifying some of the important challenges and solutions of 

IoT security with no specific focus on healthcare scenarios. 

Table 1 discusses some of the various approaches used in 

the development of smart healthcare systems and describes 

how these, although increasing valuable input and advances, 

also represent notable challenges and limitations. A clear need 

to integrate different methodologies in order to meet such 

complex needs of modern healthcare environments has been 

underlined. This paper proposes a Smart Healthcare System 

that exploits the power of various advanced technologies in a 

Hybrid Machine Learning model, Long Short-Term Memory 

network, Ethereum Blockchain with Smart Contracts, and 

Homomorphic Encryption with Differential Privacy 

Techniques. This will improve the accuracy of disease 

prediction and progress monitoring, ensure patients' data 

security, and preserve their privacy. 

The authors have combined a Random Forest Classifier 

with k-means clustering to develop a Hybrid Machine 

Learning model that significantly improves the accuracy in 

disease prediction to 90.2%. This can be considered an 

improvement over previous methods, for instance, the 

accuracy of 86.1% reported. The LSTM network, as 

demonstrated in this research, works nicely in predicting the 

progression of a disease and the detection of anomalies, with 

a resultant very low MAE of 0.038 against the MAE presented 

by other methods, which was 0.060. The integration of 
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Ethereum Blockchain with Smart Contracts resolves the very 

essential challenge of data security, hence guaranteeing data 

integrity at 100%, against 98% and 96%, recorded. It is a high-

security framework that forms cases of data tampering and 

unauthorized access, hence more trust in this system. Another 

critical aspect that the proposed model has addressed is the 

preservation of privacy through techniques of Homomorphic 

Encryption and Differential Privacy. It ensures that the amount 

of loss of privacy, ϵ, remains very minimal at 0.7, while 

undesired utility loss is only 3.0%, thus maintaining accuracy 

in private results at 97.0%. This turns out to be better in 

preserving privacy when compared to methods that demand a 

more robust set of network infrastructure. 

 

 

Table 1. Empirical review of existing methods 

 
Ref. Method Used Findings Results Limitations 

[1] AI-Assisted 5G Communication 
Integration of AI and 5G enhances 

smart healthcare capabilities 

Improved real-time 

decision-making and 

security 

High implementation cost and 

dependency on 5G infrastructure 

[2] 
Natural Language Processing 

(NLP) 

NLP techniques facilitate better data 

interpretation in healthcare 

Enhanced feature 

extraction and data 

analysis 

Limited by complexity and 

computational requirements 

[3] 
Blockchain with Jellyfish Search 

Optimization 

Blockchain enhances security; dual-

pathway CNN improves diagnostics 

High accuracy in medical 

diagnostics 

High computational cost and 

complexity 

[4] 
Federated Learning-Based 

Privacy Protection 

Federated learning ensures privacy 

while enabling data sharing 

Improved privacy and 

data security 

Requires complex infrastructure 

and high data transfer rates 

[5] 
Lightweight Smart-Contract-

Based Transaction Prioritization 

Smart contracts optimize transaction 

handling in healthcare 

Efficient EMR handling 

and prioritization 

Scalability issues with high 

transaction volumes 

[6] 
Blockchain-Authenticated Key 

Management 

Blockchain-based key management 

improves security in IoMT 

Enhanced authentication 

and security 

Complexity in managing 

blockchain infrastructure 

[7] 
Machine Learning for Interactive 

Healthcare 

ML models improve human-machine 

interactions in healthcare 

Improved real-time 

system responses 

High dependency on accurate 

feature extraction 

[8] AI Empowered Edge Computing 
AI and edge computing enhance 

healthcare data processing 

Improved data processing 

speed and accuracy 

Limited by edge device 

capabilities and power 

consumption 

[9] Blockchain-Based EMR Sharing 
Blockchain ensures privacy and 

dynamic access control for EMRs 

Secure and privacy-

preserved data sharing 

High computational overhead and 

latency 

[10] 
Cloud and IoT-Based Green 

Healthcare 

Integration of cloud and IoT 

improves green healthcare initiatives 

Scalable and efficient 

healthcare system 

Dependency on cloud 

infrastructure and IoT device 

security 

[11] 
Blockchain-Assisted Geospatial 

Web Service 

Blockchain and geospatial services 

improve medical data management 

Efficient data handling 

and queue management 

Limited by geospatial data 

accuracy and blockchain 

scalability 

[12] 
Federated Learning for Privacy 

Preservation 

Federated learning preserves privacy 

in smart healthcare systems 

Enhanced privacy and 

collaborative learning 

Requires robust network 

infrastructure 

[13] 
Blockchain-Enabled Security 

Framework 

Blockchain mitigates ransomware 

attacks in healthcare 

Improved security against 

ransomware 

Complexity and cost of 

blockchain implementation 

[14] 
Federated Learning-Based 

Privacy-Preserving System 

Federated learning enhances privacy 

and security in healthcare 

Effective privacy 

preservation and data 

analysis 

High dependency on federated 

learning infrastructure 

[15] 
Smart Health System 

Components 

Overview of smart health system 

components and challenges 

Identifies key challenges 

and opportunities 

General overview without 

specific solutions 

[16] 
Intelligent Blockchain for 

Decentralized Healthcare 

Blockchain and ML enhance 

decentralized healthcare security 

Improved security and 

privacy 

Complexity in integration and 

high computational requirements 

[17] 
Context-Based Adaptive Fog 

Computing 

Fog computing improves trust in 

time-critical healthcare systems 

Enhanced trust and 

adaptability 

Limited by fog computing 

infrastructure 

[18] 
IoT-Assisted Resource 

Allocation 

IoT enhances resource sharing and 

allocation in healthcare 

Efficient resource 

management 

Dependency on IoT infrastructure 

and security 

[19] 
Blockchain-Assisted Access 

Control 

Blockchain improves access control 

in fog computing healthcare 

Secure and efficient 

access management 

Complexity and cost of 

blockchain and fog integration 

[20] Deep Human Motion Detection 
Deep learning improves motion 

detection and analysis in healthcare 

Accurate motion 

detection and analysis 

High computational requirements 

and sensor dependency 

[21] 
Secure Data Sharing for IoT 

Healthcare 

Lightweight encryption enhances 

data sharing security 

Efficient and secure data 

sharing 

Limited by encryption overhead 

and IoT device capabilities 

[22] 
Neurocomputing for Smart Home 

Energy Management 

AI improves energy management in 

smart home healthcare systems 

Efficient energy 

forecasting and 

management 

Dependency on AI models and 

energy data accuracy 

[23] 
Metaheuristic Routing for Smart 

Healthcare 

Metaheuristic algorithms optimize 

routing in healthcare systems 

Improved energy 

efficiency and routing 

accuracy 

Complexity and computational 

cost of routing algorithms 

[24] 
IoT Device Capabilities and 

Protocols 

Overview of IoT capabilities and 

protocols in healthcare 

Enhanced understanding 

of IoT in healthcare 

General overview without 

detailed implementation 

[25] Security in Smart City Domains 
Overview of security in IoT-enabled 

smart cities 

Identifies key security 

challenges and solutions 

General overview without 

specific focus on healthcare 
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Although all the works contributing to this space that were 

evaluated add on significant value, the model proposed in the 

paper goes beyond the limitations involved due to such an 

integrative approach. For instance, the dependence on high 

computational power and related complexity, as found in some 

works by Alruwaili et al. [3] and Wazid et al. [13], is mitigated 

by the efficient design of the proposed system. It also clearly 

deals with the scalability issues reported and the reliance on 

specific infrastructures. The proposed model improved 

performance in prediction accuracy, anomaly detection, data 

security, and preservation of privacy, all validated by rigorous 

statistical analysis, gives it the potential to transform smart 

healthcare systems. Advanced machine learning techniques, 

blockchain technology, and privacy-protecting algorithms are 

likely to be a very powerful solution that can meet 

multifaceted demands of healthcare in current settings. 

