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Leukocytes, another name for white blood cells, or WBCs, are essential components of our
immune system, playing a crucial role in protecting our bodies from infection and disease.
When we look at immune disorders and bacterial infections, we see that lymphocytes play
a central role in the adaptive immune response, while neutrophils are essential in the fight
against bacterial infections, and basophils are involved in allergic and inflammatory
reactions. When one of these three types of white blood cell (WBC) is affected, it can have
a variety of consequences for the immune system and the body's overall health, leading to
serious illnesses such as AIDS, leukemia and severe allergic reactions such as anaphylaxis.
The diagnosis of some disorders can benefit greatly from the segmentation of the white
blood cell nucleus. Analysis of cell morphology, in particular the shape and size of the
nucleus in microscopic images, can provide indications of a cell's state of health. In this
work, we suggest a fully automatic method for segmenting the nuclei of the three types of
WBC (neutrophils, lymphocytes, basophils) using a convolutional neural network named
WCSegNet based on the Unet architecture consisting of residual convolution blocks
activated by the LeakyRIu activation function. Our technique succeeded in segmenting the
cell nucleus and classifying microscopic images according to their type. The results

obtained are encouraging, with precision scores in excess of 0.90.

1. INTRODUCTION

Leukocytes referred to as white blood cells or WBCs, are
essential immune system cells that shield the body from illness
and infection. WBC nuclei analysis can reveal important
details about the genesis, function, and activation state of these
cells. many diseases can be diagnosed by examining cell
nucleus features alone. Macawile et al. [1] explain how an
aberrant range of specific white blood cells can lead to several
severe disorders, including cancer, bacterial infections, and
acquired immune deficiency syndrome.

Furthermore, physical and quantitative descriptors such as
the morphology, texture, and color of WBCs play a critical
role in the diagnosis of many blood-related diseases, some of
which can be fatal if left untreated in time [2].

According to the study by Li et al. [3], the rapid detection
of any deviation in leukocyte populations is crucial for the
clinical detection of Burkitt lymphoma and acute
promyelocytic leukemia, as it allows for early diagnosis and
treatment. However, this task is complex, time-consuming,
laborious, and subject to subjective variability by clinicians,
requiring significant expertise. Hence, there is a growing
demand for the development of automated systems capable of
detecting leukocytes with high precision.

The integration of automatic segmentation and
classification techniques into medical diagnostic tools has
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significantly improved the accuracy and speed of diagnosis.
These techniques overcome the limitations of traditional
manual methods, such as inter-observer variability and the
lengthy analysis time. With automation, clinicians can focus
more on therapeutic decision-making, thus enhancing the
efficiency of the care process.

In radiology, artificial intelligence (Al) is not only used to
detect anomalies; it also helps quantify disease progression [4],
assess treatment response [5], and predict patient outcomes [6].
For instance, in cancer treatment, Al can measure tumor size
and growth over time, providing crucial information for
treatment planning [7].

Nucleus segmentation allows for the isolation and analysis
of individual nuclei, facilitating the study of their
morphological characteristics and genetic content. However,
this task presents challenges, especially due to variations in
image intensity, overlapping nuclei, and noise present in the
images. Therefore, manual segmentation of images is
impractical and time-consuming for pathologists [8]. As a
result, computer-assisted approaches for analyzing medical
images have proven to be faster and more consistent over the
last few decades [9, 10].

Various techniques have been developed to segment
microscopic images of white blood cells (WBCs) using
shallow algorithms. Zhang et al. [11] and Liu et al. [12]
employed the k-means clustering algorithm to segment WBCs
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in blood smear images based on pixel similarity. Thresholding
was used in the approaches by some studies [13, 14]. Another
approach described by Biswas and Ghoshal [15] combines a
blood cell detection algorithm that uses a Sobel filter in the
frequency domain for edge detection with a watershed
transformation for threshold estimation. Additionally, Ghosh
et al. [16] and Chaira [17] utilized fuzzy models for this task.

