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Leukocytes, another name for white blood cells, or WBCs, are essential components of our 

immune system, playing a crucial role in protecting our bodies from infection and disease. 

When we look at immune disorders and bacterial infections, we see that lymphocytes play 

a central role in the adaptive immune response, while neutrophils are essential in the fight 

against bacterial infections, and basophils are involved in allergic and inflammatory 

reactions. When one of these three types of white blood cell (WBC) is affected, it can have 

a variety of consequences for the immune system and the body's overall health, leading to 

serious illnesses such as AIDS, leukemia and severe allergic reactions such as anaphylaxis. 

The diagnosis of some disorders can benefit greatly from the segmentation of the white 

blood cell nucleus. Analysis of cell morphology, in particular the shape and size of the 

nucleus in microscopic images, can provide indications of a cell's state of health. In this 

work, we suggest a fully automatic method for segmenting the nuclei of the three types of 

WBC (neutrophils, lymphocytes, basophils) using a convolutional neural network named 

WCSegNet based on the Unet architecture consisting of residual convolution blocks 

activated by the LeakyRlu activation function. Our technique succeeded in segmenting the 

cell nucleus and classifying microscopic images according to their type. The results 

obtained are encouraging, with precision scores in excess of 0.90. 
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1. INTRODUCTION

Leukocytes referred to as white blood cells or WBCs, are 

essential immune system cells that shield the body from illness 

and infection. WBC nuclei analysis can reveal important 

details about the genesis, function, and activation state of these 

cells. many diseases can be diagnosed by examining cell 

nucleus features alone. Macawile et al. [1] explain how an 

aberrant range of specific white blood cells can lead to several 

severe disorders, including cancer, bacterial infections, and 

acquired immune deficiency syndrome.  

Furthermore, physical and quantitative descriptors such as 

the morphology, texture, and color of WBCs play a critical 

role in the diagnosis of many blood-related diseases, some of 

which can be fatal if left untreated in time [2]. 

According to the study by Li et al. [3], the rapid detection 

of any deviation in leukocyte populations is crucial for the 

clinical detection of Burkitt lymphoma and acute 

promyelocytic leukemia, as it allows for early diagnosis and 

treatment. However, this task is complex, time-consuming, 

laborious, and subject to subjective variability by clinicians, 

requiring significant expertise. Hence, there is a growing 

demand for the development of automated systems capable of 

detecting leukocytes with high precision. 

The integration of automatic segmentation and 

classification techniques into medical diagnostic tools has 

significantly improved the accuracy and speed of diagnosis. 

These techniques overcome the limitations of traditional 

manual methods, such as inter-observer variability and the 

lengthy analysis time. With automation, clinicians can focus 

more on therapeutic decision-making, thus enhancing the 

efficiency of the care process. 

In radiology, artificial intelligence (AI) is not only used to 

detect anomalies; it also helps quantify disease progression [4], 

assess treatment response [5], and predict patient outcomes [6]. 

For instance, in cancer treatment, AI can measure tumor size 

and growth over time, providing crucial information for 

treatment planning [7]. 

Nucleus segmentation allows for the isolation and analysis 

of individual nuclei, facilitating the study of their 

morphological characteristics and genetic content. However, 

this task presents challenges, especially due to variations in 

image intensity, overlapping nuclei, and noise present in the 

images. Therefore, manual segmentation of images is 

impractical and time-consuming for pathologists [8]. As a 

result, computer-assisted approaches for analyzing medical 

images have proven to be faster and more consistent over the 

last few decades [9, 10]. 

Various techniques have been developed to segment 

microscopic images of white blood cells (WBCs) using 

shallow algorithms. Zhang et al. [11] and Liu et al. [12] 

employed the k-means clustering algorithm to segment WBCs 
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in blood smear images based on pixel similarity. Thresholding 

was used in the approaches by some studies [13, 14]. Another 

approach described by Biswas and Ghoshal [15] combines a 

blood cell detection algorithm that uses a Sobel filter in the 

frequency domain for edge detection with a watershed 

transformation for threshold estimation. Additionally, Ghosh 

et al. [16] and Chaira [17] utilized fuzzy models for this task. 

