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This study addresses the challenges faced in traditional chili production, where reliance on 

manual methods often leads to inefficiencies and suboptimal crop yields. To enhance the 

efficiency of chili production, this research develops an automated monitoring system that 

integrates watering management and pH adjustment based on IoT. Utilizing Neural 

Networks (NN) for plant growth monitoring, the system executed 120 automatic watering 

sessions over a 30-day period, ensuring optimal moisture levels and nutrient absorption. 

The results revealed a predictive performance characterized by a Root Mean Square Error 

(RMSE) of 0.49 and a coefficient of determination (R²) of 0.99, indicating high accuracy in 

forecasting plant growth dynamics. The novelty of this research lies in its comprehensive 

approach, combining real-time monitoring and automated adjustments to optimize plant 

health. For future research, it is recommended to incorporate additional environmental 

sensors and expand the dataset to improve the model's adaptability and predictive 

capabilities. This could lead to the development of more advanced smart agriculture systems 

that can efficiently cater to various crops and environmental conditions, ultimately 

enhancing overall agricultural productivity. 
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1. INTRODUCTION

Chili production plays a significant role in global 

agriculture, with its cultivation expanding across various 

regions due to its economic value and culinary demand [1, 2]. 

According to the Food and Agriculture Organization (FAO), 

the global production of chilies and peppers reached over 36 

million metric tons in recent years, with major producers being 

China, Mexico, Turkey, and Indonesia [3]. However, chili 

cultivation faces numerous challenges, such as climate change, 

unpredictable rainfall patterns, and water scarcity, which 

affect crop yield and quality [4, 5]. In regions heavily reliant 

on manual irrigation, these factors result in inefficiencies in 

water usage, leading to either over-irrigation or under-

irrigation, both of which are detrimental to chili plants [6, 7]. 

Furthermore, the increasing global demand for chilies, driven 

by the food industry and the rising popularity of spicy foods, 

places pressure on farmers to improve productivity while 

dealing with limited resources [8, 9]. The need for precision 

irrigation methods, such as automated watering systems, has 

become evident to address water management issues and 

enhance crop resilience in varying environmental conditions 

[10]. 

An automated watering system is a straightforward and 

efficient solution to the challenges in chili production due to 

inconsistent rainfall and ineffective water usage. This system 

can be assembled with inexpensive sensors and a simple 

control unit, like a microcontroller, to oversee soil moisture 

levels and adjust irrigation as needed [11]. Through the 

integration of a neural network model, the system can utilize 

past weather patterns and soil conditions to enhance water 

delivery efficiency for chili plants, ensuring they receive the 

appropriate amount of water precisely when required [12, 13]. 

This enhances crop resilience and yield by minimizing the 

chances of over- or under-irrigation. Moreover, the system is 

easily scalable for small-scale farmers, providing a cost-

effective solution for water management that also decreases 

labour expenses and preserves water resources [14, 15]. 

Through the utilization of such technology, farmers have the 

opportunity to improve the sustainability of chili production, 

in order to meet the requirements of both local and global 

markets, even in different environmental settings.  

Khairodin et al. [16] proposed an IoT-based automated 

monitoring system for chili fertigation, aiming to address the 

limitations of semi-automated methods that rely heavily on 

human intervention and fail to account for soil and 

environmental conditions. While the use of LoRa 

communication to collect real-time sensor data effectively 

optimizes water and nutrient management, the system's lack of 

predictive capability limits its ability to anticipate changes in 
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crop water requirements, leading to potential inefficiencies in 

long-term resource management. Moreover, while it reduces 

labour needs, the system relies on basic real-time data without 

leveraging historical patterns or predictive models. 

Azman et al. [17] focused on using IoT applications for chili 

plant monitoring and automation. This system utilizes multiple 

sensors, including soil moisture and temperature sensors, with 

an Arduino microcontroller to enable real-time monitoring via 

a mobile app. Although the system reduces manual labour by 

automating irrigation and fertigation tasks, its reliance on 

predefined thresholds and simple sensor data for decision-

making means it cannot dynamically adjust irrigation based on 

plant growth stages or environmental variations. While the 

system significantly improves operational efficiency, it does 

not incorporate any form of machine learning or predictive 

analytics to optimize long-term resource allocation. 