The study by Arslan et al. [18] defines two transformations
and effectively applies them in a marker-controlled watershed
method to employ color and shape information for
segmentation. In addition, Gautam and Bhadauria [19]
propose a method for segmenting nuclei from blood smear
images using Otsu's thresholding technique. This is applied
after contrast stretching, histogram equalization, and a
minimum filter to reduce noise and enhance nucleus
brightness. Mathematical morphology is then used to
eliminate non-WBC components. Although each traditional
classifier has had its share of successes, many limitations
persist among them. Among the methods mentioned, some
have demonstrated their effectiveness when the color of white
blood cells (WBC) is distinct from that of red blood cells and
platelets.

However, they can run into difficulties when the cell regions
of interest (ROIs) show large variations in color, size, and
shape [20]. However, the most prevalent drawback in the
numerous works done before deep learning became popular is
that features are created by hand using prior knowledge, which
might not be reliable enough in every circumstance.

A remarkable improvement in the results of segmenting and
classifying WBCs has been marked by the advent of
techniques using convolutional neural networks (CNNs).

When we explore the literature on white blood cell (WBC)
segmentation and classification, we find that methods based
on UNet, ResNet, and RCNN are the most popular and
produce good results. LeukocyteMask, for instance, is a
leukocyte localization and segmentation technique that was
introduced by Fan et al. [20]. This technique trains a deep
convolutional neural network supervisor with pixel-level prior
data and then uses ResNet-inspired residual blocks to pinpoint
the leukocyte region of interest (ROI). This approach has
given good results in segmenting the nucleus and cytoplasm of
WBCs. In addition, Agrawal et al. [21] suggested the K-Means
clustering technique together with a segmentation strategy
based on the pairing of the Otsu adaptive threshold and the
Gaussian distribution. A convolutional neural network is used
to classify the retrieved features (CNN). Although the work
produced good results, the method used presents certain
limitations in terms of efficiency. Indeed, it relies on a three-
step process: preprocessing, segmentation, and feature
extraction, followed by classification using a CNN. This
complex workflow is not only time-consuming but also
resource-intensive.

In the study by Banik et al. [22] a WBC nucleus
segmentation method was developed using color space
conversion and the k-means algorithm. Using the location of
the segmented nucleus as a guide, this technique isolates the
white blood cells from the surrounding blood smear image.
Furthermore, the idea of mixing the characteristics of the first
and last convolutional layers and propagating the input image
to the convolutional layer has been combined to create a novel
convolutional neural network (CNN) model. This study,
evaluated in the same context as the study by Agrawal et al.
[21], presents similar drawbacks, involving multiple steps
before reaching the CNN. Although the proposed CNN
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demonstrates significantly lower computational complexity
compared to the four state-of-the-art CNN models, the process
still includes detecting and localizing the WBC, cropping the
localized regions, and subsequently feeding the cropped WBC
to the CNN for training. This multi-step workflow is not only
time-consuming and resource-intensive but also increases the
overall complexity of the method. In the study [23], A two-
phase hybrid multi-level approach is introduced to effectively
categorize four WBC groupings. At the first level, a Faster R-
CNN network is used for the identification of the WBC region
of interest, as well as for the separation of mononuclear from
polymorphonuclear cells. Second-level subclasses are
recognized by two parallel convolutional neural networks with
MobileNet structure after they have been split apart. This
study achieved very good performance metrics, with average
accuracy, precision, recall, and F-score of 98.4%, making it a
promising tool for clinical and diagnostic laboratories.
However, the use of CNN models such as Faster R-CNN and
MobileNet presents significant limitations in terms of
resources. Although these models are effective, they are
extremely costly to train and deploy, requiring substantial
hardware resources, which may limit their adoption in clinical
environments where efficiency and resource economy are
crucial. On the other hand, Metlek [24] proposes CellSegUNet,
a hybrid segmentation model with an attention block that
draws inspiration from residual UNet models and UNet's
benefits. The CellSegUNet model, developed for cell nuclei
segmentation, is a method based on deep learning algorithms,
incorporating residual, attention, multiplication, and
difference modules, as well as a min pooling layer and an
output layer. Although the encoder and decoder blocks are
similar to those of the classical UNet architecture, their
internal structure differs significantly, notably through the use
of residual structures applied both in series and in parallel. It
was found that a high number of nodes in the same layer could
negatively impact both the success and the cost of the process.
Therefore, an attention module was proposed in the study. The
model produced good results in terms of Dice, Jaccard, and
accuracy, exceeding 95% on some datasets, but required a high
number of epochs, reaching up to 175 epochs.