The study by Arslan et al. [18] defines two transformations 

and effectively applies them in a marker-controlled watershed 

method to employ color and shape information for 

segmentation. In addition, Gautam and Bhadauria [19] 

propose a method for segmenting nuclei from blood smear 

images using Otsu's thresholding technique. This is applied 

after contrast stretching, histogram equalization, and a 

minimum filter to reduce noise and enhance nucleus 

brightness. Mathematical morphology is then used to 

eliminate non-WBC components. Although each traditional 

classifier has had its share of successes, many limitations 

persist among them. Among the methods mentioned, some 

have demonstrated their effectiveness when the color of white 

blood cells (WBC) is distinct from that of red blood cells and 

platelets. 

However, they can run into difficulties when the cell regions 

of interest (ROIs) show large variations in color, size, and 

shape [20]. However, the most prevalent drawback in the 

numerous works done before deep learning became popular is 

that features are created by hand using prior knowledge, which 

might not be reliable enough in every circumstance. 

A remarkable improvement in the results of segmenting and 

classifying WBCs has been marked by the advent of 

techniques using convolutional neural networks (CNNs).  

When we explore the literature on white blood cell (WBC) 

segmentation and classification, we find that methods based 

on UNet, ResNet, and RCNN are the most popular and 

produce good results. LeukocyteMask, for instance, is a 

leukocyte localization and segmentation technique that was 

introduced by Fan et al. [20]. This technique trains a deep 

convolutional neural network supervisor with pixel-level prior 

data and then uses ResNet-inspired residual blocks to pinpoint 

the leukocyte region of interest (ROI). This approach has 

given good results in segmenting the nucleus and cytoplasm of 

WBCs. In addition, Agrawal et al. [21] suggested the K-Means 

clustering technique together with a segmentation strategy 

based on the pairing of the Otsu adaptive threshold and the 

Gaussian distribution. A convolutional neural network is used 

to classify the retrieved features (CNN). Although the work 

produced good results, the method used presents certain 

limitations in terms of efficiency. Indeed, it relies on a three-

step process: preprocessing, segmentation, and feature 

extraction, followed by classification using a CNN. This 

complex workflow is not only time-consuming but also 

resource-intensive. 

In the study by Banik et al. [22] a WBC nucleus 

segmentation method was developed using color space 

conversion and the k-means algorithm. Using the location of 

the segmented nucleus as a guide, this technique isolates the 

white blood cells from the surrounding blood smear image. 

Furthermore, the idea of mixing the characteristics of the first 

and last convolutional layers and propagating the input image 

to the convolutional layer has been combined to create a novel 

convolutional neural network (CNN) model. This study, 

evaluated in the same context as the study by Agrawal et al. 

[21], presents similar drawbacks, involving multiple steps 

before reaching the CNN. Although the proposed CNN 

demonstrates significantly lower computational complexity 

compared to the four state-of-the-art CNN models, the process 

still includes detecting and localizing the WBC, cropping the 

localized regions, and subsequently feeding the cropped WBC 

to the CNN for training. This multi-step workflow is not only 

time-consuming and resource-intensive but also increases the 

overall complexity of the method. In the study [23], A two-

phase hybrid multi-level approach is introduced to effectively 

categorize four WBC groupings. At the first level, a Faster R-

CNN network is used for the identification of the WBC region 

of interest, as well as for the separation of mononuclear from 

polymorphonuclear cells. Second-level subclasses are 

recognized by two parallel convolutional neural networks with 

MobileNet structure after they have been split apart. This 

study achieved very good performance metrics, with average 

accuracy, precision, recall, and F-score of 98.4%, making it a 

promising tool for clinical and diagnostic laboratories. 