In contrast, the IoT-based automatic watering system 

proposed by Irawan et al. [18], automates irrigation using an 

Arduino Uno, ESP module, and soil moisture sensor. While 

the system excels in automating irrigation based on remote 

monitoring, its primary innovation lies in its ability to control 

the water pump when moisture drops below a fixed threshold. 

However, the system is inherently reactive, relying on static 

moisture levels rather than adapting to dynamic plant growth 

patterns or changes in environmental conditions. The lack of 

predictive elements limits the system’s potential to optimize 

water usage over time, especially in fluctuating climates or 

during different plant growth phases. 

This research introduces a novel automatic watering and 

plant growth monitoring system for hydroponic chili 

production, integrating Neural Networks to address the 

limitations of previous systems. Unlike prior studies [16-18] 

that rely on static thresholds or real-time sensor data, our 

system uses predictive modeling to dynamically optimize 

irrigation. By learning from historical environmental data and 

plant growth stages, the system adjusts irrigation schedules to 

meet future needs. This predictive approach improves water 

efficiency, adapts to different growth stages, and offers a more 

precise solution compared to traditional rule-based methods. 

The system conserves resources, enhances plant health, boosts 

crop yield, and minimizes human intervention, advancing 

smart agriculture practices. 

 

 

2. PROPOSED MATERIAL 

 

2.1 Plant material 

 

In the proposed material for this study, the plant used is chili 

(Capsicum annum), which is widely cultivated for its 

economic and agricultural value [2]. The experiment is 

conducted under controlled indoor conditions, maintaining a 

room temperature between 20℃ and 29℃ to ensure optimal 

growth. The hydroponic system consists of 3 PVC pipes, each 

with dimensions of 8 × 8 cm. Each pipe contains 5 planting 

holes, providing space for a total of 15 chili plants. This setup 

is designed to allow efficient water flow and nutrient 

distribution, which are critical for monitoring and optimizing 

plant growth within the system.   

 

2.2 Material and tools 

 
In this section, the casing used for housing the electronic 

components is a 1 mm thick electrical panel box with 

dimensions of 18 × 30 × 40 cm. As shown in Figure 1, this box 

is designed to be lightweight, making it easy to handle and 

modify, particularly for drilling holes to accommodate wiring 

and component placements. Additionally, the box provides 

protection for sensitive components, safeguarding them from 

potential water exposure, which is crucial in ensuring the 

longevity and reliability of the automated system. This 

protective feature is especially important in environments 

involving irrigation and plant care. 

 

 
 

Figure 1. Panel box material 

 

Equally important, other essential components include a 20 

× 4 cm LCD screen, a power switch, an ESP-32 

microcontroller, and a perforated PCB for mounting and 

wiring, all of which are placed on the back of the panel box 

door, as shown in Figure 2(a). This arrangement allows for 

easy access and monitoring of the system’s status and 

functions. In Figure 2(b), several vital components are also 

depicted, including a 12V 20A Power Supply Unit (PSU), a 

relay pinout used for temperature control, a 4-channel relay 

module, and a pump module. These components work together 

to ensure seamless operation of the automated watering and 

monitoring system, providing efficient power distribution and 

control for managing irrigation and plant growth. 

The external materials used in this system include three 

PVC pipes, each drilled with 8 × 8 cm holes, designed to 

accommodate the chili plants, ensuring proper spacing for 

optimal growth and nutrient absorption. Additionally, three 

bottles are utilized to manage and regulate the water pH 

levels—one for pH+, one for pH-, and the third for nutrient 

solution. These bottles are responsible for maintaining the 

water quality within the hydroponic system by adjusting the 

pH levels and ensuring the plants receive the necessary 

nutrients for healthy growth. The layout of these pipes and 

bottles is shown in Figure 3, illustrating the practical setup for 

efficient water flow and nutrient distribution throughout the 

system.
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(a) Back of the box panel door (b) Inside of the box panel 

 

Figure 2. Main components material 

 

 
 

Figure 3. External material 

 

 

3. PROPOSED METHOD 

 