Future studies may therefore be based on this by 

interrogating the scalability and real-time processing 

competencies, treatment methods of personalized medicine, 

expansion into genomic and social determinant data sources. 

In addition, the legal and ethical issues that surround data 

privacy, consent, and patient rights are yet to be clearly 

clarified to assure individuals of entrusting such confidential 

information with the concerned parties for protection. The 

Smart Healthcare System that is proposed, in essence, would 

be one revolutionary step forward in the integration of various 

methodologies directly providing inclusive, efficient, and 

effective solutions for better healthcare delivery and data 

management. This approach corrects the drawbacks exhibited 

by previous methodologies and is also going to be used as the 

reference point when smart healthcare systems are being 

developed in the future. 

 

 

3. PROPOSED DESIGN OF AN IMPROVED MODEL 

FOR SMART HEALTHCARE SYSTEMS USING 

HYBRID ML, LSTM, AND BLOCKCHAIN 

 

In view of the defects of low efficiency and high complexity 

with existing methods, this section is dedicated to discussing 

the design for an improved model for smart health care 

systems using hybrid ML, LSTM, and Blockchain operations. 

At the very initial stage of Figure 1, the design procedure of 

the Random Forest Classifier with K-means Clustering for 

disease prediction is reportedly a well-structured series of 

steps that must be observed and properly performed in order 

to ensure the correct identification of the patient group at high 

risk and the probabilistic incidence of a disease. This hybrid 

model is designed to borrow strengths from both clustering 

and classification techniques in order to deal with any 

complexity and variability in health data samples. The process 

initiates with the preprocessing of data, cleaning, and 

normalizing historical health records with patient 

demographic data and environmental data like pollution levels 

and weather conditions. The process makes sure that the data 

is consistent or noised for feeding into the next steps. The 

Hybrid ML model combining Random Forest (RF) and k-

means clustering was selected because, while realizing the 

specific needs of medical data processing, there was a need for 

both prediction accuracy and stratification of patients. 

Generally, in most medical datasets, they are high and 

multivariate high-dimensional and complex nature with 

numerous features interdependent on each other such as 

patient's demographics; various lifestyle factors; and 

measurement of physiological parameters. Known as one of 

the popular unsupervised learning algorithms, k-means 

clustering enables the segmentation of patients into specific 

clusters based on the health characteristics prior to prediction 

and consequently reduces the heterogeneity within the clusters. 

The initial step of clustering will group similar patient profiles 

that in turn simplify the tasks involving subsequent prediction 

of diseases. More importantly, stratification in clusters 

supports personalized care by identifying different types of 

risk groups within a broader population. 

The algorithm of Random Forest is applied after the 

clustering stage for disease risk prediction within a cluster. 

The random forest, in its essence, is an ensemble algorithm 

using a multitude of decision trees; it delivers a vote from the 

system to ensure that the predictions made are both accurate 

and robust. It is particularly effective for handling high-

dimensional data and gives feature importance insights, which 

makes it very valuable for medical applications where 

understanding the influence of every variable on outcomes is 

as important as accuracy of prediction itself. Since Random 

Forest will be applied to each k-means obtained cluster, the 

model could achieve higher specificity and sensitivity, as 

Random Forest now operates in more homogeneous 

subgroups of patients. This combination of both unsupervised 

and supervised learning provides better results concerning 

increased prediction accuracy and to prevent overfitting, 

mainly in health systems where minor variations could 

actually have a great impact on the performance of the patients. 

Complementarity between k-means and Random Forest 

ensures the segmentation that matches prediction requirements 

and prepares well for the complexity of medical data with 

variations. K-means clustering reduces variability within the 

groups of patients and, therefore, enables Random Forest to 

make more accurate and generalized predictions with minimal 

computational costs and risks of overfitting. It provides an 

ideal scenario during the processing of medical data, where the 

analysis grouped on the basis of similarities of patients 

enhances the reliability of the outcomes, and the structure of 

Random Forest can handle well complex relationships existing 

among health indicators. Thus, this hybrid approach not only 

increases the accuracy of predictions but also involves crucial 

insights into specific risk factors of patients and is, therefore, 

the best option for advanced medical data applications 

compared to other model combinations lacking this balance 

between segmentation and adequate, interpretable predictions. 

The proposed smart healthcare system has incorporated an 

emergency response mechanism that places patient safety 

above everything else during critical events. This mechanism 

allows for temporary deviations from the standard access 

controls; hence the selected providers of care could get hold of 

the necessary patient information quickly in case of an 

emergency situation. Practically, access to any data is highly 

regulated by smart contracts; yet, during an emergency, a 

special override function is always built-in the smart contract 

which, for a limited time, bypasses the regular constraints 

placed on access. It is only accessible to duly authenticated 

emergency personnel attending emergency physicians or 

paramedics will have had to authenticate identity through 

multi-factor authentication. At this point, users are granted 

access via the use of one-time access token in case of 

successful authentication that allows access to limited 

information that includes recently available health metrics 

known allergies and other major medical history. 
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Figure 1. Model architecture of the proposed healthcare security deployment process 

 

In addition, logging and monitoring are enhanced within the 

data flow of processing in order to track all the actions 

performed during an emergency override. This is because the 

smart contract logs all access requests within its system, 

capturing the user's IDs, the timestamps, and accessing data 

fully in creating an audit trail ensuring that all processes are 

transparent and liable. Access control automatically constrains 

the time and scope of emergency access-to provide access to 

only a specified period and to no higher level than that data 

which directly bears on the emergency. At the close of the 

emergency, access is returned to full constraints, and an alert 

is automatically transmitted to the patient and primary 

healthcare providers with notification that the data has 

temporarily been accessed in process. Thus, this adaptive yet 

controlled access adjustment scheme can ensure safety to the 

patient along with retaining long-term data privacy wherein 

emergent incidents can be handled and high standards of 

robustness in privacy are maintained in process. 

The first major component in this model would, therefore, 

be k-means clustering, which segments the data into clusters 

based on health characteristics. Let X be the dataset of n 

samples, where m is the number of features; that is, ‘m’ in 

process. Then, the problem of the k-means algorithm is to 

partition X into k clusters by reducing the variance level in all 

features within the cluster. Mathematically, this can be 

expressed via Eq. (1): 

𝐽 =∑∑ ∥ 𝑥𝑗(𝑖) − 𝜇𝑖 ∥2
𝑛

𝑗=1

𝑘

𝑖=1

 (1) 

 

where, xj(i) is the j-th data point in the i-th cluster and μi is the 

centroid of the i-th cluster. Subsequently, after the clustering 

step, a Random Forest Classifier would be trained on each 

cluster for the prediction of probability of a disease occurrence. 

The Random Forest algorithm is a method for ensemble 

learning in which, during the training phase, several decision 

trees are created and the mode of the classes is returned as 

output for classification. The probability of disease occurrence 

P(d∣Ci) for a cluster Ci isiven via Eq. (2): 

 

𝑃( 𝑑 ∣ 𝐶𝑖 ) =
1

𝑇
∑𝑓𝑡(𝐶𝑖)

𝑇

𝑡=1

 (2) 

 

where, T is the number of trees in the forest, and ft(Ci) is the 

output of the t-th decision tree for cluster Ci sets. This 

ensemble approach reduces overfitting and improves 

generalization by averaging the predictions from multiple trees. 

Estimates of feature importance employing either Gini 

impurity or entropy reduction for each feature can help 

improve this model's performance levels. The importance I(f) 

of feature f can be calculated via Eq. (3): 
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Figure 2. Overall flow of the proposed healthcare security process 

 

𝐼(𝑓) =∑ ∑ 𝛥𝑖(𝑛)

𝑛∈𝑁𝑡

𝑇

𝑡=1

 (3) 

 

where, Nt is the set of nodes in tree t, and Δi(n) is the reduction 

in impurity at node n owing to feature f sets. This analysis 

recognizes the most important binding health and 

environmental factors with the risk of diseases. 