However, the use of CNN models such as Faster R-CNN and 

MobileNet presents significant limitations in terms of 

resources. Although these models are effective, they are 

extremely costly to train and deploy, requiring substantial 

hardware resources, which may limit their adoption in clinical 

environments where efficiency and resource economy are 

crucial. On the other hand, Metlek [24] proposes CellSegUNet, 

a hybrid segmentation model with an attention block that 

draws inspiration from residual UNet models and UNet's 

benefits. The CellSegUNet model, developed for cell nuclei 

segmentation, is a method based on deep learning algorithms, 

incorporating residual, attention, multiplication, and 

difference modules, as well as a min pooling layer and an 

output layer. Although the encoder and decoder blocks are 

similar to those of the classical UNet architecture, their 

internal structure differs significantly, notably through the use 

of residual structures applied both in series and in parallel. It 

was found that a high number of nodes in the same layer could 

negatively impact both the success and the cost of the process. 

Therefore, an attention module was proposed in the study. The 

model produced good results in terms of Dice, Jaccard, and 

accuracy, exceeding 95% on some datasets, but required a high 

number of epochs, reaching up to 175 epochs. 

Alharbi et al. [25] also suggest a novel model that segments 

leukocytes from blood samples using ResNet and UNet 

networks for feature extraction. The author used a 

preprocessing phase involving standardization and 

normalization of the images, calculating the global mean and 

standard deviation for each image. This step ensures that pixel 

values are brought to a comparable scale, facilitating faster and 

more stable model training, the work achieved high scores 

such as IoU and precision, both exceeding 95%. Finally, Das 

et al. [26] have designed two models to recognize and 

differentiate myeloma cells from non-myeloma cells. For 

recognition, a Mask-Recurrent Convolutional Neural Network 

was used to extract the region of interest, Efficient Net B3 was 

employed for training. The model achieved 95% accuracy. 

Additionally, the VGG architecture was utilized by Afshin 

et al. [27], while the Inception model was employed by Xia et 

al. [28]. 

Different works have used various CNN architectures to 

detect malaria. Kundu et al. [29] examine current 

developments in machine learning methods for the 

identification and detection of malaria in images. Furthermore, 

a thorough comparison of several machine-learning 

techniques is provided. 

Yildirim and Çinar [30] identified the many types of white 
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blood cells (eosinophils, lymphocytes, monocytes, and 

neutrophils) using CNNs trained on the Kaggle dataset, 

including AlexNet, ResNet50, DenseNet201, and GoogleNet. 

Both before and after the Gaussian and median filters were 

applied, the classification was performed. 

DenseNet201 was used by Çinar and Yildirim [31] to 

categorize malaria images as either parasitized or healthy. Two 

filters were applied to the original dataset: a Gaussian filter 

and an average filter. When applying the DenseNet201 

architecture to data filtered using the Gaussian filter, the 

greatest accuracy rate of 97.83% was achieved. 

Based on the aforementioned research and our analysis of 

its positive and negative aspects, we present this research 

paper with the main objective of developing a medical 

diagnostic system targeted at specific conditions, such as 

bacterial infections and immune disorders. To achieve this 

goal, we focus on the segmentation and detection of neutrophil, 

lymphocyte, and basophil nuclei, which we consider to be the 

most suitable approach. 

The choice to focus on neutrophils, basophils, and 

lymphocytes for segmentation is justified by both medical and 

technical reasons: 

Medical Reason: A detailed analysis of neutrophils, 

basophils, and lymphocytes provides crucial information for 

clinicians: 

- Diagnosis and monitoring of infections: Neutrophils are 

essential for identifying bacterial infections, while 

lymphocytes are important for tracking viral infections. 

- Evaluation of allergies and chronic inflammation: 

Basophils, involved in the inflammatory response, are 

valuable indicators for allergic reactions. 

- Immune status monitoring: Lymphocytes play a critical 

role in the overall immune response, and their analysis helps 

diagnose immune deficiencies or cancers. 