Alharbi et al. [25] also suggest a novel model that segments
leukocytes from blood samples using ResNet and UNet
networks for feature extraction. The author wused a
preprocessing  phase involving standardization and
normalization of the images, calculating the global mean and
standard deviation for each image. This step ensures that pixel
values are brought to a comparable scale, facilitating faster and
more stable model training, the work achieved high scores
such as IoU and precision, both exceeding 95%. Finally, Das
et al. [26] have designed two models to recognize and
differentiate myeloma cells from non-myeloma cells. For
recognition, a Mask-Recurrent Convolutional Neural Network
was used to extract the region of interest, Efficient Net B3 was
employed for training. The model achieved 95% accuracy.

Additionally, the VGG architecture was utilized by Afshin
et al. [27], while the Inception model was employed by Xia et
al. [28].

Different works have used various CNN architectures to
detect malaria. Kundu et al. [29] examine current
developments in machine learning methods for the
identification and detection of malaria in images. Furthermore,
a thorough comparison of several machine-learning
techniques is provided.

Yildirim and Cinar [30] identified the many types of white



blood cells (eosinophils, lymphocytes, monocytes, and
neutrophils) using CNNs trained on the Kaggle dataset,
including AlexNet, ResNet50, DenseNet201, and GoogleNet.
Both before and after the Gaussian and median filters were
applied, the classification was performed.

DenseNet201 was used by Cinar and Yildirim [31] to
categorize malaria images as either parasitized or healthy. Two
filters were applied to the original dataset: a Gaussian filter
and an average filter. When applying the DenseNet201
architecture to data filtered using the Gaussian filter, the
greatest accuracy rate of 97.83% was achieved.

Based on the aforementioned research and our analysis of
its positive and negative aspects, we present this research
paper with the main objective of developing a medical
diagnostic system targeted at specific conditions, such as
bacterial infections and immune disorders. To achieve this
goal, we focus on the segmentation and detection of neutrophil,
lymphocyte, and basophil nuclei, which we consider to be the
most suitable approach.

The choice to focus on neutrophils, basophils, and
lymphocytes for segmentation is justified by both medical and
technical reasons:

Medical Reason: A detailed analysis of neutrophils,
basophils, and lymphocytes provides crucial information for
clinicians:

- Diagnosis and monitoring of infections: Neutrophils are
essential for identifying bacterial infections, while
lymphocytes are important for tracking viral infections.

- Evaluation of allergies and chronic inflammation:
Basophils, involved in the inflammatory response, are
valuable indicators for allergic reactions.

- Immune status monitoring: Lymphocytes play a critical
role in the overall immune response, and their analysis helps
diagnose immune deficiencies or cancers.

By focusing on these specific cells, healthcare
professionals can gain a better understanding of the patient's
immune system, assess disease progression, and appropriately
adjust treatments. This information is crucial for managing
infections, monitoring immunocompromised patients, and
detecting blood-related diseases [32, 33].

Technical Reason: The marked differences between the
nuclei of neutrophils, basophils, and lymphocytes, especially
in terms of shape and background coloration, present a major
challenge for achieving robust segmentation. These variations
make segmentation more complex, requiring advanced
techniques to properly distinguish each cell type and ensure
precise analysis.

It is essential that this segmentation is fully automatic,
without any human intervention.

In this paper, we propose an automatic segmentation
method to establish a multiple classification process. Our
approach detects the three types of white blood cells
(neutrophils, basophils, and lymphocytes) and segments their
nuclei by assigning a color to each type. To achieve this, we
used deep learning applied to a labeled blood database, via an
Unet CNN architecture composed of convolution blocks and
residual blocks, which we named “WCSegNet”. This modular
and reusable approach enables us to create efficient and
accurate network architectures.