Complementary strengths explain why k-means clustering was 

chosen to be followed by Random Forest classification. 

Clustering groups data points of similar subsets, thus making 

the problem of classification easier and allowing for tailored 

models within each cluster. With its ensemble nature, Random 

Forest enhances robustness and accuracy to cope with 

heterogeneity and complexity in health data samples. This 

positions the hybrid model at the core of mathematical rigor 

for tasks of disease prediction. Moreover, the integration of 

clustering with the classification ensures that it is able to 

capture the global pattern and local variations in the data, 

hence making the prediction more accurate and reliable. High-

risk patient groups will be correctly identified, and the 

probability of the occurrence of diseases will be well predicted 

at a high accuracy rate of approximately 85-90%. This study 

is a case in point for a non-trivial way to design and implement 

so many various analytics techniques that draw insights about 

such complex healthcare challenges. 

Figure 2: A Long Short-Term Memory network, a variety 

of RNN, is applied in which more advanced timestamp series 

analysis drives the prediction of disease progression and the 

detection of anomalous health events. It begins with data 

aggregation, in which the predicted probabilities from the 

Hybrid ML models concerning organic occurrence events are 

concatenated with the time-stamped health monitoring data, 

such as heart rate, blood pressure, and other lifestyle data of 

patients like physical activities and diet sets. All such 

consolidated data will add up to a full temporal dataset that 

defines the history and current status of the health of patients. 

For example, this task fits very well in LSTM because it allows 

the network to capture long-term dependencies in sequential 

data and thus mitigates the vanishing gradient problem that 

exists in traditional RNNs. Basically, the architecture of a cell 

for an LSTM mainly contains three kinds of gates: an input 

gate, a forget gate, and an output gate, all controlling various 

sets of information flow. The cell state Ct and the hidden state 

ht at instance t form the critical elements of modeling temporal 

dependencies. The forget gate ft does the opposite, 

determining how much of the previous cell state C(t−1) the 

model should forget, computed according to Eq. (4): 
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𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓) (4) 

 

Here, σ is the sigmoid function, Wf is the weight matrix, h(t-

1) the hidden state from the previous time stamp, xt the input 

at current time stamp and bf is the bias. The input gate it and 

candidate cell state C~t work together in updating the cell state 

with new information sets. The operations pertaining to the 

input gate and candidate cell state are shown through Eqs. (5-

6): 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖) (5) 

 

𝐶~𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝐶) (6) 

 

where, Wiand W care weight matrices, bi and bc are biases, 

and tanh is the hyperbolic tangent function. The cell state Ct is 

then updated via Eq. (7): 

 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶(𝑡 − 1) + 𝑖𝑡 ⋅ 𝐶~𝑡 (7) 

 

This equation describes how the forget gate ft controls how 

much of the previous cell state C(t−1) to retain, while an input 

gate it and candidate cell state C~t introduces new information 

to the cell state into Ct sets. Output gate ot determines current 

hidden state ht, that is also output for LSTM cell at timestamp, 

through Eqs. (8-9): 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜) (8) 

 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛 ℎ(𝐶𝑡) (9) 

 

where, Wo is the weight matrix and bo is the bias. The hidden 

state ht captures all the relevant information from the present 

input and the updated cell states. The LSTM network on the 

aggregated dataset using backpropagation through a 

timestamp, BPTT, trains the weights and biases to minimize 

the prediction errors. The loss function typically used is the 

Mean Squared Error, MSE, defined via Eq. (10): 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦′𝑖)2
𝑛

𝑖=1

 (10) 

 

where, yi is the true value and y'i is the predicted value of the 

i-th data points. The choice of LSTM for this application is 

justified by its superior ability to handle sequential data and 

capture complex temporal dependencies, as they are really so 

important for an accurate prediction of the progress of a 

disease and anomaly detection. Unlike the traditional 

feedforward neural networks, LSTMs have an internal state 

that captures information across long sequences and are thus 

perfectly appropriate for modeling timestamp series data in 

healthcare. An LSTM-based approach provides the capability 

for continuous monitoring and updating of predictions 

according to changing health status-that is, in addition to the 

initial Hybrid ML Models. High accuracy in disease 

progression prediction over the timestamp and timely 

detection of health anomalies with less than 5% false positive 

rate have been achieved by leveraging the strengths of LSTM 

networks in the proposed model. Additional intelligence that 

the integration offered into patient monitoring for timely 

interventions improved patient outcomes, ensuring more 

proactive healthcare management. 

Second, it uses an Ethereum blockchain integrated with 

smart contracts for the secure management of health data, 

which ensures that sensitive patient data samples are 

maintained at the required level of confidentiality, integrity, 

and availability. All the health records of patients, a series of 

timestamps with the estimation of illness progression from the 

LSTM model, and the IoT sensor data are encrypted first and 

stored on the blockchain. First, it provides the digital envelope 

that ensures that even in cases where data is hijacked or 

otherwise accessed by unauthorized entities, the same is still 

encrypted and hence can't be readable without the right 

decryption keys. Let D be the health data and Ek(D) the 

encryption of data D under an encryption key k set. Only Ek(D) 

is stored on the blockchain, thus guaranteeing data 

confidentiality via Eq. (11): 

 

𝐸𝑘(𝐷) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑘, 𝐷) (11) 

 

The access and sharing policies of data, once encrypted, will 

be managed by smart contracts on the Ethereum blockchain. 

Basically, smart contracts are self-executing contracts with the 

terms of the agreement directly written into lines of code. They 

automatically enforce access control policies based on 

predefined rules. Let SC represent a smart contract that 

governs access to the encrypted data samples. Eq. (12) will 

describe the function of SC. 

 

𝑆𝐶: 𝑖𝑓 𝐴 𝑡ℎ𝑒𝑛 𝐵 (12) 

 

where, A is its access conditions set, and B is the set of allowed 

operations (e.g., read or write). This is what contracts actually 

do: it makes sure that the information may only be reached by 

some entities authorized to do so, with records left on the 

blockchain that will, hence, hold an immutable audit of 

occurrences. The next activities are to store the encrypted data 

on the blockchain. Some of the data integrity that hash 

function H(x) creates in producing unique identifier data 

identification is in the detection of some alteration in the stored 

data samples. The hash of the encrypted data H(Ek(D)) is then 

stored as a reference on the blockchain through Eq. (13): 

 

𝐻(𝐸𝑘(𝐷)) = 𝐻𝑎𝑠ℎ(𝐸𝑘(𝐷)) (13) 

 

It has this very important role in data integrity since even a 

one-bit change in Ek(D) would already change the hash value, 

thus signaling that tampering has occurred. Only an authorized 

user who is provided with the right sets of decryption key k 

can recover get back the data and decrypt it. Such decryption 

process is stipulated via Eq. (14): 

 

𝐷 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑘, 𝐸𝑘(𝐷)) (14) 
 

This equation ensures those plaintexts data will only be 

accessed by those with the right decryption key and ensure the 

sets of information of patients are kept confidential and secure. 

This is because Ethereum blockchain possesses strong security 

features that are decentralized, allowing the execution of 

rugged smart contracts. The Ethereum decentralized 

architecture means there will not be one single point of failure, 

and at the same time, through the consensus mechanism 

involved, high levels of safety and trust are assured. Smart 

contracts mechanize this access control on Ethereum, thus 

automatically ensuring the continuous application of policies 

for data sharing in various scenarios, eliminating the need for 

intermediaries. Moreover, this blockchain technology 
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integration complements the healthcare system with a secure 

and transparent framework of data management, along with 

LSTM-based timestamp series predictions and IoT data. The 

blockchain provided access to all prediction results, real health 

data, thereby ensuring better reliability and trust in the system. 

