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This study addresses the challenges faced in traditional chili production, where reliance on
manual methods often leads to inefficiencies and suboptimal crop yields. To enhance the
efficiency of chili production, this research develops an automated monitoring system that
integrates watering management and pH adjustment based on loT. Utilizing Neural
Networks (NN) for plant growth monitoring, the system executed 120 automatic watering
sessions over a 30-day period, ensuring optimal moisture levels and nutrient absorption.
The results revealed a predictive performance characterized by a Root Mean Square Error
(RMSE) of 0.49 and a coefficient of determination (R=3fof 0.99, indicating high accuracy in
forecasting plant growth dynamics. The novelty of this research lies in its comprehensive
approach, combining real-time monitoring and automated adjustments to optimize plant
health. For future research, it is recommended to incorporate additional environmental
sensors and expand the dataset to improve the model's adaptability and predictive
capabilities. This could lead to the development of more advanced smart agriculture systems
that can efficiently cater to various crops and environmental conditions, ultimately
enhancing overall agricultural productivity.

1. INTRODUCTION

Chili production plays a significant role in global
agriculture, with its cultivation expanding across various
regions due to its economic value and culinary demand [1, 2].
According to the Food and Agriculture Organization (FAO),
the global production of chilies and peppers reached over 36
million metric tons in recent years, with major producers being
China, Mexico, Turkey, and Indonesia [3]. However, chili
cultivation faces numerous challenges, such as climate change,
unpredictable rainfall patterns, and water scarcity, which
affect crop yield and quality [4, 5]. In regions heavily reliant
on manual irrigation, these factors result in inefficiencies in
water usage, leading to either over-irrigation or under-
irrigation, both of which are detrimental to chili plants [6, 7].
Furthermore, the increasing global demand for chilies, driven
by the food industry and the rising popularity of spicy foods,
places pressure on farmers to improve productivity while
dealing with limited resources [8, 9]. The need for precision
irrigation methods, such as automated watering systems, has
become evident to address water management issues and
enhance crop resilience in varying environmental conditions
[10].

An automated watering system is a straightforward and
efficient solution to the challenges in chili production due to
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inconsistent rainfall and ineffective water usage. This system
can be assembled with inexpensive sensors and a simple
control unit, like a microcontroller, to oversee soil moisture
levels and adjust irrigation as needed [11]. Through the
integration of a neural network model, the system can utilize
past weather patterns and soil conditions to enhance water
delivery efficiency for chili plants, ensuring they receive the
appropriate amount of water precisely when required [12, 13].
This enhances crop resilience and yield by minimizing the
chances of over- or under-irrigation. Moreover, the system is
easily scalable for small-scale farmers, providing a cost-
effective solution for water management that also decreases
labour expenses and preserves water resources [14, 15].
Through the utilization of such technology, farmers have the
opportunity to improve the sustainability of chili production,
in order to meet the requirements of both local and global
markets, even in different environmental settings.

Khairodin et al. [16] proposed an IoT-based automated
monitoring system for chili fertigation, aiming to address the
limitations of semi-automated methods that rely heavily on
human intervention and fail to account for soil and
environmental conditions. While the wuse of LoRa
communication to collect real-time sensor data effectively
optimizes water and nutrient management, the system's lack of
predictive capability limits its ability to anticipate changes in
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crop water requirements, leading to potential inefficiencies in
long-term resource management. Moreover, while it reduces
labour needs, the system relies on basic real-time data without
leveraging historical patterns or predictive models.

Azman et al. [17] focused on using IoT applications for chili
plant monitoring and automation. This system utilizes multiple
sensors, including soil moisture and temperature sensors, with
an Arduino microcontroller to enable real-time monitoring via
a mobile app. Although the system reduces manual labour by
automating irrigation and fertigation tasks, its reliance on
predefined thresholds and simple sensor data for decision-
making means it cannot dynamically adjust irrigation based on
plant growth stages or environmental variations. While the
system significantly improves operational efficiency, it does
not incorporate any form of machine learning or predictive
analytics to optimize long-term resource allocation.