2. PROPOSED METHOD

We provide a detailed description of the dataset and the
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proposed architecture.
2.1 Data set

To evaluate our method in terms of robustness and accuracy
we have used three databases DataSetl “Jiangxi”, DataSet2
“CellaVision”, and DataSet2 “BCISC”. We selected these
three datasets for our tests because they differ greatly from one
another in terms of backdrop, cell shape, image color, and
other characteristics that help us assess how resilient the
suggested method is.

Dataset 1: “Jiangxi” was acquired from Jiangxi Tecom
Science Corporation, China [34]. It has 300 120 x 120 WBC
images with a color depth of 24 bits, showing 176 neutrophils,
22 eosinophils, 1 basophil, 48 monocytes, and 53 lymphocytes.
Using an N800 D motorized autofocus microscope and a
Motic Moticam Pro 252A optical microscope camera, the
images in Dataset 1 were captured.

Dataset 2: “CellaVision” consists of 100 color, 300 x 300
images of various cell types (30 neutrophils, 12 eosinophils, 3
basophils, 18 monocytes, and 37 lymphocytes) that were
gathered from the CellaVision blog (//blog.cellavision.com
[34]. In contrast to dataset 1, cell images are often purple and
may contain a large number of red blood cells surrounding
white blood cells.

Dataset 3: “BCISC” was gathered by Fan et al. [20] with
assistance from the Fujian Province's Third People's Hospital.
It consists of two directories: the first has 268 images of
individual white blood cells (51 neutrophils, 54 eosinophils,
56 basophils, 54 monocytes, and 53 lymphocytes) that are
sized 256 x 256 and have been labeled by pathologists; the
second has five sub-directories that are sized 2048 x 1538 and
include 50 neutrophils, 49 eosinophils, 49 basophils, 48
monocytes, and 50 lymphocytes.

As previously mentioned, we aim to develop a system for
the automatic segmentation of neutrophil, lymphocyte, and
basophil nuclei. To this end, we have a set of images
comprising 307 neutrophil images, 193 lymphocyte images,
and 53 basophil images. All these images have been resized to
a size of (120 % 120). Figure 1 shows some samples from the
cohorts mentioned.

Basophils from BCISC data set

Neutrophils from BCISC data set

Jiangxi data set

CellaVision data set

Figure 1. Some samples of: BCISC (Row 1 & 2), Jiangxi
(Row 3), and Cella Vision (Row 4), show the original images
(left) alongside their segmentations (right)



2.2 Data augmentation

The process of data augmentation involves applying various
distortions to the original images, such as brightness change,
zoom, and rotation [20]. In our situation, the datasets used with
annotations are relatively small in comparison to computer
vision standards, and finding new, large datasets with
annotations is difficult and occasionally impossible. To get
beyond these restrictions, data augmentation is required.

The techniques applied in this augmentation are as follows:
1. Rotation (rotation_range): This augmentation performs

a random rotation of the image within a range defined in
degrees. In our case, rotation range=40 means that the
image can be rotated up to 40 degrees clockwise or
counter-clockwise.

2. Horizontal and vertical shift (width_shift range,
height_shift_range): These increments move the image
horizontally and vertically within a defined range,
expressed as a fraction of the image width or height.
We've taken width shift range=0.2 to mean that the
image can be moved horizontally by up to 20% of its
width in both directions.

3. shear_range: This enhancement applies a random shear
to the image, causing certain points in the image to move
at a defined angle.Zoom (zoom range) : Cette
augmentation applique un zoom aléatoire a I'image, ou
une valeur de 0,2 signifie que l'image peut étre agrandie
ou réduite jusqu'a 20%.

4. Horizontal flip: This increase performs a random
horizontal flipping of the image, which is useful for tasks
where object orientation is not important, such as object
recognition.