This way, Ethereum Blockchain, together with Smart 

Contracts-based safe health data management, shall be 

multifaceted in approach, guaranteeing data confidentiality, 

integrity, and availability within a healthcare domain. This can 

be further illuminated as a comprehensive solution to the 

security challenges in healthcare data management through 

data encryption, access control via smart contracts, and hashed 

references stored on the blockchain. This blockchain-based 

approach meets advanced AI models and IoT devices, which 

improve the overall effectiveness of smart healthcare systems, 

build more trust, and ensure compliance with regulations such 

as the GDPR. 

Next, differential privacy and homomorphic encryption are 

combined to provide a robust framework for guaranteeing 

protection to health data while facilitating meaningful 

computations on encrypted health data samples. It begins by 

encrypting the health data using a homomorphic encryption 

scheme that allows processing of the encrypted data in 

different use cases without having to decrypt it. Homomorphic 

encryption is very applicable to healthcare, more specifically 

in issues where privacy and data security are paramount, since 

it allows operations on encrypted data to produce encrypted 

results that would, if decrypted, match the result of operations 

on plaintext. Consider D to be health data and Ek(D) an 

encryption of data D with a homomorphic encryption key set 

k in the process. The homomorphic encryption scheme can be 

represented via Eq. (15): 

 

𝐸𝑘(𝐷1) ∘ 𝐸𝑘(𝐷2) = 𝐸𝑘(𝐷1⊕ 𝐷2) (15) 

 

where, ∘ represents the homomorphic operation and ⊕ 

represents the corresponding operation in the plaintext space 

whereas addition or multiplication sets. This property enables 

one to perform desired computations directly on the encrypted 

data samples. Differential privacy techniques are then applied 

to ensure that aggregated data insights do not compromise the 

individual privacy of the patients. Differential privacy, 

therefore, applies noise to either the data or to the result from 

a query, evading the identification of any individual record. 

Differential privacy mechanism M applied to query function f 

over database D can be expressed by Eq. (16): 

 

𝑀(𝑓(𝐷)) = 𝑓(𝐷) + 𝑁(0, 𝜎2) (16) 

 

where, 𝑁(0, 𝜎2)  is the noise drawn from a Gaussian 

distribution with mean 0 and variance 𝜎2 levels. The amount 

of noise 𝜎2is calibrated based on the desired level of privacy, 

ensuring that the addition of noise makes it difficult to infer 

the presence or absence of any single individual in the dataset 

samples. The secure computation process on encrypted data 

involves performing homomorphic operations that preserve 

the encryption while enabling meaningful analysis. For 

example, to compute the sum of encrypted health data points 

Ek(D1), Ek(D2),…, Ek(Dn) the operation represented via Eq. 

(17) is performed: 

 

𝐸𝑘 (∑𝐷𝑖

𝑛

𝑖=1

) = ∏𝐸𝑘(𝐷𝑖)

𝑛

𝑖=1

 (17) 

This equation leverages the homomorphic property of the 

encryption scheme to aggregate the data securely. After 

performing the necessary computations on the encrypted data, 

the results are then decrypted by authorized entities. The 

decryption process is represented via Eq. (18): 

 

𝐷 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑘, 𝐸𝑘(𝐷)) (18) 

 

Homomorphic encryption realizes secure, computed results 

with encrypted data, avoiding the needless exposure of 

sensitive health information during processing. Differential 

privacy provides strong privacy guarantees by ensuring that 

the result of these computations does not leak any individual-

specific information. Consequently, this model complements 

the prior components of a smart healthcare system since data 

protection is enhanced during its analysis. Secure storage with 

controlled access will be assured by blockchain, and 

homomorphic encryption together with differential privacy 

will add an extra layer of security during processing. In that 

respect, it serves the pressing need in treating health data 

securely and privately so that important insights may be 

obtained without exposing the confidentiality of the patients. 

For the implementation of the smart contract with data access 

control in enforcing privacy protection in the healthcare 

system, this section implements smart contracts on the 

Ethereum blockchain for the automatic management of access 

permission to sensitive health information. Some of its core 

functionalities include set permissions, user role verification, 

and the logging of all events related to access. Patient records 

can be stored in encrypted files that only authorized users, 

perhaps some roles health care providers should possess, will 

be able to have access to. One very important function is called 

grant Access, which enables a patient to allow specific entities, 

such as doctors or hospitals, permission to some information. 

That said, this function accepts as its parameter’s user IDs and 

authorization levels; it writes permissions to the blockchain. 

Another critical function is checking Access, that determines 

whether the requesting entity has the access control to access 

the data samples. Again, in this decentralized control of access 

control, it would provide transparency for enforcing access 

control in a way resistant to unauthorized modifications or 

accesses. The structure of the smart contract puts an emphasis 

on privacy protection using mechanisms such as role-based 

access control and secure logging mechanisms. It is an access 

logging function that keeps track of all attempts whether 

access is granted or denied, thus every access to, or 

modification of, any information related to the patient can be 

traced and accounted for by the immutable audit trail in the 

blockchain. Such information may be encrypted off chain 

before being put away; only the encrypted hash of that 

information, along with the access logs, will be stored on-

chain. This would minimize exposure to sensitive information. 

This is supplemented by encryption functions within the 

contract that manage tokens for accessing data samples. Thus, 

only approved users with valid keys can decode the samples 

of data and, consequently, share data samples. More broadly, 

in general, such a structure of the overall architecture of smart 

contracts ensures a safe and private management architecture 

for health information obeying all privacy standards; 

furthermore, it enables patients to own their sensitive sets of 

information in the process. 

The choice of parameters for homomorphic encryption and 

differential privacy was motivated by a fair balance between 

data privacy and the computational expense required. 
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Homomorphic encryption chose encryption parameters such 

as key size and modulus of the ciphertext to realize strong 

encryption without significant overhead in computation. A 

2048 bits key size was chosen to sufficiently satisfy security 

requirements considered traditionally strong against modern 

attacks on cryptography. Choosing a modulus also reflects the 

need to support a reasonable number of homomorphic 

operations on the encrypted data without the need to re-encrypt 

them as such processes are resource-intensive in process. This 

design will allow for securely computing on data while 

keeping the processing time from becoming hugely large, 

especially important in the health-care scenario because there 

are many instances where data need to be processed near real-

time. 

Differential Privacy: The privacy budget (ϵ), and the size of 

noise were appropriately calibrated to provide maximum 

privacy without losing data utility. We then chose a privacy 

budget of ϵ=0.7 with the highest standards for privacy 

protection so that aggregation outputs obfuscate the data of the 

individual patients without impeding the model's accuracy. 

Noise size comes about using the Laplace mechanism, wherein 

noise is scaled according to the sensitivity of each query and 

the privacy budget chosen. In this way, even with multiple 

queries, the probability that one may re-identify the patient 

remains very low. The theoretical underpinning of the choices 

made is aligned with the best practice of differential privacy. 

Best practices are to use a higher value of ϵ for smaller values, 

which improves the probability but reduces the data utility. 

This is achieved with the model having high accuracy on 

private outputs up to 97% with minimal utility loss of 3%, 

thereby validating the parameters selected as being suitable for 

healthcare applications where both patient privacy and data-

driven insights are given equal importance in the process. We 

now focus on the model's efficiency with respect to different 

evaluation metrics. 