In contrast, the IoT-based automatic watering system
proposed by Irawan et al. [18], automates irrigation using an
Arduino Uno, ESP module, and soil moisture sensor. While
the system excels in automating irrigation based on remote
monitoring, its primary innovation lies in its ability to control
the water pump when moisture drops below a fixed threshold.
However, the system is inherently reactive, relying on static
moisture levels rather than adapting to dynamic plant growth
patterns or changes in environmental conditions. The lack of
predictive elements limits the system’s potential to optimize
water usage over time, especially in fluctuating climates or
during different plant growth phases.

This research introduces a novel automatic watering and
plant growth monitoring system for hydroponic chili
production, integrating Neural Networks to address the
limitations of previous systems. Unlike prior studies [16-18]
that rely on static thresholds or real-time sensor data, our
system uses predictive modeling to dynamically optimize
irrigation. By learning from historical environmental data and
plant growth stages, the system adjusts irrigation schedules to
meet future needs. This predictive approach improves water
efficiency, adapts to different growth stages, and offers a more
precise solution compared to traditional rule-based methods.
The system conserves resources, enhances plant health, boosts
crop yield, and minimizes human intervention, advancing
smart agriculture practices.

2. PROPOSED MATERIAL
2.1 Plant material

In the proposed material for this study, the plant used is chili
(Capsicum annum), which is widely cultivated for its
economic and agricultural value [2]. The experiment is
conducted under controlled indoor conditions, maintaining a
room temperature between 20°C and 29°C to ensure optimal
growth. The hydroponic system consists of 3 PVC pipes, each
with dimensions of 8 <8 cm. Each pipe contains 5 planting
holes, providing space for a total of 15 chili plants. This setup
is designed to allow efficient water flow and nutrient
distribution, which are critical for monitoring and optimizing
plant growth within the system.

2.2 Material and tools

In this section, the casing used for housing the electronic
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components is a 1 mm thick electrical panel box with
dimensions of 18 %30 %40 cm. As shown in Figure 1, this box
is designed to be lightweight, making it easy to handle and
modify, particularly for drilling holes to accommodate wiring
and component placements. Additionally, the box provides
protection for sensitive components, safeguarding them from
potential water exposure, which is crucial in ensuring the
longevity and reliability of the automated system. This
protective feature is especially important in environments
involving irrigation and plant care.

18CM L

(a) Panel Box Dimension

(c) Panel Box Front View

(d) Panel Box Bottom View

Figure 1. Panel box material

Equally important, other essential components include a 20
x 4 cm LCD screen, a power switch, an ESP-32
microcontroller, and a perforated PCB for mounting and
wiring, all of which are placed on the back of the panel box
door, as shown in Figure 2(a). This arrangement allows for
easy access and monitoring of the system’s status and
functions. In Figure 2(b), several vital components are also
depicted, including a 12V 20A Power Supply Unit (PSU), a
relay pinout used for temperature control, a 4-channel relay
module, and a pump module. These components work together
to ensure seamless operation of the automated watering and
monitoring system, providing efficient power distribution and
control for managing irrigation and plant growth.

The external materials used in this system include three
PVC pipes, each drilled with 8 % 8 cm holes, designed to
accommodate the chili plants, ensuring proper spacing for
optimal growth and nutrient absorption. Additionally, three
bottles are utilized to manage and regulate the water pH
levels—one for pH+, one for pH-, and the third for nutrient
solution. These bottles are responsible for maintaining the
water quality within the hydroponic system by adjusting the
pH levels and ensuring the plants receive the necessary
nutrients for healthy growth. The layout of these pipes and
bottles is shown in Figure 3, illustrating the practical setup for
efficient water flow and nutrient distribution throughout the
system.
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Figure 3. External material

3. PROPOSED METHOD

The flow of the proposed method begins with the data

preparation phase, where all necessary tools and materials for
the system are gathered and organized, as presented in section
2. Following this, the pre-processing stage involves
configuring the system parameters and preparing the
environment for efficient operation. Next, the system
development (software) phase is conducted, focusing on
programming the control algorithms, data processing, and
communication protocols. This is followed by the system
development (hardware) phase, where the physical
components such as sensors, actuators, and controllers are
assembled and integrated with the software. Once the system
is fully developed, it enters the monitoring phase, where the
automated watering and plant growth monitoring processes are
continuously observed. If updates or adjustments are required
to the software, the system administrator is responsible for
implementing them, ensuring the system remains functional
and efficient. The overall flow of the proposed method is
depicted in Figure 4, illustrating the sequential process from
preparation to maintenance.