5. Zoom_range: value of 0.2 means that images can be
randomly enlarged or reduced by up to 20% of their
original size.

The total number of images increased tenfold thanks to data
augmentation, reaching over 5000 blood microscopic images,
including 3007 neutrophils, 1930 lymphocytes and 530
basophils. In Figure 2, we present some examples of
augmented images.
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Figure 2. Data augmentation examples of: Jiangxi (Row 1),
CellaVision (Row 2), BCISC (Row 3 & 4), Column 1 to 6
are the original image, and corresponding "rotation range":
40, "width_shift range": 0.2, "shear range": 0.2,
"zoom range": 0.2, and "horizontal flip", respectively

2.3 Proposed CNN model

We have developed a multi-class convolutional neural

network based on the U-Net architecture developed by
Ronneberger et al. [35]. This is essential to extract more
features and facilitate learning due to the diversity of the
databases used, taken under different imaging and staining
conditions by various medical microscopies.

This network incorporates a modular architecture (Figure 3)
that employs “Conv-Block” residual blocks (Figure 4) in both
the encoder and decoder paths, inspired by ResNet [36].
Residual blocks help alleviate the problem of gradient
disappearance and facilitate deep learning by improving the
flow of information across layers. This approach enables the
systematic assembly of network architectures.

Compared to architectures like U-Net, FCN, SegNet, Mask
R-CNN, Attention Res-UNet, nnUNet, and ResUnet, our
approach offers a better balance between network depth,
segmentation accuracy, and the ability to recover fine details
while avoiding gradient degradation [37]. This makes it an
optimal choice for sensitive medical tasks such as WBC
segmentation, where precision is crucial for reliable diagnosis
and monitoring. On the other hand, Mask R-CNN is better
suited for object detection and segmentation of multiple
instances, but it is complex and resource-intensive. For a task
such as WBC segmentation, which requires precise extraction
of individual cell boundaries in a homogeneous context,
ResUnet is more efficient.

However, SegNet performs worse at recovering fine details
compared to U-Net or ResUnet because it does not use direct
skip connections between the encoder and decoder. As a result,
it may be less accurate for complex structures such as white
blood cells, which require precise boundary differentiation
[38].
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Figure 3. Architecture of WCSegNet the network detects
nucleus of WBC’s. ConvBlock: Residual block, Maxpool:
max pooling, (#x#x): size of the filter, LeakyRelu: Leaky
Rectified Linear Unit, #filters number, the blue lines
represent the concatenation (-)
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2.3.1 The encoding path

The encoder path consists of ten “Conv-Block™ residual
convolution blocks (Figure 4), each two followed by a max
pooling layer (2x2). Each residual block consists of two
convolution blocks (3%3). The first convolution block uses a
LeakyReLU activation (Eq. (1)), while the second block uses
no activation. Both convolution blocks have a stride of 1 and
auto padding (same), and a residual connection is established
by summing the input tensor with the output of the second

convolution block. Finally, a LeakyReLU activation is applied.

The first two residual blocks use 64 filters, the next two use
128 filters, then 256 filters, and finally 1024 filters are applied.

The choice of this filter sequence also contributes to
optimizing training efficiency. Using 64 and 128 filters in the
initial layers facilitates faster convergence, as these layers are
less computationally demanding. The subsequent increase to
512 and 1024 filters is justified by the need to capture more
complex features essential for accurate segmentation.
Evaluations with either fewer or more filters could have been
explored. For instance, using 32, 64, 256, and 512 filters might
have limited the model's ability to capture intricate features,
while opting for 128, 256, 1024, and 2048 filters would have
significantly increased computational demands and potentially
led to overfitting.

It is important to note that the Leaky ReLU activation
function is a variant of the Rectified Linear Unit (ReLU)
activation function, designed to address some of the issues
inherent in ReLU. The ReLU function returns zero for all
negative input values, which can result in the problem of "dead
neurons" [39].

Eq. (1) defines the small slope that this function introduces
for negative values.

f(x) = max(a * x, x)

)

In such cases, certain neurons cease to contribute to the
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learning process because they receive zero gradients,
effectively preventing them from updating during training. In
contrast, Leaky ReLU mitigates this problem by introducing a
small slope (a small positive value, typically ranging from 0.01
to 0.1) for negative inputs. As a result, neurons still have a
slight activation even for negative input values, allowing them
to continue contributing to the learning process. This approach
helps prevent the vanishing gradient problem, thereby
enhancing training stability and accelerating model
convergence [40]. Consequently, many researchers have
adopted this activation function, as evidenced by the studies
cited in references [22, 41].