 By focusing on these specific cells, healthcare 

professionals can gain a better understanding of the patient's 

immune system, assess disease progression, and appropriately 

adjust treatments. This information is crucial for managing 

infections, monitoring immunocompromised patients, and 

detecting blood-related diseases [32, 33]. 

Technical Reason: The marked differences between the 

nuclei of neutrophils, basophils, and lymphocytes, especially 

in terms of shape and background coloration, present a major 

challenge for achieving robust segmentation. These variations 

make segmentation more complex, requiring advanced 

techniques to properly distinguish each cell type and ensure 

precise analysis. 

It is essential that this segmentation is fully automatic, 

without any human intervention.  

In this paper, we propose an automatic segmentation 

method to establish a multiple classification process. Our 

approach detects the three types of white blood cells 

(neutrophils, basophils, and lymphocytes) and segments their 

nuclei by assigning a color to each type. To achieve this, we 

used deep learning applied to a labeled blood database, via an 

Unet CNN architecture composed of convolution blocks and 

residual blocks, which we named “WCSegNet”. This modular 

and reusable approach enables us to create efficient and 

accurate network architectures. 

 

 

2. PROPOSED METHOD 

 

We provide a detailed description of the dataset and the 

proposed architecture. 

 

2.1 Data set  

 

To evaluate our method in terms of robustness and accuracy 

we have used three databases DataSet1 “Jiangxi”, DataSet2 

“CellaVision”, and DataSet2 “BCISC”. We selected these 

three datasets for our tests because they differ greatly from one 

another in terms of backdrop, cell shape, image color, and 

other characteristics that help us assess how resilient the 

suggested method is. 

Dataset 1: “Jiangxi” was acquired from Jiangxi Tecom 

Science Corporation, China [34]. It has 300 120 × 120 WBC 

images with a color depth of 24 bits, showing 176 neutrophils, 

22 eosinophils, 1 basophil, 48 monocytes, and 53 lymphocytes. 

Using an N800 D motorized autofocus microscope and a 

Motic Moticam Pro 252A optical microscope camera, the 

images in Dataset 1 were captured. 

Dataset 2: “CellaVision” consists of 100 color, 300 × 300 

images of various cell types (30 neutrophils, 12 eosinophils, 3 

basophils, 18 monocytes, and 37 lymphocytes) that were 

gathered from the CellaVision blog (//blog.cellavision.com 

[34]. In contrast to dataset 1, cell images are often purple and 

may contain a large number of red blood cells surrounding 

white blood cells. 

Dataset 3: “BCISC” was gathered by Fan et al. [20] with 

assistance from the Fujian Province's Third People's Hospital. 

It consists of two directories: the first has 268 images of 

individual white blood cells (51 neutrophils, 54 eosinophils, 

56 basophils, 54 monocytes, and 53 lymphocytes) that are 

sized 256 × 256 and have been labeled by pathologists; the 

second has five sub-directories that are sized 2048 x 1538 and 

include 50 neutrophils, 49 eosinophils, 49 basophils, 48 

monocytes, and 50 lymphocytes.  

As previously mentioned, we aim to develop a system for 

the automatic segmentation of neutrophil, lymphocyte, and 

basophil nuclei. To this end, we have a set of images 

comprising 307 neutrophil images, 193 lymphocyte images, 

and 53 basophil images. All these images have been resized to 

a size of (120 × 120). Figure 1 shows some samples from the 

cohorts mentioned. 

 

 
 

Figure 1. Some samples of: BCISC (Row 1 & 2), Jiangxi 

(Row 3), and Cella Vision (Row 4), show the original images 

(left) alongside their segmentations (right) 
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2.2 Data augmentation 

 

The process of data augmentation involves applying various 

distortions to the original images, such as brightness change, 

zoom, and rotation [20]. In our situation, the datasets used with 

annotations are relatively small in comparison to computer 

vision standards, and finding new, large datasets with 

annotations is difficult and occasionally impossible. To get 

beyond these restrictions, data augmentation is required.  