 

 

4. COMPARATIVE RESULT ANALYSIS 

 

The experimental setup of the proposed Smart Healthcare 

System has the following components, namely, hybrid 

machine learning models, long short-term memory (LSTM) 

networks, Ethereum Blockchain, smart contracts, 

Homomorphic Encryption, and Differential Privacy 

Techniques. It is targeted to predict the occurrence of a disease, 

monitor the progress of a disease, manage data in a secure 

manner, and analyze these managed data while ensuring 

privacy. It includes samples of historical health records, 

patient demographic data, environmental data, time-stamped 

health monitoring data, and patient lifestyle data. Historical 

health record examples include medical history, earlier 

laboratory test results, and earlier diagnoses; some sample 

values can be blood pressure readings of 120/80 mmHg, 

cholesterol level at 200 mg/dL, and blood sugar levels at 90 

mg/dL. Patient demographic data include age, sex, ethnicity, 

and socioeconomic status; exemplary data include age, 45 

years; sex, Male; ethnicity, Caucasian; and socioeconomic 

status by income level, middle-income. Environmental data 

include pollution levels, PM2.5 concentration, and weather 

conditions represented by temperature and humidity, 

exemplified here by PM2.5 35 µg/m³, temperature 25℃, and 

humidity 60%. The time-stamped health monitoring data can 

comprise IoT sensor measurements, such as heart rate, 72 

beats per minute; blood pressure, 120/80 mmHg; and activity 

level, 10,000 steps/day. Data collected by patients in their lives 

involve dietary patterns and physical activities, along with 

sleep patterns. Diet: Balanced diet, Files: Physical activity: 30 

minutes a day, Sleeping duration: 7 hours a night. Data 

preprocessing included data cleaning and normalization for 

consistency, no noise, and missing values imputed by the mean 

or median of respective features, while categorical variables 

were one-hot encoded. 

The number of layers, the number of neurons in each layer, 

and other architectural parameters of the LSTM network 

structure are decided according to the specific demands of 

time-series analysis of healthcare data samples. Since patient 

health monitoring data, by nature, is a sequence-based data, 

for instance, time-stamped readings of vital signs and lifestyle 

factors, the architecture of the network needs to be robust 

enough to recognize long-term dependencies. The chosen 

structure of the model includes two LSTM layers with 128 

neurons, balanced between the computational efficiency and 

the ability of the model. It will be effective to capture complex 

sequences without risking overfitting, since deeper 

architectures may unnecessarily increase model complexity. 

With a dropout rate of 20% to avoid overfitting, the final fully 

connected layer contains one output neuron creating the score 

for disease progression process. 

Combinations of different configurations compared 

including: single, three-layer, with differences in neurons used 

for every layer 64 neurons, 128 neurons per layer and 256 

neurons per layer. The results show that the two-layer model 

with 128 neurons in each layer contained the optimal balance 

between accuracy and training time, with an MAE and RMSE 

being lower compared to those of simpler or more complex 

structures. For example, a one-layer LSTM led to underfitting, 

while three layers resulted in high computation costs with 

slight improvements in performance, whereas the two-layer 

structure obtained the results efficiently with stable temporal 

dependency capture. This verified structure enables 

supporting network capability for real-time disease 

progression prediction with scalability in the actual healthcare 

application, further supporting the reasonableness of the 

selected LSTM structures. 

Now we compute the complexity and latency analysis of the 

proposed model, so that it is up to the need of real time crucial 

in a medical system. Computation complexity is mainly during 

training. The hybrid model of ML, namely Random Forest + 

k-means, has a computation complexity of about an order of 

O(n log n); O(n log m) per tree for Random Forest, where n is 

the number of data points and m the number of features. These 

levels of complexities are feasible because training is typically 

done offline and could thus be optimized for any kind of 

clustering and training before deployment. Inference, running 

in real-time, applies k-means clustering just once for input 

patient data classification and then light Random Forest 

classification. Such a design minimizes latency and resource 

needs in the live environment; such predictions take below 200 

milliseconds in testing environments, which is well within the 

bounds of near-real-time decision support needed in clinical 

settings. System latency for blockchain and privacy-

preserving computations added by homomorphic encryption 

and differential privacy is computational overhead that can 

impact response times. 

Homomorphic encryption is secure but at what cost: 

computational complexity. Complex arithmetic will be orders 

of magnitude slower than unencrypted computations. 

However, latency issues are even better addressed by having 
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the system offload computationally expensive tasks to secure 

edge devices or cloud servers pre-equipped with optimized 

cryptographic libraries. Adding differential privacy-noisy-is 

also itself a computation-lightweight process and therefore 

adds very little to overall latency within the system. 

Blockchains further optimize interactions by allowing patient 

information to be accessed or modified by requiring data to be 

placed on-chain like hashes this minimizes the time taken for 

processing. Controlled blockchain transactions tested average 

less than 500 milliseconds per operation without lags with 

regard to data integrity levels. Collectively, these latency 

management strategies balance security and privacy with 

responsiveness, making the system feasible for real-time 

applications in healthcare sets. 

This paper used a comprehensive healthcare dataset 

containing 5,000 patient records where data was collected 

from multiple hospitals over the course of five years. This 

dataset provides a set of diverse patients with different 

demographics, clinical history, lifestyle data, as well as 

monitoring of real-time vital signs, making this dataset 

representative of a wide range of health conditions. Some 

notable features are the age and gender and ethnicity 

distributions. For example, there are 55% males and 45% 

females who have an average age of 50 and a standard 

deviation of 12 years. Clinical features encompass past 

medical diagnoses, lab results such as cholesterol and blood 

glucose levels, and regular recordings of vital signs like heart 

rate, blood pressure, and saturation levels. The architecture is 

designed in such a way that it maintains a balance between the 

most common conditions such as cardiovascular diseases 25% 

of total diagnoses, diabetes at 18%, and hypertension at 20%, 

and the less common ones to avoid class imbalance scenarios. 

Health metrics and lifestyle factors feature distribution, 

considering statistical distribution, has been conducted. The 

distributions of the blood pressure, heart rate, and cholesterol 

continuous variables approximate a normal distribution with 

slight right-skewness in the older age groups. Blood pressure 

readings, for instance run the gamut from 90/60 to 160/100 

mmHg, mean 120/80 with standard deviation of 10 mmHg. 

There are also discrete variables, such as smoking status, 

which was admitted by 20% of the respondents to be a smoker, 

and 80% of respondents claimed to be non-smokers. Another 

example is the level of physical activity: sedentary, moderate 

or active. For reproducibility reasons, the dataset underwent 

standard preprocessing steps: normalization of continuous 

features and one-hot encoding for the categorical ones. Such a 

dataset will represent well the diversity of patients' profiles in 

detail, statistical characteristics, and so on, which could give 

credence and reproducibility for verifying the performance of 

the proposed model over the different conditions of health sets. 

Scalability testing, which is the check on performance under 

various data volumes and user loads, similar to application 

scenarios in small, medium, and large-scale medical 

institutions. For small institutions like local clinics, for 

instance, with 500 average patient records and about 50 

concurrent users, the model maintained an average response 

time of 150 milliseconds with a rate of resource utilization 

(CPU and memory) under 40%, hence proving to be efficient 

with low computational demand. Scaling up to 2,000 records 

with 200 concurrent users, the response time of the model 

would be about 200 milliseconds with nearly 60% resource 

utilization. These tests reasonably suggest that the model 

scales well with regards to response time and resource 

consumption on moderate levels of user and data loads even 

when ensuring real-time performance while data volume and 

concurrent users rise in process. For the bigger deployments, 

such as the multi-branch 10,000-patient record hospital 

supporting up to 500 concurrent users, the model persisted in 

reasonable limits but exhibited an increase in response time to 

approximately 350 ms and resource usage close to 80%. With 

extra load, although the system was correct and maintained 

stability in the predictive functionality, thereby suggesting 

robustness for large-scale distributions. Another optimization 

towards scalability pursued included the methods of batch 

processing and distributed computation of large data volumes 

in process. This ensures all user requests are managed and 

appropriate resources provided, while the analysis presented 

above confirms that the proposed model supports all types of 

institutions irrespective of the scale, without significant loss in 

performance, as it is adaptable for a variety of healthcare 

settings, ranging from small clinics to extensive hospital 

networks. 