A dropout layer was applied after the second residual “512
conv-block” which helps prevent over-fitting by preventing
neurons from over-cooperating and making the model acquire
stronger, more general features [42].

2.3.2 The decoding path

This path corresponds to the construction of part of the
decoder in the U-Net architecture. It comprises four up-
sampling layers (2x2) used to perform an upsampling
operation, increasing the spatial size of the tensor by
multiplying each dimension by 2. Next, two conv-block layers
are applied, using 512, 256, 128, and 64 filters respectively.
Two dropout layers are inserted in the middle of the path to
regularize the model. Next, four concatenation layers are
applied, followed by a convolution layer (3%3) with batch
normalization, LeakyReLU activation, and a dropout layer.
Finally, a final convolution layer (3x3) is applied to define the
model's output layer. This 2D convolution uses a (1x1) size
kernel on the network output, reducing the number of channels
to 4, corresponding to the classes in the stained nucleus of
(neutrophils, basophils, and lymphocytes) and the background.
Activation is set to 'SoftMax', a method commonly used for
multiclass classification tasks as it converts raw scores into
probabilities for each class.

The model is configured with the Adam optimizer, while
the loss function used is the categorical cross-entropy, adapted
to multiclass classification problems, which can be calculated
as follows:

— 21 Yo, log(po.) )

*M: number of classes.

+y: binary indicator (0 or 1) if class label c is the correct
classification for observation o.

*p: predicted probability observation o is of class c.

2.3.3 The bottleneck layer
Two Conv-Blocks (3x3) with 1024 feature maps for each
make up this layer.

2.4 Training

The CNN model was trained on an NVIDIA GeForce GTX
1050 GPU and implemented in TensorFlow using the Keras
library with CuDNN 5.1. The system utilized an Intel Core 17
processor, 32 GB of RAM, and Windows 10. The training was
performed using stochastic gradient descent with a mini-batch
size of 16 images and an initial learning rate of 10,

2.5 Experiment

The network has been trained on a dataset comprising over
5,000 microscopic images of size (120%120) pixels, including



data augmentation to improve diversity and learning
robustness. These images are divided into three distinct
subsets, each accompanied by its corresponding annotations.
The first subset contains images of basophils, while the second

is dedicated to neutrophils, and the third contains lymphocytes.

This distribution is intended to facilitate further classification
after segmentation. Each pixel of the segmented image is

colored according to its membership of the corresponding
subset: the background is black, basophils are represented in
green, neutrophils in red, and lymphocytes in blue.

We separated the test and training sets in an 80:20 ratio,
accordingly. Figures 5 and 6, respectively, demonstrate the
trend in categorical cross-entropy loss for the training sets
learned with Unet using LeakyRelu and WCSegNet.

Unet(LeakyRelu) Loss function

Loss

L= JEps - Ik gl B - T I

Epoch

Figure 5. Network convergence of UNet (LeakyRelu) during training
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Figure 6. Network convergence of WCSegNet during training

3. RESULTS AND DISCUSSION

We evaluated our experiments on three databases (Jiangxi,
CellaVision, BCISC). To obtain a quantitative assessment of
the model's performance, we subjected the segmentation
results to a series of different tests: precision, Dice, and TuO
(intersection over union), and accuracy. The evaluation
metrics are calculated as follows:

The precision represents the proportion of positive
predictions that the model correctly identifies.

TP
TP+FP

Precision = 3)

In essence, accuracy measures the overlap between two
samples and is expressed as the number of correct predictions
out of the total number of guesses.

TP+TN

Accuracy = ———
y TP+TN+FP+FN

“4)

The Dice coefficient, which was initially created for binary
data, is the harmonic mean of sensitivity and accuracy and may
be computed as follows:

2TP

Py v ©)
2TP + FP + FN

Dice =

The Intersection over Union (IoU) similarity metric is
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utilized to assess the precision of object segmentation
algorithms, by dividing the intersection by the union of the
predicted and ground truth pixel sets.