The techniques applied in this augmentation are as follows: 

1. Rotation (rotation_range): This augmentation performs 

a random rotation of the image within a range defined in 

degrees. In our case, rotation_range=40 means that the 

image can be rotated up to 40 degrees clockwise or 

counter-clockwise. 

2. Horizontal and vertical shift (width_shift_range, 

height_shift_range): These increments move the image 

horizontally and vertically within a defined range, 

expressed as a fraction of the image width or height. 

We've taken width_shift_range=0.2 to mean that the 

image can be moved horizontally by up to 20% of its 

width in both directions. 

3. shear_range: This enhancement applies a random shear 

to the image, causing certain points in the image to move 

at a defined angle.Zoom (zoom_range) : Cette 

augmentation applique un zoom aléatoire à l'image, où 

une valeur de 0,2 signifie que l'image peut être agrandie 

ou réduite jusqu'à 20%. 

4. Horizontal_flip: This increase performs a random 

horizontal flipping of the image, which is useful for tasks 

where object orientation is not important, such as object 

recognition. 

5. Zoom_range: value of 0.2 means that images can be 

randomly enlarged or reduced by up to 20% of their 

original size. 

The total number of images increased tenfold thanks to data 

augmentation, reaching over 5000 blood microscopic images, 

including 3007 neutrophils, 1930 lymphocytes and 530 

basophils. In Figure 2, we present some examples of 

augmented images. 

 

 
 

Figure 2. Data augmentation examples of: Jiangxi (Row 1), 

CellaVision (Row 2), BCISC (Row 3 & 4), Column 1 to 6 

are the original image, and corresponding "rotation_range": 

40, "width_shift_range": 0.2, "shear_range": 0.2, 

"zoom_range": 0.2, and "horizontal_flip", respectively 

 

2.3 Proposed CNN model  

 

We have developed a multi-class convolutional neural 

network based on the U-Net architecture developed by 

Ronneberger et al. [35]. This is essential to extract more 

features and facilitate learning due to the diversity of the 

databases used, taken under different imaging and staining 

conditions by various medical microscopies.  

This network incorporates a modular architecture (Figure 3) 

that employs “Conv-Block” residual blocks (Figure 4) in both 

the encoder and decoder paths, inspired by ResNet [36]. 

Residual blocks help alleviate the problem of gradient 

disappearance and facilitate deep learning by improving the 

flow of information across layers. This approach enables the 

systematic assembly of network architectures. 

Compared to architectures like U-Net, FCN, SegNet, Mask 

R-CNN, Attention Res-UNet, nnUNet, and ResUnet, our 

approach offers a better balance between network depth, 

segmentation accuracy, and the ability to recover fine details 

while avoiding gradient degradation [37]. This makes it an 

optimal choice for sensitive medical tasks such as WBC 

segmentation, where precision is crucial for reliable diagnosis 

and monitoring. On the other hand, Mask R-CNN is better 

suited for object detection and segmentation of multiple 

instances, but it is complex and resource-intensive. For a task 

such as WBC segmentation, which requires precise extraction 

of individual cell boundaries in a homogeneous context, 

ResUnet is more efficient. 

However, SegNet performs worse at recovering fine details 

compared to U-Net or ResUnet because it does not use direct 

skip connections between the encoder and decoder. As a result, 

it may be less accurate for complex structures such as white 

blood cells, which require precise boundary differentiation 

[38]. 