The flow of the proposed method begins with the data 

preparation phase, where all necessary tools and materials for 

the system are gathered and organized, as presented in section 

2. Following this, the pre-processing stage involves 

configuring the system parameters and preparing the 

environment for efficient operation. Next, the system 

development (software) phase is conducted, focusing on 

programming the control algorithms, data processing, and 

communication protocols. This is followed by the system 

development (hardware) phase, where the physical 

components such as sensors, actuators, and controllers are 

assembled and integrated with the software. Once the system 

is fully developed, it enters the monitoring phase, where the 

automated watering and plant growth monitoring processes are 

continuously observed. If updates or adjustments are required 

to the software, the system administrator is responsible for 

implementing them, ensuring the system remains functional 

and efficient. The overall flow of the proposed method is 

depicted in Figure 4, illustrating the sequential process from 

preparation to maintenance. 

 

 
 

Figure 4. Proposed development and monitoring scheme 
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3.1 Data handling, analysis, and economic considerations 

 

In this study, environmental and growth-related data, 

including temperature, humidity, soil moisture, pH level, and 

nutrient concentration, were collected and analyzed to predict 

chili plant growth. The data was processed using Python along 

with libraries such as TensorFlow and Keras for neural 

network development and training. Data preprocessing 

involved steps like handling missing data, normalization, and 

scaling to ensure that the input data was suitable for modeling. 

These steps helped maintain consistency across the different 

data types, improving the reliability of the neural network’s 

predictions.  

The implementation costs would include expenses related 

to purchasing and installing the necessary hardware, such as 

sensors, microcontrollers (e.g., ESP-32), PVC pipes, and 

irrigation equipment. Additionally, software development 

costs, including the development and tuning of the neural 

network model, should be considered. The operational costs 

would encompass the energy required to run the system (e.g., 

powering sensors and pumps), maintenance, and periodic 

updates or recalibration of the sensors. Since the system is 

largely automated, it is expected to reduce labour costs 

significantly, which should be factored into the economic 

analysis. 

 

3.2 System growth prediction using neural networks 

 

Neural Networks prediction is a machine learning technique 

that mimics the human brain's structure to predict outcomes 

based on input data [19, 20]. The general formula for a neural 

network involves a combination of weights, biases, and 

activation functions to process input data through layers of 

neurons, as seen in Eq. (1). 

 

𝑦 = 𝑓(𝑊 ⋅ 𝑥 + 𝑏) (1) 

 

where, the input vector 𝑥 represents the data or features that 

are fed into the model. The weight matrix 𝑊 is applied to this 

input, and it multiplies the input vector through a dot product, 

denoted by ⋅, to determine the weighted sum. The bias vector 

𝑏 is then added to shift the result, ensuring the model has more 

flexibility in learning. This sum is passed through an activation 

function 𝑓, such as ReLU, sigmoid, or tanh, which introduces 

non-linearity, allowing the network to learn complex patterns. 

The final output 𝑦 is the network’s prediction or result based 

on the processed input.  

Based on proposed prediction, Neural Networks consist of 

multiple layers, including an input layer, one or more hidden 

layers, and an output layer [21-23]. The architecture layers and 

parameter value of this study can be seen below: 

Input Layer: The input layer consists of five neurons, 

corresponding to the key environmental features utilized for 

predictions, which include: Temperature, Humidity, Soil 

moisture, pH level, and Nutrient concentration. 

Hidden Layer: The model includes two hidden layers. 

Each hidden layer contains 10 neurons, allowing the model to 

learn complex patterns and interactions among the input 

features. The choice of 10 neurons strikes a balance between 

capturing enough complexity while avoiding overfitting. 

Output Layer: The output layer contains one neuron, 

which provides the predicted plant height based on the input 

features and learned relationships. 

For the activation functions, the ReLU (Rectified Linear 

Unit) function is used in the hidden layers to introduce non-

linearity into the model, enabling it to learn more complex 

patterns in the data. The output layer uses a linear activation 

function, which is suitable for regression tasks like predicting 

plant height. The neural network was trained using the Adam 

optimizer with a learning rate of 0.001, and the loss function 

employed was a mean squared error (MSE). Each layer 

processes the input data through neurons, where weights and 

biases are adjusted to minimize prediction error. The structure 

and flow of this prediction process can be observed in Figure 

5, which illustrates how data moves through each layer, 

ultimately producing an accurate prediction. 