TP

IoU(intersection over union) = ———
TP+FP+FN

(6)

o True positives (TP) represent white cell pixels that are
accurately detected within areas where ground truth indicates
the presence of white cells.

o False positives (FP) are white cell pixels incorrectly
identified outside areas where ground truth does not show the
presence of white cells.

o True negatives (TN) are background pixels correctly
identified outside areas where the ground truth does not show
the presence of white cells.

o False negatives (FN) are background pixels that are
incorrectly identified inside areas where the ground truth
shows the presence of white cells.

As suggested by the equations above, a high Dice coefficient,
close to 1, indicates a strong match between model predictions
and actual masks, while a low coefficient, close to 0, indicates
a limited match. Accuracy measures the proportion of pixels
predicted as belonging to a specific class that corresponds to
that class. High accuracy reflects the accurate classification of
pixels overall. The precision is a number between 0 and 1,
where 1 represents the best possible score and denotes the
accuracy of all positive predictions, while 0 denotes the
accuracy of none of the positive predictions. Conversely, the



IoU is 0 if there is no overlap at all between the prediction set
and the actual set. The IoU is 1 if there is a perfect overlap

between the prediction and actual sets. The closer the IoU is to
1, the more precise the segmentation.

Table 1. Accuracy, Precision, Dice coefficient (Dice), and mean Intersect of Union (mloU), from Unet with Relu, Unet with
Leaky Relu, Fan et al. [20], Banik et al. [22], Alharbi et al. [25] and the proposed method respectively on, Jiangxi and Cella
Vision data set

Data Set Method Accuracy Precision Dice mloU
Unet (Relu) 0.9605 0.9191 0.8991 0.8788
Unet (LeakyRelu) 0.9777 0.9401 0.9345 0.9270
Jiangxi Fan et al. [20] / 0.99432 0.98196 0.96
Banik et al. [22] 0.9757 0.8763 0.94 /
Alharbi et al. [25] 0.94 0.9590 / 0.962
Our method 0.9805 0.9790 0.9653 0.9599
Unet (Relu) 0.9601 0.9344 0.9001 0.9144
Unet (LeakyRelu) 0.9733 0.9409 0.9338 0.9190
CellaVision Fan et al. [20] / 0.98947 0.98242 0.96671
Banik et al. [22] 0.9886 0.9175 0.91 /
Alharbi et al. [25] 0.94 96.52 / 0.9752
Our method 0.9818 0.9706 0.9662 0.9609

Table 2. Accuracy, precision, Dice coefficient (Dice), and mean Intersect of Union (mlIoU), from Unet with Relu, Unet with
LeakyRelu, Fan et al. [20], and the proposed method respectively on BCISC data set

Data Set Method Accuracy Precision Dice mloU
Unet (Relu) 0.9983 0.9501 0.9506 0.9319

BCISC Unet (LeakyRelu) 0.9713 0.9655 0.9305 0.9170
Fan et al. [20] / 0.9844 0.9783 0.9647

Our method 0.9923 0.9735 0.9658 0.9598

We evaluate the assessment measures' worth by contrasting
our suggested segmentation approach with three current
approaches [20, 22, 25] on databases 1 and 2 (Table 1), and on
BCISC with only results (Table 2) [20]. We have added a
comparison with the Unet architecture [24] with the Relu
activation function and the LeakyRelu activation function on
all three databases (Table 1 & Table 2).

As illustrated in Tables 1 and 2, the standard Unet model
produced outstanding segmentation results, with precision and
accuracy exceeding 95% for all three databases. In addition, it
achieved an average Dice and IoU of over 90% for all three
databases. The Unit improvement was achieved by replacing
the ReLU function with LeakyReL U, resulting in a significant
increase in scores. However, for practically all of the metrics
computed on the three datasets, our technique performs better
than any other method. We obtain outstanding accuracy, Dice
and mloU, clearly superior to the other methods (Unet with
ReLU, Unet with LeakyReLU [22, 25], similar to the study by
Fan et al. [20] for the tree data sets.

The UNet model using LeakyReLU required around 100
epochs to converge, while WCSegNet achieved convergence
as early as the thirtieth epoch, as illustrated in the figure. In
comparison, the model described in study [20] converged.
This highlights the speed of convergence of our model
compared with the other methods tested.