 

 
 

Figure 3. Architecture of WCSegNet the network detects 

nucleus of WBC’s. ConvBlock: Residual block, Maxpool: 

max pooling, (#x#x): size of the filter, LeakyRelu: Leaky 

Rectified Linear Unit, #filters number, the blue lines 

represent the concatenation (-) 
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Figure 4. The architecture of residual block: → add 

connection 

 

2.3.1 The encoding path 

The encoder path consists of ten “Conv-Block” residual 

convolution blocks (Figure 4), each two followed by a max 

pooling layer (2×2). Each residual block consists of two 

convolution blocks (3×3). The first convolution block uses a 

LeakyReLU activation (Eq. (1)), while the second block uses 

no activation. Both convolution blocks have a stride of 1 and 

auto padding (same), and a residual connection is established 

by summing the input tensor with the output of the second 

convolution block. Finally, a LeakyReLU activation is applied. 

The first two residual blocks use 64 filters, the next two use 

128 filters, then 256 filters, and finally 1024 filters are applied. 

The choice of this filter sequence also contributes to 

optimizing training efficiency. Using 64 and 128 filters in the 

initial layers facilitates faster convergence, as these layers are 

less computationally demanding. The subsequent increase to 

512 and 1024 filters is justified by the need to capture more 

complex features essential for accurate segmentation. 

Evaluations with either fewer or more filters could have been 

explored. For instance, using 32, 64, 256, and 512 filters might 

have limited the model's ability to capture intricate features, 

while opting for 128, 256, 1024, and 2048 filters would have 

significantly increased computational demands and potentially 

led to overfitting. 

It is important to note that the Leaky ReLU activation 

function is a variant of the Rectified Linear Unit (ReLU) 

activation function, designed to address some of the issues 

inherent in ReLU. The ReLU function returns zero for all 

negative input values, which can result in the problem of "dead 

neurons" [39]. 

Eq. (1) defines the small slope that this function introduces 

for negative values. 

 

𝑓(𝑥) = max(𝛼 ∗ 𝑥, 𝑥) (1) 

 

In such cases, certain neurons cease to contribute to the 

learning process because they receive zero gradients, 

effectively preventing them from updating during training. In 

contrast, Leaky ReLU mitigates this problem by introducing a 

small slope (a small positive value, typically ranging from 0.01 

to 0.1) for negative inputs. As a result, neurons still have a 

slight activation even for negative input values, allowing them 

to continue contributing to the learning process. This approach 

helps prevent the vanishing gradient problem, thereby 

enhancing training stability and accelerating model 

convergence [40]. Consequently, many researchers have 

adopted this activation function, as evidenced by the studies 

cited in references [22, 41]. 

A dropout layer was applied after the second residual “512 

conv-block” which helps prevent over-fitting by preventing 

neurons from over-cooperating and making the model acquire 

stronger, more general features [42]. 
 

2.3.2 The decoding path 

This path corresponds to the construction of part of the 

decoder in the U-Net architecture. It comprises four up-

sampling layers (2×2) used to perform an upsampling 

operation, increasing the spatial size of the tensor by 

multiplying each dimension by 2. Next, two conv-block layers 

are applied, using 512, 256, 128, and 64 filters respectively. 

Two dropout layers are inserted in the middle of the path to 

regularize the model. Next, four concatenation layers are 

applied, followed by a convolution layer (3×3) with batch 

normalization, LeakyReLU activation, and a dropout layer. 

Finally, a final convolution layer (3×3) is applied to define the 

model's output layer. This 2D convolution uses a (1×1) size 

kernel on the network output, reducing the number of channels 

to 4, corresponding to the classes in the stained nucleus of 

(neutrophils, basophils, and lymphocytes) and the background. 

Activation is set to 'SoftMax', a method commonly used for 

multiclass classification tasks as it converts raw scores into 

probabilities for each class. 

The model is configured with the Adam optimizer, while 

the loss function used is the categorical cross-entropy, adapted 

to multiclass classification problems, which can be calculated 

as follows: 
 

− ∑ 𝑦0,𝑐
𝑀
𝑐=1 log(𝑝0,𝑐)  (2) 

 

•M: number of classes. 

•y: binary indicator (0 or 1) if class label c is the correct 

classification for observation o. 

•p: predicted probability observation o is of class c. 
 