Developed Software
Data . System System System
Preparation Pre-Processing —-| Development | Development
P (Software) (Hardware)
A
J— P —— - Z
: P ol 3
: Monitoring Maintenance System | :%
s o o . A A A S O S A S Sl ' L
<
<
5 A
\
| |
Growth Monitoring System Administrator

I Developed Hardware System

Figure 4. Proposed development and monitoring scheme

23



3.1 Data handling, analysis, and economic considerations

In this study, environmental and growth-related data,
including temperature, humidity, soil moisture, pH level, and
nutrient concentration, were collected and analyzed to predict
chili plant growth. The data was processed using Python along
with libraries such as TensorFlow and Keras for neural
network development and training. Data preprocessing
involved steps like handling missing data, normalization, and
scaling to ensure that the input data was suitable for modeling.
These steps helped maintain consistency across the different
data types, improving the reliability of the neural network’s
predictions.

The implementation costs would include expenses related
to purchasing and installing the necessary hardware, such as
sensors, microcontrollers (e.g., ESP-32), PVC pipes, and
irrigation equipment. Additionally, software development
costs, including the development and tuning of the neural
network model, should be considered. The operational costs
would encompass the energy required to run the system (e.g.,
powering sensors and pumps), maintenance, and periodic
updates or recalibration of the sensors. Since the system is
largely automated, it is expected to reduce labour costs
significantly, which should be factored into the economic
analysis.

3.2 System growth prediction using neural networks

Neural Networks prediction is a machine learning technique
that mimics the human brain's structure to predict outcomes
based on input data [19, 20]. The general formula for a neural
network involves a combination of weights, biases, and
activation functions to process input data through layers of
neurons, as seen in Eq. (1).

y=f(W:-x+b) (1
where, the input vector x represents the data or features that
are fed into the model. The weight matrix W is applied to this
input, and it multiplies the input vector through a dot product,
denoted by -, to determine the weighted sum. The bias vector
b is then added to shift the result, ensuring the model has more
flexibility in learning. This sum is passed through an activation
function f, such as ReLU, sigmoid, or tanh, which introduces
non-linearity, allowing the network to learn complex patterns.
The final output y is the network’s prediction or result based
on the processed input.

Based on proposed prediction, Neural Networks consist of
multiple layers, including an input layer, one or more hidden
layers, and an output layer [21-23]. The architecture layers and
parameter value of this study can be seen below:

Input Layer: The input layer consists of five neurons,
corresponding to the key environmental features utilized for
predictions, which include: Temperature, Humidity, Soil
moisture, pH level, and Nutrient concentration.

Hidden Layer: The model includes two hidden layers.
Each hidden layer contains 10 neurons, allowing the model to
learn complex patterns and interactions among the input
features. The choice of 10 neurons strikes a balance between
capturing enough complexity while avoiding overfitting.

Output Layer: The output layer contains one neuron,
which provides the predicted plant height based on the input
features and learned relationships.

For the activation functions, the ReLU (Rectified Linear
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Unit) function is used in the hidden layers to introduce non-
linearity into the model, enabling it to learn more complex
patterns in the data. The output layer uses a linear activation
function, which is suitable for regression tasks like predicting
plant height. The neural network was trained using the Adam
optimizer with a learning rate of 0.001, and the loss function
employed was a mean squared error (MSE). Each layer
processes the input data through neurons, where weights and
biases are adjusted to minimize prediction error. The structure
and flow of this prediction process can be observed in Figure
5, which illustrates how data moves through each layer,
ultimately producing an accurate prediction.