 

 
 

Figure 5. Layers neural networks for single prediction 

 

The workflow of model development using neural networks 

involves several key stages, starting from data preparation, 

followed by pre-processing, model architecture design, 

training, and evaluation. Each stage plays a crucial role in 

ensuring the accuracy and effectiveness of the model. This 

entire process, detailing how the neural network is developed 

and refined, can be seen in Figure 6, which illustrates the step-

by-step workflow from data input to final model deployment. 

This system is designed to predict the growth of chili plants 

based on data collected from environmental sensors such as 

temperature, humidity, soil moisture, and nutrient levels. 

Neural network model, the system processes historical and 

real-time data to identify patterns and trends in plant growth. 

Once trained, the neural network can accurately forecast future 

growth stages, allowing for proactive adjustments in watering, 

nutrient supply, and environmental conditions. This predictive 

capability helps optimize resource management, ensuring that 

the chili plants receive optimal care throughout their growth 

cycle, ultimately improving yield and reducing wastage. 

 

3.3 Model pre-processing 

 

In the model pre-processing sub-chapter, the implemented 

steps are designed to regulate all commands that support the 

automatic watering system. The process begins with setting 

the temperature range between 20℃ to 29℃, which is crucial 

for maintaining optimal conditions for plant growth. By 

continuously monitoring the temperature in real time, the 

system can determine whether the environmental conditions 

meet the necessary criteria, thereby enabling informed 

decisions about when and how to initiate watering. 

In addition to temperature regulation, the model 

incorporates a clear logic regarding the frequency of watering. 

Specifically, the system is programmed to water the plants 

four times within a 24-hour period. This logic considers the 

water requirements of the plants during various growth phases, 

as well as soil moisture levels and weather conditions. 
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Consequently, the system does not rely on a single parameter; 

instead, it adapts to environmental changes, ensuring that the 

plants receive adequate hydration for optimal growth. 

 

 
 

Figure 6. The workflow of system development based on neural networks 

 

3.4 Model Evaluation 

 

In the model evaluation phase, the performance of the 

automatic watering system is assessed using two key metrics: 

Root Mean Square Error (RMSE) and the coefficient of 

determination (𝑅²). RMSE quantifies the differences between 

predicted and observed values, providing a measure of the 

model's accuracy [24]. On the other hand, R² measures the 

proportion of variance in the dependent variable that can be 

explained by the independent variables in the model [25]. The 

equation based on RMSE can be seen in Eq. (2) and Eq. (3) for 

𝑅² equation. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 (2) 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

 (3) 

 

where, 𝑦𝑖  represents the observed values, 𝑦̂𝑖  denotes the 

predicted values, and 𝑛 is the total number of observations. A 

lower RMSE indicates better model performance. 𝑦̂𝑖  is the 

mean of the observed values. An 𝑅² value closer to 1 indicates 

a better fit, demonstrating that the model explains a significant 

amount of the variability in the data. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 System development (Hardware) 

 

The development of the automated watering and monitoring 

system is illustrated in Figure 7, which presents the integration 

of the hydroponic system with key electronic components. The 

hardware was set up in a controlled indoor environment with 

a temperature range of 20℃ to 29℃, ensuring optimal 

conditions for chili plant growth. The system uses three PVC 

pipes, each measuring 8 × 8 cm and containing 5 planting 

holes, to allow for efficient space utilization while providing 

adequate room for each plant. The ESP-32 microcontroller and 

other components are securely housed within a 1 mm thick 

electrical panel box, which not only protects the sensitive 

electronics but also provides easy access for maintenance. 

 

 
 

Figure 7. System development (Hardware) 

 

In addition, the water management system, which includes 

pH adjustment bottles and nutrient solutions, is positioned 

strategically to optimize nutrient distribution (Figure 7). The 

system uses automated pumps to manage pH balance and 

nutrient delivery. The layout ensures that water flow is 

consistent while protecting the electronic components from 

moisture damage. Waterproof casings were used to safeguard 

the electronic systems, demonstrating a careful consideration 

of the hydroponic environment's operational needs. This setup 
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provides a clear representation of how the components 

contribute to the system's overall efficiency and reliability. 