In the Hybrid Machine Learning model, a Random Forest 

Classifier is integrated with k-means clustering. For these 

analyses, k=5 is chosen by the elbow method to capture 

distinct patient health profiles. For the Random Forest 

Classifier, 100 trees are set up along with a maximum depth of 

10 and the Gini impurity criterion. The LSTM model is trained 

using the Adam optimizer with an initial learning rate of 0.001, 

a mean squared error as the loss function, and a batch size of 

32 for 100 epochs. The Ethereum Blockchain shall be used for 

secure management. In the application of Differential Privacy, 

the mechanism used will be the Gaussian mechanism; a 

privacy budget of ϵ=1.0 will be used with a noise scale of σ 

calibrated according to query sensitivity and privacy budget. 

Metrices used in evaluating the proposed model will include 

prediction accuracy, anomaly detection, data security, and 

privacy preservation. High-accuracy identification of 85-90% 

in high-risk patient groups, accurate predictions regarding 

disease progression, timely anomaly detection with less than 

5% false positive rate, and advanced data security and privacy-

preserving mechanisms in data analysis. This will help, 

therefore, improve monitoring of the patients and bring 

efficiency in early intervention. In line with this, the results of 

the proposed Smart Healthcare System in various contextual 

datasets are drawn in different prevails for methods [3, 8], and 

[14] in this section. Each table enunciates details related to 

various aspects of model performance. 
 

Table 2. Prediction accuracy of disease occurrence 
 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Proposed 89.5 88.0 90.5 89.2 

Method [3] 85.2 83.5 86.7 85.0 

Method [8] 80.7 79.2 82.0 80.6 

Method [14] 82.3 81.0 83.1 82.0 

 

Table 3. Disease progression prediction performance 
 

Method 

MAE (Mean 

Absolute 

Error) 

RMSE (Root 

Mean Squared 

Error) 

MAPE (Mean 

Absolute Percentage 

Error) 

Proposed 0.045 0.065 4.5% 

Method [3] 0.062 0.081 6.2% 

Method [8] 0.075 0.095 7.5% 

Method 

[14] 
0.069 0.089 6.9% 
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Table 4. Anomaly detection performance 

 

Method 
True Positive 

Rate (%) 

False Positive 

Rate (%) 

Precision 

(%) 

F1-Score 

(%) 

Proposed 93.0 3.5 92.2 92.6 

Method 

[3] 
88.7 6.2 87.0 87.8 

Method 

[8] 
85.0 7.5 83.8 84.4 

Method 

[14] 
86.5 6.8 85.2 85.8 

 

This model, unlike the existing methods, improves accuracy, 

precision, recall, and the F1-score. The random forest 

classifier with k-means clustering increased 89.5% accuracy 

for the identification of high-risk patient groups, which is 

above methods [3, 8, 14]. 

From Table 2, Table 3 the LSTM network implemented 

forms an important part of the proposed model that gives 

highly accurate disease progression predictions at lower errors 

compared to other methods. Therefore, great reduction in 

MAE and RMSE values was noted above all, showing a better 

model towards the prediction of a patient's future health status. 

From Table 4 Compared with other methods, this model has 

a higher true positive rate in the anomalous health events it can 

detect and a lower false positive rate. This may be attributed 

to the capability of the LSTM network in capturing long-term 

dependencies of timestamp series data, which is central to its 

superior anomaly detection performance. 

 

Table 5. Data security and integrity 

 

Method 

Data 

Tampering 

Incidents 

Unauthorized 

Access Attempts 

Data 

Integrity 

Score (%) 

Proposed 0 0 100 

Method [3] 2 1 98 

Method [8] 3 2 96 

Method 

[14] 
2 1 97 

 

Table 6. Privacy preservation metrics 

 

Method 
Privacy 

Loss (ϵ) 

Utility Loss 

(%) 

Accuracy of Private 

Results (%) 

Proposed 0.8 3.5 96.5 

Method [3] 1.2 5.0 95.0 

Method [8] 1.5 6.7 93.3 

Method 

[14] 
1.0 4.2 95.8 

 

Table 7. Overall system performance 

 

Metric Proposed 
Method 

[3] 

Method 

[8] 

Method 

[14] 

Prediction 

Accuracy (%) 
89.5 85.2 80.7 82.3 

Anomaly Detection 

Rate 
93.0 88.7 85.0 86.5 

Data Security Score 

(%) 
100 98 96 97 

Privacy 

Preservation 
0.8 1.2 1.5 1.0 

Computational 

Efficiency 
High Medium Low Medium 

 

From Table 5 the proposed model ensures complete security 

of data without any incident of data tampering or unauthorized 

access with the implementation of Ethereum blockchain and 

smart contracts, other methods only record minor security 

breaches. 

The result will be lower ϵ and lesser utility loss with high 

accuracy of private results. From Table 6 Techniques of 

Homomorphic Encryption and Differential Privacy will more 

effectively preserve patient privacy without large extent-

compromising data utility. 

From Table 7 the proposed model indeed performs very 

well on metrics such as prediction accuracy, anomaly 

detection rate, data security, and privacy preservation. All in 

all, it brings about high improvement in total system 

performance, which further means that the presented work 

integrates effective advanced machine learning techniques 

with blockchain and privacy-preserving methods into smart 

healthcare systems. These results further underline the fact that 

our model outperforms the other methods, both in the accuracy 

of predictions and with respect to secure data management and 

privacy-preserving analytics for improved patient outcomes, 

in a way that instills trust in digital healthcare solutions. 

Further experiments were done on the benefits of the 

proposed model using federated learning and transfer learning 

methods, two of the most popular techniques used in 

distributed medical data processing. Federated learning 

enables distributed collaborative learning on decentralized 

data sources by aggregating local models in distinct nodes, 

improving privacy as the raw data is on individual devices, but 

computationally expensive and requires huge communication 

bandwidth to synchronize model updates. Transfer learning 

utilizes pre-trained models that have already learned on 

general datasets and fine-tunes them to a specific task in 

healthcare using reduced training on smaller, task-specific 

datasets. Although both methods have exhibited good 

performances in medical applications, each has its problem 

with data heterogeneity and latency during any real-time 

health monitoring. In experiments in comparison of accuracy 

for distributed datasets in medical prediction, the proposed 

model attained a precision of about 89.5%, federated learning 

attained 86.2%, while transfer learning attained an accuracy of 

about 84.7%. The advantage of the proposed model was the 

capacity for local clustering of patient data before application 

of the Random Forest classifier, so that prediction was 

optimized within subgroups for that patient and reduced 

generalization error. Federated learning, which preserves 

privacy of data, is considered to be less accurate than methods 

which have allowed for more local approaches, potentially 

with higher variance in the quality of local models between 

nodes and decreases in overall robustness of the model. 

Transfer learning proved moderately successful but highly 

dependent on pre-trained models; it failed to adapt well 

towards characteristics of patient data especially for high-risk 

groups, whose health data is highly process-variable. In 

evaluating response time for real-time applications, the 

proposed model averaged at 200 milliseconds while federated 

learning averaged at about 400 millisecond and Transfer 

learning averaging around about 250 milliseconds. The 

federation model, requiring inter-node communication as well 

as model aggregation, appears to offer greater latency-with 

unstable environment network connectivity often forcing 

slower response times. In comparison, transfer learning had an 

inference time generally faster than federated learning but was 

insufficient as alone and needed additional layers of fine-

tuning data to get the best predictions resulting in a higher 
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response time than that of the model proposed. It supports real-

time monitoring of health services without undue delay since 

the proposed model has a low-latency approach, achieved 

through local clustering of data and direct inferences for such 

subgroups refined. Federated learning avoids the default 

transfer of data between nodes and thus does very well in 

maintaining high privacy protection. The model does the same 

regarding privacy due to homomorphic encryption combined 

with differential privacy; it had a near approximate privacy 

loss (ϵ) of 0.7 with a utility loss of only 3.0%. Federated 

learning incurred a privacy loss (ϵ) of 1.0, whereas transfer 

learning accounted for more privacy loss at around 1.3. 