Input layer Hidden layer Hidden layer Output layer

.
'
]
'

pemmemsesmsEEmssssee .-

Figure 5. Layers neural networks for single prediction

The workflow of model development using neural networks
involves several key stages, starting from data preparation,
followed by pre-processing, model architecture design,
training, and evaluation. Each stage plays a crucial role in
ensuring the accuracy and effectiveness of the model. This
entire process, detailing how the neural network is developed
and refined, can be seen in Figure 6, which illustrates the step-
by-step workflow from data input to final model deployment.

This system is designed to predict the growth of chili plants
based on data collected from environmental sensors such as
temperature, humidity, soil moisture, and nutrient levels.
Neural network model, the system processes historical and
real-time data to identify patterns and trends in plant growth.
Once trained, the neural network can accurately forecast future
growth stages, allowing for proactive adjustments in watering,
nutrient supply, and environmental conditions. This predictive
capability helps optimize resource management, ensuring that
the chili plants receive optimal care throughout their growth
cycle, ultimately improving yield and reducing wastage.

3.3 Model pre-processing

In the model pre-processing sub-chapter, the implemented
steps are designed to regulate all commands that support the
automatic watering system. The process begins with setting
the temperature range between 20°C to 29°C, which is crucial
for maintaining optimal conditions for plant growth. By
continuously monitoring the temperature in real time, the
system can determine whether the environmental conditions
meet the necessary criteria, thereby enabling informed
decisions about when and how to initiate watering.

In addition to temperature regulation, the model
incorporates a clear logic regarding the frequency of watering.
Specifically, the system is programmed to water the plants
four times within a 24-hour period. This logic considers the
water requirements of the plants during various growth phases,
as well as soil moisture levels and weather conditions.



Consequently, the system does not rely on a single parameter;
instead, it adapts to environmental changes, ensuring that the

plants receive adequate hydration for optimal growth.

Training Phase

Initialization of Neural
Networks Layers

Hidden layer

Deploying in to system
.

Deployed System

Figure 6. The workflow of system development based on neural networks
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3.4 Model Evaluation

In the model evaluation phase, the performance of the
automatic watering system is assessed using two key metrics:
Root Mean Square Error (RMSE) and the coefficient of
determination (R%). RMSE quantifies the differences between
predicted and observed values, providing a measure of the
model's accuracy [24]. On the other hand, R? measures the
proportion of variance in the dependent variable that can be
explained by the independent variables in the model [25]. The
equation based on RMSE can be seen in Eq. (2) and Eq. (3) for
R? equation.

1 n
RMSE = EZ(yi -9 @
=1
n 52
RZ—1— L0 — 907 3)

(i = Y)?

where, y; represents the observed values, y; denotes the
predicted values, and n is the total number of observations. A
lower RMSE indicates better model performance. y; is the
mean of the observed values. An R? value closer to 1 indicates
a better fit, demonstrating that the model explains a significant
amount of the variability in the data.

4. EXPERIMENTAL RESULTS
4.1 System development (Hardware)

The development of the automated watering and monitoring
system is illustrated in Figure 7, which presents the integration

of the hydroponic system with key electronic components. The
hardware was set up in a controlled indoor environment with
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a temperature range of 20°C to 29°C, ensuring optimal
conditions for chili plant growth. The system uses three PVC
pipes, each measuring 8 % 8 cm and containing 5 planting
holes, to allow for efficient space utilization while providing
adequate room for each plant. The ESP-32 microcontroller and
other components are securely housed within a 1 mm thick
electrical panel box, which not only protects the sensitive
electronics but also provides easy access for maintenance.

Figure 7. System development (Hardware)

In addition, the water management system, which includes
pH adjustment bottles and nutrient solutions, is positioned
strategically to optimize nutrient distribution (Figure 7). The
system uses automated pumps to manage pH balance and
nutrient delivery. The layout ensures that water flow is
consistent while protecting the electronic components from
moisture damage. Waterproof casings were used to safeguard
the electronic systems, demonstrating a careful consideration
of the hydroponic environment's operational needs. This setup



provides a clear representation of how the components
contribute to the system's overall efficiency and reliability.