 

4.2 System development and monitoring (Software) 

 

4.2.1 Plant growth monitoring in 30 Days 

Observations during the final 30 days post-planting were 

conducted to evaluate the effectiveness of the automated 

watering system and pH adjustment in supporting the growth 

of chili plants. Throughout this period, the system executed 

automatic watering four times within a 24-hour cycle, 

resulting in a total of 120 watering sessions over 30 days. This 

approach was designed to ensure that the plants received 

consistent moisture, which is crucial during this critical growth 

phase. 

In addition to watering, the system was equipped with a 

mechanism for automatically adjusting the water pH, ensuring 

that the pH remained within an optimal range for nutrient 

absorption by the plants. This pH adjustment occurred 

concurrently with watering, allowing the plants to receive not 

only sufficient water but also nutrients in a form that could be 

effectively absorbed. Through this integrated management, it 

was anticipated that plant growth could be maximized, thereby 

reducing the risk of stress from uncontrolled environmental 

fluctuations. The results of the observations conducted during 

the last 30 days are illustrated in the graph presented in Figure 

8. 

 

 
 

Figure 8. Daily plant change based on plant height 

 

4.2.2 Model prediction results and performance analysis 

In this study, the predictive performance of the proposed 

system using Neural Networks (NN) is evaluated through key 

metrics, namely Root Mean Square Error (RMSE) and R² 

(coefficient of determination). The model achieved an RMSE 

of 0.49 and an R² of 0.99, indicating strong alignment between 

the predicted and actual growth values. While these results 

demonstrate the model’s overall effectiveness, it is essential to 

discuss the factors contributing to these outcomes and how the 

system's performance may vary under different environmental 

conditions.  

The model’s high accuracy, reflected in the low RMSE of 

0.49 and R² of 0.99, can be attributed to the stable 

experimental conditions with controlled temperature (20℃ to 

29℃) and consistent humidity. However, in real-world 

settings, environmental fluctuations such as temperature 

spikes or pH changes could introduce noise into the input data, 

potentially increasing RMSE. This highlights the need for 

continuous retraining and fine-tuning as new environmental 

data arises. Additionally, sensor accuracy plays a crucial role, 

as any inconsistencies in data collection, such as from pH or 

soil moisture sensors, could degrade prediction accuracy. 

Ensuring precise sensor calibration is vital for maintaining the 

system’s performance.  

 

 
(a) Results of RMSE 

 

 
(b) Results of R² 

 

Figure 9. Model prediction results of RMSE and R² 

 

Furthermore, the scalability of the model poses a challenge, 

as additional variables like light intensity or carbon dioxide 

levels might be required for different environments, 

potentially increasing model complexity and risk of 

overfitting. Lastly, the system’s performance may vary across 

different plant growth stages, where early stages are more 

sensitive to environmental changes. Incorporating stage-

specific models could enhance accuracy by tailoring 

predictions to each growth phase. The results of RMSE and R² 

can be seen in Figure 9. 

 

4.3 Long-term feasibility and maintenance requirements 

 

Assessing the long-term feasibility of the proposed 

automated watering and plant growth monitoring system 

involves understanding the essential maintenance 
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requirements and potential challenges. Regular maintenance is 

crucial for optimal performance, including periodic sensor 

calibration to ensure accurate measurements of temperature, 

humidity, soil moisture, and pH levels. Additionally, routine 

inspections of electronic components, such as the ESP-32 

microcontroller and pumps, are necessary to identify wear or 

damage before they lead to system failures. Software updates 

and model retraining with new data will also be required to 

adapt to changing environmental conditions and enhance 

system functionality. 

Over time, several challenges may arise that could impact 

the system’s reliability and effectiveness. Environmental 

variability, such as fluctuating temperatures and humidity 

levels, can affect plant growth and the system's performance. 

Continuous monitoring and adaptability of the neural network 

model are essential to address these issues. Furthermore, the 

lifespan of electronic components may be compromised by 

exposure to moisture or extreme conditions, necessitating 

timely replacements. As the system scales to accommodate 

larger operations or different crop types, managing the 

complexity of additional sensors and data management 

systems will also be crucial. Proactive measures will help 

ensure the system remains effective and sustainable in 

supporting agricultural production over the long term. 