2.3.3 The bottleneck layer 

Two Conv-Blocks (3×3) with 1024 feature maps for each 

make up this layer. 
 

2.4 Training 
 

The CNN model was trained on an NVIDIA GeForce GTX 

1050 GPU and implemented in TensorFlow using the Keras 

library with CuDNN 5.1. The system utilized an Intel Core i7 

processor, 32 GB of RAM, and Windows 10. The training was 

performed using stochastic gradient descent with a mini-batch 

size of 16 images and an initial learning rate of 10-4. 
 

2.5 Experiment 

 

The network has been trained on a dataset comprising over 

5,000 microscopic images of size (120×120) pixels, including 
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data augmentation to improve diversity and learning 

robustness. These images are divided into three distinct 

subsets, each accompanied by its corresponding annotations. 

The first subset contains images of basophils, while the second 

is dedicated to neutrophils, and the third contains lymphocytes. 

This distribution is intended to facilitate further classification 

after segmentation. Each pixel of the segmented image is 

colored according to its membership of the corresponding 

subset: the background is black, basophils are represented in 

green, neutrophils in red, and lymphocytes in blue. 

We separated the test and training sets in an 80:20 ratio, 

accordingly. Figures 5 and 6, respectively, demonstrate the 

trend in categorical cross-entropy loss for the training sets 

learned with Unet using LeakyRelu and WCSegNet. 

 

 
 

Figure 5. Network convergence of UNet (LeakyRelu) during training 

 

 
 

Figure 6. Network convergence of WCSegNet during training 

 

 

3. RESULTS AND DISCUSSION 

 

We evaluated our experiments on three databases (Jiangxi, 

CellaVision, BCISC). To obtain a quantitative assessment of 

the model's performance, we subjected the segmentation 

results to a series of different tests: precision, Dice, and IuO 

(intersection over union), and accuracy. The evaluation 

metrics are calculated as follows: 

The precision represents the proportion of positive 

predictions that the model correctly identifies. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
  (3) 

 

In essence, accuracy measures the overlap between two 

samples and is expressed as the number of correct predictions 

out of the total number of guesses. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

 

The Dice coefficient, which was initially created for binary 

data, is the harmonic mean of sensitivity and accuracy and may 

be computed as follows: 

 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (5) 

 

The Intersection over Union (IoU) similarity metric is 

utilized to assess the precision of object segmentation 

algorithms, by dividing the intersection by the union of the 

predicted and ground truth pixel sets. 
 

𝐼𝑜𝑈(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑜𝑛) =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (6) 

 

o True positives (TP) represent white cell pixels that are 

accurately detected within areas where ground truth indicates 

the presence of white cells. 

o False positives (FP) are white cell pixels incorrectly 

identified outside areas where ground truth does not show the 

presence of white cells. 

o True negatives (TN) are background pixels correctly 

identified outside areas where the ground truth does not show 

the presence of white cells. 

o False negatives (FN) are background pixels that are 

incorrectly identified inside areas where the ground truth 

shows the presence of white cells. 

As suggested by the equations above, a high Dice coefficient, 

close to 1, indicates a strong match between model predictions 

and actual masks, while a low coefficient, close to 0, indicates 

a limited match. Accuracy measures the proportion of pixels 

predicted as belonging to a specific class that corresponds to 

that class. High accuracy reflects the accurate classification of 

pixels overall. The precision is a number between 0 and 1, 

where 1 represents the best possible score and denotes the 

accuracy of all positive predictions, while 0 denotes the 

accuracy of none of the positive predictions. Conversely, the 
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IoU is 0 if there is no overlap at all between the prediction set 

and the actual set. The IoU is 1 if there is a perfect overlap 

between the prediction and actual sets. The closer the IoU is to 

1, the more precise the segmentation. 