4.2 System development and monitoring (Software)

4.2.1 Plant growth monitoring in 30 Days

Observations during the final 30 days post-planting were
conducted to evaluate the effectiveness of the automated
watering system and pH adjustment in supporting the growth
of chili plants. Throughout this period, the system executed
automatic watering four times within a 24-hour cycle,
resulting in a total of 120 watering sessions over 30 days. This
approach was designed to ensure that the plants received
consistent moisture, which is crucial during this critical growth
phase.

In addition to watering, the system was equipped with a
mechanism for automatically adjusting the water pH, ensuring
that the pH remained within an optimal range for nutrient
absorption by the plants. This pH adjustment occurred
concurrently with watering, allowing the plants to receive not
only sufficient water but also nutrients in a form that could be
effectively absorbed. Through this integrated management, it
was anticipated that plant growth could be maximized, thereby
reducing the risk of stress from uncontrolled environmental
fluctuations. The results of the observations conducted during
the last 30 days are illustrated in the graph presented in Figure
8.

800 T
Datasets

600 Pattern 1

Pattern 2

Pattern 3
400 F Pattern 4

Pattern 5 g
200 —
0

Growth rate in plant Height (g d"') Growth in plant Height (g)

Figure 8. Daily plant change based on plant height

4.2.2 Model prediction results and performance analysis

In this study, the predictive performance of the proposed
system using Neural Networks (NN) is evaluated through key
metrics, namely Root Mean Square Error (RMSE) and R?
(coefficient of determination). The model achieved an RMSE
0f 0.49 and an R? 0 0.99, indicating strong alignment between
the predicted and actual growth values. While these results
demonstrate the model’s overall effectiveness, it is essential to
discuss the factors contributing to these outcomes and how the
system's performance may vary under different environmental
conditions.

The model’s high accuracy, reflected in the low RMSE of
0.49 and R? of 0.99, can be attributed to the stable
experimental conditions with controlled temperature (20°C to
29°C) and consistent humidity. However, in real-world
settings, environmental fluctuations such as temperature
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spikes or pH changes could introduce noise into the input data,
potentially increasing RMSE. This highlights the need for
continuous retraining and fine-tuning as new environmental
data arises. Additionally, sensor accuracy plays a crucial role,
as any inconsistencies in data collection, such as from pH or
soil moisture sensors, could degrade prediction accuracy.
Ensuring precise sensor calibration is vital for maintaining the
system’s performance.
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Figure 9. Model prediction results of RMSE and R?

Furthermore, the scalability of the model poses a challenge,
as additional variables like light intensity or carbon dioxide
levels might be required for different environments,
potentially increasing model complexity and risk of
overfitting. Lastly, the system’s performance may vary across
different plant growth stages, where early stages are more
sensitive to environmental changes. Incorporating stage-
specific models could enhance accuracy by tailoring
predictions to each growth phase. The results of RMSE and R?
can be seen in Figure 9.

4.3 Long-term feasibility and maintenance requirements
Assessing the long-term feasibility of the proposed

automated watering and plant growth monitoring system
involves  understanding the essential maintenance



requirements and potential challenges. Regular maintenance is
crucial for optimal performance, including periodic sensor
calibration to ensure accurate measurements of temperature,
humidity, soil moisture, and pH levels. Additionally, routine
inspections of electronic components, such as the ESP-32
microcontroller and pumps, are necessary to identify wear or
damage before they lead to system failures. Software updates
and model retraining with new data will also be required to
adapt to changing environmental conditions and enhance
system functionality.

Over time, several challenges may arise that could impact
the system’s reliability and effectiveness. Environmental
variability, such as fluctuating temperatures and humidity
levels, can affect plant growth and the system's performance.
Continuous monitoring and adaptability of the neural network
model are essential to address these issues. Furthermore, the
lifespan of electronic components may be compromised by
exposure to moisture or extreme conditions, necessitating
timely replacements. As the system scales to accommodate
larger operations or different crop types, managing the
complexity of additional sensors and data management
systems will also be crucial. Proactive measures will help
ensure the system remains effective and sustainable in
supporting agricultural production over the long term.