 

4.4 Research findings between related research 

 

This research builds upon previous studies [16-18] by 

proposing a system that not only automates watering but also 

integrates predictive plant growth modeling using Neural 

Networks (NN). The key innovation of this research lies in the 

combination of real-time monitoring, automated irrigation, 

and predictive growth modeling. While previous systems have 

largely focused on automating watering tasks or optimizing 

nutrient management through predefined thresholds, this study 

introduces a data-driven prediction system that adapts to the 

chili plant's growth stages, optimizing water and nutrient 

delivery dynamically. Unlike existing systems that rely solely 

on real-time sensor data or fixed schedules for irrigation [16-

18], our proposed system employs machine learning 

algorithms to learn from historical and real-time 

environmental data. This approach enables the system to 

predict future growth stages and adjust the watering schedule 

and pH levels based on these predictions. This is a significant 

advancement over previous works, as it allows for more 

accurate and proactive management of the hydroponic 

environment, reducing the risks associated with over-watering 

or nutrient imbalances. 

Furthermore, the proposed system is equipped with an 

automated pH adjustment feature that maintains the water's pH 

within the optimal range for nutrient absorption. Although 

studies like [16] incorporated nutrient management, they did 

not combine it with a predictive model that could anticipate 

the plants' needs at different growth stages. By integrating pH 

optimization with a Neural Network-based prediction model, 

our system not only ensures the plants receive the right amount 

of water but also optimizes the nutrient absorption process at 

each growth phase, leading to better yield and plant health. 

Additionally, the innovation extends to the scalability of the 

system, as the predictive model can be trained for different 

crops and environmental conditions, making it adaptable for a 

variety of agricultural settings.  

This contrasts with previous studies, which are often 

designed specifically for a single crop type or environmental 

setup, limiting their applicability. By leveraging the power of 

machine learning, our system provides a scalable and 

intelligent solution that enhances the efficiency of chili 

production while minimizing resource wastage. Table 1 

highlights the differences between this research and previous 

studies, showcasing how the predictive capabilities and 

automated nutrient optimization set this system apart from 

existing methods. 

 

Table 1. Research findings 

 
Ref. System Benefit Findings 

[17] 
For Chili 

Production 

Hydroponic: Development an 

automatic watering system 

[18] 
For Chili 

Production 

Hydroponic: Development an 

automatic watering system 

[16] 
For chili 

Production 

Hydroponic: Development an 

optimizing water and nutrient 

management 

Our 
For Chili 

Production 

Hydroponic: Development automatic 

watering system and plant growth 

monitoring 

 

 

5. CONCLUSIONS 

 

In conclusion, the application of neural networks (NN) in 

monitoring the growth of chili plants and managing the 

automated watering system has yielded significant results. The 

system executed 120 automatic watering sessions over a 30-

day period, ensuring consistent moisture levels crucial for 

optimal plant development. The integration of automatic pH 

adjustment further enhanced nutrient absorption, contributing 

to improved plant health. The predictive performance of the 

NN model, evidenced by an RMSE of 0.49 and an R² of 0.99, 

demonstrates its high accuracy in capturing the dynamics of 

plant growth. These metrics indicate that the model not only 

closely aligns with actual growth data but also effectively 

accounts for the variability in plant responses, reinforcing the 

reliability of this approach in agricultural management. 

For future research, it would be beneficial to explore the 

incorporation of additional environmental sensors, such as 

light intensity and carbon dioxide levels, to create a more 

comprehensive monitoring system. Enhancing the neural 

network model with larger datasets and varying plant species 

could also improve its predictive capabilities and adaptability. 

Additionally, the proposed system has significant potential for 

scalability, allowing it to be adapted for larger agricultural 

operations and diverse crop types. By integrating more sensors 

and control units, the system can facilitate the simultaneous 

monitoring of multiple growing areas. As the system can be 

trained on different datasets to accommodate various crops, it 

promotes sustainable agricultural practices by optimizing 

water and nutrient delivery tailored to each plant's 

requirements. Leveraging this scalability will enable farmers 

to enhance productivity and operational efficiency, thus 

meeting the growing global demand for food production.  
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