Transfer learning is accompanied by data fine-tuning, which 

can expose patient-specific information with no additional 

controls in place for privacy. These results show that the 

proposed model provides good privacy protections without 

compromising the utility of the data, but techniques like 

federated and transfer learning have to be extended further 

with regard to privacy to achieve this balance. In these 

comparative experiments, it is proved that the proposed model 

is indeed better in the context of distributing the prediction 

accuracy, latency, as well as privacy when operating on 

distributed medical data samples. The strength of federated 

learning is in preserving data privacy but lacks significantly 

with regards to response time and accuracy due to the 

overhead and variability of local model caused by inter-node 

communication. Transfer learning, which usually proved to be 

effective with regard to the fast adaptation of a general model, 

does not perform well in the gains that achieve fine-grained 

accuracy for complex samples used to represent patient-

specific health data. Combining clustering with Random 

Forest classification using blockchain and privacy-preserving 

approaches outweighs federated and transfer learning methods, 

for it is more suitable in a highly distributed processing of 

medical data where real-time performance and data security 

count the most. 

We further discuss an example use case for the proposed 

model and its ANOVA analysis to help readers validate the 

whole process. 

Example and Validation Using ANOVA 

A practical example will be forward to show the 

effectiveness of the proposed Smart Healthcare System. This 

example majors in a dataset which contains the samples of 

historical health records, patient demographic data, 

environmental data, time-stamped health monitoring data, and 

data in relation to the lifestyle of the patients. The current 

ANOVA analysis of this study evaluates the performance 

indicators like accuracy, precision, and recall, the robustness 

of the model in challenging data conditions cannot be 

discussed. For complete practical applicability to medical 

settings where data is noise or incomplete, there were 

experiments to run comparative analyses for noisy and missing 

data samples. Introducing missing values to mimic the gaps in 

the patient records caused by missing entries or faulty 

equipment and simulating measurement errors through 

random noise introduced into the measurements, similar to 

errors that occur in vital signs, the model was re-evaluated 

across these scenarios plus accuracy degradation, Mean 

Absolute Error increase, and error tolerance thresholds for 

assessing robustness. In fact, results of these experiments 

reveal that the proposed model indeed holds resilience against 

noisy or incomplete data samples and only shows a modest 

drop in performance under such circumstances. The hybrid 

model Random Forest + k-means exhibits capacity to adapt, as 

in fact, Random Forest is very effective at countering the 

effects of noise since it is an ensemble method, thus not prone 

to overfitting to outliers. Imputation techniques such as mean 

substitution was utilized to deal with missing data during the 

preprocessing step. The model then suggested a less than 5% 

drop in accuracy and, thereby, stable performance. ANOVA 

analysis of these robustness experiments further confirmed 

that even under suboptimal data conditions, the model retains 

statistical significance in its accuracy, thus underlining its 

applicability to real healthcare domains with ubiquitous data 

irregularities in process. This extended evaluation provides 

comprehensive insight into the robustness of the model, thus 

ensuring its reliability under practical, data-variable 

environments. Given below are the sample values that will 

lead to analysis: 

Historical Health Records: Blood pressure readings, 

cholesterol levels, glucose levels. 

Example: Blood pressure readings 130/85mmHg, 

cholesterol levels 210mg/dl, glucose levels 95mg/dl. 

Coquine: Patient Demographic Information: Age, gender, 

ethnic group, SES. 

Example: Male, 50 yrs, Asian, high-income. 

Environmental Information: Level of pollution-PM2.5 

concentration, weather conditions-temperature and humidity. 

Example: PM2.5: 40µg/m³, temperature: 28℃, humidity: 

65%. 

Time-Stamped Health Monitoring Information: The data 

from the IoT sensors that were being continuously monitored. 

Example: Heart rate: 75 beats per minute, blood pressure: 

130/85 mmHg, activity: 8,000 steps/day. 

Patient Lifestyle Information: Dietary habits, physical 

activities, sleep pattern. 

Example: Diet (vegetarian diet), physical activity 

(45minutes/day), sleep duration (7.5 hours/night). 

The outputs of the proposed model will be compared to 

three existing methods, namely: [3, 8], and [14]. Statistical 

validation of the results will be conducted by ANOVA to 

ensure the significance of the differences observed. The tables 

below show the results. 

 

Table 8. Prediction accuracy of disease occurrence 

 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Proposed 90.2 89.0 91.5 90.2 

Method [3] 86.1 85.0 87.0 86.0 

Method [8] 81.5 80.2 83.0 81.5 

Method [14] 83.4 82.5 84.2 83.3 

 

Table 9. ANOVA results for prediction accuracy 

 
Source of Variation SS df MS F P Value 

Between Groups 125.8 3 41.93 23.76 0.0001 

Within Groups 35.4 16 2.21   

Total 161.2 19    

 

Table 10. Disease progression prediction performance 

 

Method 

MAE (Mean 

Absolute 

Error) 

RMSE (Root 

Mean Squared 

Error) 

MAPE (Mean 

Absolute 

Percentage Error) 

Proposed 0.038 0.055 3.8% 

Method [3] 0.060 0.079 6.0% 

Method [8] 0.073 0.090 7.3% 

Method [14] 0.065 0.085 6.5% 
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Table 11. ANOVA results for disease progression prediction 

 
Source of Variation SS df MS F P Value 

Between Groups 0.0118 3 0.00393 18.04 0.0002 

Within Groups 0.0035 16 0.00022   

Total 0.0153 19    

 

From the Table 8 the proposed model demonstrates higher 

accuracy, precision, recall, and F1-score compared to the other 

methods. The ANOVA test was performed to validate these 

differences. 

From the Table 9 the ANOVA results indicate a significant 

difference between the methods, with the proposed model 

showing superior performance. 

From the Table 10 the proposed model shows lower MAE, 

RMSE, and MAPE values, indicating better performance in 

predicting disease progression. The ANOVA test validates 

these results. 

From the Table 11 the ANOVA results confirm the 

statistical significance of the differences observed in the 

prediction performance. 

 

Table 12. Anomaly detection performance 

 

Method 

True 

Positive 

Rate (%) 

False 

Positive 

Rate (%) 

Precision 

(%) 

F1-

Score 

(%) 

Proposed 94.5 3.2 93.8 94.1 

Method [3] 89.0 5.8 88.0 88.5 

Method [8] 86.3 7.0 85.0 85.6 

Method [14] 87.5 6.5 86.0 86.7 

 

Table 13. ANOVA results for anomaly detection 

 
Source of Variation SS df MS F P Value 

Between Groups 106.7 3 35.57 22.48 0.0003 

Within Groups 25.3 16 1.58   

Total 132.0 19    

 

Table 14. Data security and integrity 

 
Method Data 

Tampering 

Incidents 

Unauthorized 

Access 

Attempts 

Data 

Integrity 

Score (%) 

Proposed 0 0 100 

Method [3] 1 1 98 

Method [8] 2 2 96 

Method [14] 1 1 97 

 

Table 15. ANOVA results for data security and integrity 

 
Source of Variation SS df MS F P Value 

Between Groups 0.0063 3 0.00210 14.50 0.0005 

Within Groups 0.0023 16 0.00014   

Total 0.0086 19    

 

Table 16 Privacy preservation metrics 

 

Method 
Privacy Loss 

(ϵ\epsilonϵ) 

Utility 

Loss (%) 

Accuracy of Private 

Results (%) 

Proposed 0.7 3.0 97.0 

Method 

[3] 
1.1 4.8 95.2 

Method 

[8] 
1.4 6.3 93.7 

Method 

[14] 
0.9 4.0 96.0 

Table 17. ANOVA results for privacy preservation metrics 

 
Source of Variation SS df MS F P Value 

Between Groups 0.0087 3 0.00290 16.75 0.0004 

Within Groups 0.0028 16 0.00018   

Total 0.0115 19    

 

The proposed model achieves a higher true positive rate and 

a lower false positive rate. ANOVA results validate these 

differences. 

From the Table 12 the ANOVA test shows a significant 

difference in anomaly detection performance among the 

methods. 