The qualitative results confirm the effectiveness of our
method. Examination of Figure 7 reveals a marked similarity
between the ground truth and the predicted image, particularly
in the delineation of the precise core boundaries in the BCISC
database (lines 5, 6, 7). However, some images show blurred
contours, notably in the Jiangxi and CellaVision databases, as
illustrated in Figure 8 (yellow arrow), and some images in the
BCISC database show the presence of a few misclassified
pixels (false positives) circled in yellow. This results in
relatively low Dice and accuracy scores compared with overall
accuracy.
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Blood cell classification was successfully carried out, as
illustrated in the figure. Each cell type was correctly stained:
basophils in green, neutrophils in red, and lymphocytes in blue.
However, in a few images, we observed the appearance of red
color at the outlines of basophils. This can be explained by
basophil misrecognition, where some pixels in these images
were incorrectly identified as neutrophils.

Our segmentation method offers several advantages over
manual and semi-automated approaches, such as those
described in the works [13, 14, 18].

Algorithms like Rough Sets [13] and K-means [14] require
significant human intervention, making the segmentation
process lengthy and vulnerable to errors due to observer
variability. For instance, in the study [18], the method begins
with an initial segmentation using color thresholding to
distinguish  potential cellular regions, followed by
morphological operations to refine the segmentation.
Furthermore, these works highlight that semi-automated
methods can suffer from reproducibility limits, especially
when different operators are involved. In contrast, our
automatic segmentation technique reduces the need for human
intervention and promotes result standardization, thus
eliminating the inherent variability of manual methods. This is
reflected in the lower Dice scores in the study [18]
(approximately 0.70) compared to our results (0.96), even
though the precision reaches around 0.98. This indicates that
the method cited in the study [18] correctly predicts a large
number of true positives, but also presents a significant
number of false negatives, suggesting that it misses some
important parts.

Our automatic nucleus segmentation method also enables
the systematic and objective extraction of quantitative cell
features, such as the size, shape, and texture of the nuclei.
These features can then be used to inform classification
models, facilitating differential diagnosis, which is much more
challenging to achieve with manual approaches.
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Figure 7. Results of visualizing the WCSegNet network's
classification of the pixels in the various data sets: showing
the original image (left), the ground truth (middle ), the
segmented image(right)
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Figure 8. Results of visualizing the WCSegNet network's
classification of the pixels

However, one of the main limitations of our method lies in
its reliance on annotated training databases. Indeed, the quality
of segmentation and classification heavily depends on the
quality and quantity of the data used to train the model,

particularly given that the number of basophils in the human
body is limited, resulting in restricted annotated databases. To
address this, we aim to expand our database by seeking varied
datasets, including images of different qualities, such as those
containing noise or presenting diverse backgrounds, in order
to test the robustness of our method and enhance its
functionalities.

4. CONCLUSION

In this work, we propose WcSegNet, an innovative
technique for the classification and segmentation of white
blood cells (WBC) in blood smear images. This method
automatically segments WBCs, specifically focusing on
neutrophils, basophils, and lymphocytes, assigning each cell a
distinct color to facilitate their identification.

Our method is based on a multi-class convolutional neural
network, built upon the U-Net architecture developed by
Yildirim and Cinar [30]. This is essential for extracting more
features and enhancing the learning process, given the
diversity of the databases used, which come from different
imaging conditions and staining techniques, captured through
various medical microscopy methods.

To optimize deep learning and mitigate the issue of gradient
vanishing, this network integrates residual "Conv-Block"
blocks inspired by ResNet [36] in both the encoder and
decoder paths. Additionally, the Leaky ReLU activation
function was used instead of the standard ReLU function to
ensure that all neurons contribute to the learning process,
preserving complete information.

Our results, both quantitative and qualitative, demonstrate
that our proposed approach represents a significant
advancement over the state of the art, with accuracy exceeding
90% and rapid convergence. However, some images were
misclassified and others poorly segmented, particularly due to
overlapping colors in certain image types. These issues could
be addressed by increasing the size of the database and
refining the design of the convolutional neural network (CNN).
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