4.4 Research findings between related research

This research builds upon previous studies [16-18] by
proposing a system that not only automates watering but also
integrates predictive plant growth modeling using Neural
Networks (NN). The key innovation of this research lies in the
combination of real-time monitoring, automated irrigation,
and predictive growth modeling. While previous systems have
largely focused on automating watering tasks or optimizing
nutrient management through predefined thresholds, this study
introduces a data-driven prediction system that adapts to the
chili plant's growth stages, optimizing water and nutrient
delivery dynamically. Unlike existing systems that rely solely
on real-time sensor data or fixed schedules for irrigation [16-
18], our proposed system employs machine learning
algorithms to learn from historical and real-time
environmental data. This approach enables the system to
predict future growth stages and adjust the watering schedule
and pH levels based on these predictions. This is a significant
advancement over previous works, as it allows for more
accurate and proactive management of the hydroponic
environment, reducing the risks associated with over-watering
or nutrient imbalances.

Furthermore, the proposed system is equipped with an
automated pH adjustment feature that maintains the water's pH
within the optimal range for nutrient absorption. Although
studies like [16] incorporated nutrient management, they did
not combine it with a predictive model that could anticipate
the plants' needs at different growth stages. By integrating pH
optimization with a Neural Network-based prediction model,
our system not only ensures the plants receive the right amount
of water but also optimizes the nutrient absorption process at
each growth phase, leading to better yield and plant health.
Additionally, the innovation extends to the scalability of the
system, as the predictive model can be trained for different
crops and environmental conditions, making it adaptable for a
variety of agricultural settings.

This contrasts with previous studies, which are often
designed specifically for a single crop type or environmental
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setup, limiting their applicability. By leveraging the power of
machine learning, our system provides a scalable and
intelligent solution that enhances the efficiency of chili
production while minimizing resource wastage. Table 1
highlights the differences between this research and previous
studies, showcasing how the predictive capabilities and
automated nutrient optimization set this system apart from
existing methods.

Table 1. Research findings

Ref.  System Benefit Findings
For Chili Hydroponic: Development an
[17] . . .
Production automatic watering system
For Chili Hydroponic: Development an
[18] . . )
Production automatic watering system
ey Forehil optimizing water and mutent
Production pumizing w Y
management
o Forchi i Doclopmen o
Production sy P &

monitoring

5. CONCLUSIONS

In conclusion, the application of neural networks (NN) in
monitoring the growth of chili plants and managing the
automated watering system has yielded significant results. The
system executed 120 automatic watering sessions over a 30-
day period, ensuring consistent moisture levels crucial for
optimal plant development. The integration of automatic pH
adjustment further enhanced nutrient absorption, contributing
to improved plant health. The predictive performance of the
NN model, evidenced by an RMSE of 0.49 and an R? 0f 0.99,
demonstrates its high accuracy in capturing the dynamics of
plant growth. These metrics indicate that the model not only
closely aligns with actual growth data but also effectively
accounts for the variability in plant responses, reinforcing the
reliability of this approach in agricultural management.

For future research, it would be beneficial to explore the
incorporation of additional environmental sensors, such as
light intensity and carbon dioxide levels, to create a more
comprehensive monitoring system. Enhancing the neural
network model with larger datasets and varying plant species
could also improve its predictive capabilities and adaptability.
Additionally, the proposed system has significant potential for
scalability, allowing it to be adapted for larger agricultural
operations and diverse crop types. By integrating more sensors
and control units, the system can facilitate the simultaneous
monitoring of multiple growing areas. As the system can be
trained on different datasets to accommodate various crops, it
promotes sustainable agricultural practices by optimizing
water and nutrient delivery tailored to each plant's
requirements. Leveraging this scalability will enable farmers
to enhance productivity and operational efficiency, thus
meeting the growing global demand for food production.
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