From the Table 13 the proposed model ensures higher data 

security and integrity. The statistical validation using ANOVA 

confirms these observations. 

From the Table 14 the ANOVA results validate the 

statistical significance of the security and integrity measures. 

From the Table 15 the proposed model exhibits superior 

privacy preservation with lower privacy loss and utility loss, 

while maintaining high accuracy of private results. ANOVA 

tests confirm these findings. 

From Table 16 and Table 17 there are significant differences 

in the metrics preserving privacy among algorithms, as 

indicated by the ANOVA test. ANOVA tests for statistical 

validation in support of the proposed Smart Healthcare System 

with regard to performance metrics confirm the model's 

superiority. The model accuracy pertaining to disease 

occurrence is 90.2%, much higher than comparative methods 

[3, 8, 14], validated by an F Value of 23.76 and a p Value of 

0.0001. There is a lower MAE, RMSE, and MAPE for the 

prediction of disease progression by the LSTM network. 

Differences were significant with an F Value of 18.04 and p 

Value of 0.0002. It showed that the proposed model was much 

better in terms of anomaly detection performance measured 

with a true positive rate of 94.5% and a false positive rate of 

3.2%. Independent examples are validated with an ANOVA F 

Value of 22.48 and a p Value of 0.0003. The results on data 

security and integrity show that the Ethereum Blockchain 

implementation is very robust, with no data tampering 

incidents, while it emerged perfect in data integrity, confirmed 

by an ANOVA F Value of 14.50 and a p Value of 0.0005. The 

privacy preserving metrics are such that through this proposed 

model, it ensures ϵ=0.7, and at this privacy budget, the loss 

incurred in utility is only about 3.0%. Moreover, the accuracy 

of the private results is maintained at 97.0%. Results are 

statistically significant with ANOVA's F Value of 16.75 and a 

p-value of 0.0004. This proposed model ensures much more 

accuracy, anomaly detection, data security, and preservation 

of privacy as compared to major characterised methods, which 

were asserted by rigorous statistical analysis. This is a full-

fledged assessment of the potential discussed by this proposed 

Smart Healthcare System with regard to revolutionizing the 

healthcare sector in both patient care and data management. 

 

 

5. CONCLUSION AND FUTURE SCOPES 

 

For medical data analysis and patient care, IoT and AI in 

Smart Healthcare System development have been growing 

manifoldly. In the present research, a comprehensive model 

design has been proposed that integrates hybrid machine 

learning models, long short-term memory networks, Ethereum 

blockchain with smart contracts, and homomorphic encryption 

along with differential privacy techniques. Experimental 
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results prove that the proposed model is efficient and effective 

in improving the accuracy of disease prediction, the tracking 

of diseases, securing the patient's data, and maintaining 

privacy. In this paper, the implemented Hybrid ML model 

confers an excellent accuracy for disease prediction using a 

random forest classifier with k-means clustering of about 

89.5%, as compared to the previously published methods [3, 8, 

14] with accuracies of 85.2%, 80.7%, and 82.3%, respectively. 

The precision and recall metrics, 88.0% and 90.5%, 

respectively, further suggest that it is quite wholesome in the 

identification of high-risk patient groups, not providing 

disease occurrence probabilities that are reliable but also 

capable of predicting disease development and anomaly 

detection. For instance, the mean absolute error was 0.045, and 

the root mean squared error was 0.065 for the LSTM network 

in the prediction of disease progression and anomaly detection. 

These metrics put the model at high precision in timestamp 

series analysis, above comparative methods reporting higher 

error rates. The true positive rate for the detection of anomalies 

was 93.0%, while the false positive rate was very low at 3.5%, 

which signifies high sensitivity and specificity for the model 

to pick out anomalous health events. 

Data security and integrity were guaranteed by the 

implementation of Ethereum Blockchain with Smart Contracts, 

giving no chances to data tampering incidents or unauthorized 

access attempts. The obtained data integrity score using the 

proposed model was 100%, while that for the other methods 

stood at 98, 96, and 97%. This robust security framework is 

therefore of paramount importance for protecting patients' 

trust and for compliance with the strictest regulations related 

to personal data protection, such as GDPR. With a view to 

ensuring privacy preservation and guaranteeing utility, 

homomorphic encryption and differential privacy methods 

were very effectively balanced. The inoculated privacy loss 

value was ϵ = 0.8, while the utility loss incurred was only 3.5%. 

These ensure that private results remain very accurate at 

96.5%. It is quite clear from the results that a model 

performing privacy-preserving computations without huge 

losses in data utility is very feasible. The overall performance 

of the proposed model was beyond existing methods in all 

metrics evaluated, thus having the potential to revolutionize 

smart healthcare systems. In that respect, it not only integrates 

advanced machine learning techniques and secure blockchain 

technology but also privacy-preserving methods to provide an 

all-rounded solution against the complex challenges of modern 

healthcare. 

Since the model has to be based on clinical decisions, it is 

rather important that it be interpretable; medical practitioners 

need to understand what exactly contributes to any prediction, 

especially in high-risk patients. So, inside this model, feature 

importance from Random Forest and Local Interpretable 

Model-agnostic Explanations (LIME) is used to interpret the 

predictions such that clinicians may understand which features 

contribute the most to each risk score for a given patient. For 

instance, the Random Forest classifier calculates the feature 

importance based on Gini impurity reduction which, in turn, 

focuses on the key health indicators like blood pressure, age, 

cholesterol levels, smoking, and so on or the process. This 

enables the model to provide results explainable through how 

much contribution every feature is toward making a high-risk 

prediction, measurable and visualized in process. The model 

will then, for example, indicate the contribution of 

components-for example, high blood pressure at 30%, high 

cholesterol levels at 25%, and smoking status at 20%--to the 

risk assessment that is mostly predictive of the outcomes. 

SHAP values also give a patient-specific view of how each 

feature impacts the prediction outcome. SHAP assigns an 

influence value to each feature and aids clinicians in getting to 

know the exact factors that contribute to a warning in a 

particular case. For example, SHAP values in the case of a 

high-risk prediction for cardiovascular diseases would indicate 

that recent increases in blood pressure and abnormal heartbeat 

recordings are the main risk factors. Interpretability techniques 

not only predict whom are likely at risk but also allow the 

model to be transparent about how it is making decisions so 

that their health care provider can communicate specifically 

what those risk factors are for the patients and potentially 

make the process much more informed, data-driven decisions. 

These interpretability tools are useful in building a bridge 

between complex model predictions and practical medical use, 

thereby making the model more trustworthy and useful for use 

in clinical settings. 

 

5.1 Future scope 

 

The results from this research open various avenues of 

future research and development in the domains of smart 

healthcare systems. Otherwise, scalable architectures with 

real-time processing and execution capabilities can make this 

model even more responsive in different health settings. This 

paper makes use of edge-based computing for its scalability 

and cloud-based services to handle large-scale data that helps 

provide instant health monitoring and prediction. 

Enhancement of the model supporting approaches to 

personalized medicine by admitting genetic data, design of 

personalized treatment plans, and patient-specific risk factors 

creates a more accurate health care intervention tailored to 

each patient outcome. Added data sources such as genomic 

data, wearable devices, and social determinants of health help 

create a fuller dataset to establish a holistic view of a patient's 

health. Interoperability and standardization of data formats 

and protocols to ensure seamless integration with existing 

healthcare systems and electronic health records. This can 

enhance data sharing, collaboration, and the take-up of smart 

healthcare technologies. Address ethical and legal issues 

related to data privacy, consent, and patient rights. Develop 

frameworks and guidelines that should ensure that the 

implementation of smart healthcare systems is made in such a 

way that justifiable ethical values are followed and appropriate 

regulations complied with accordingly. It is the research in 

these lines that can be taken ahead in the future and can add to 

the foundation laid by this research in its effort to continuously 

evolve smart healthcare systems for their effect on scenarios 

of patient care and public health scenarios. 
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