 

Table 1. Accuracy, Precision, Dice coefficient (Dice), and mean Intersect of Union (mIoU), from Unet with Relu, Unet with 

Leaky Relu, Fan et al. [20], Banik et al. [22], Alharbi et al. [25] and the proposed method respectively on, Jiangxi and Cella 

Vision data set 

 
Data Set Method Accuracy Precision Dice mIoU 

Jiangxi 

 

Unet (Relu) 0.9605 0.9191 0.8991 0.8788 

Unet (LeakyRelu) 0.9777 0.9401 0.9345 0.9270 

Fan et al. [20] / 0.99432 0.98196 0.96 

Banik et al. [22] 0.9757 0.8763 0.94 / 

Alharbi et al. [25] 0.94 0.9590 / 0.962 

Our method 0.9805 0.9790 0.9653 0.9599 

CellaVision 

 

Unet (Relu) 0.9601 0.9344 0.9001 0.9144 

Unet (LeakyRelu) 0.9733 0.9409 0.9338 0.9190 

Fan et al. [20] / 0.98947 0.98242 0.96671 

Banik et al. [22] 0.9886 0.9175 0.91 / 

Alharbi et al. [25] 0.94 96.52 / 0.9752 

Our method 0.9818 0.9706 0.9662 0.9609 

 

Table 2. Accuracy, precision, Dice coefficient (Dice), and mean Intersect of Union (mIoU), from Unet with Relu, Unet with 

LeakyRelu, Fan et al. [20], and the proposed method respectively on BCISC data set 

 
Data Set Method Accuracy Precision Dice mIoU 

BCISC 

Unet (Relu) 0.9983 0.9501 0.9506 0.9319 

Unet (LeakyRelu) 0.9713 0.9655 0.9305 0.9170 

Fan et al. [20] / 0.9844 0.9783 0.9647 

Our method 0.9923 0.9735 0.9658 0.9598 

We evaluate the assessment measures' worth by contrasting 

our suggested segmentation approach with three current 

approaches [20, 22, 25] on databases 1 and 2 (Table 1), and on 

BCISC with only results (Table 2) [20]. We have added a 

comparison with the Unet architecture [24] with the Relu 

activation function and the LeakyRelu activation function on 

all three databases (Table 1 & Table 2). 

As illustrated in Tables 1 and 2, the standard Unet model 

produced outstanding segmentation results, with precision and 

accuracy exceeding 95% for all three databases. In addition, it 

achieved an average Dice and IoU of over 90% for all three 

databases. The Unit improvement was achieved by replacing 

the ReLU function with LeakyReLU, resulting in a significant 

increase in scores. However, for practically all of the metrics 

computed on the three datasets, our technique performs better 

than any other method. We obtain outstanding accuracy, Dice 

and mIoU, clearly superior to the other methods (Unet with 

ReLU, Unet with LeakyReLU [22, 25], similar to the study by 

Fan et al. [20] for the tree data sets. 

The UNet model using LeakyReLU required around 100 

epochs to converge, while WCSegNet achieved convergence 

as early as the thirtieth epoch, as illustrated in the figure. In 

comparison, the model described in study [20] converged. 

This highlights the speed of convergence of our model 

compared with the other methods tested. 

The qualitative results confirm the effectiveness of our 

method. Examination of Figure 7 reveals a marked similarity 

between the ground truth and the predicted image, particularly 

in the delineation of the precise core boundaries in the BCISC 

database (lines 5, 6, 7). However, some images show blurred 

contours, notably in the Jiangxi and CellaVision databases, as 

illustrated in Figure 8 (yellow arrow), and some images in the 

BCISC database show the presence of a few misclassified 

pixels (false positives) circled in yellow. This results in 

relatively low Dice and accuracy scores compared with overall 

accuracy. 

Blood cell classification was successfully carried out, as 

illustrated in the figure. Each cell type was correctly stained: 

basophils in green, neutrophils in red, and lymphocytes in blue. 

However, in a few images, we observed the appearance of red 

color at the outlines of basophils. This can be explained by 

basophil misrecognition, where some pixels in these images 

were incorrectly identified as neutrophils. 

Our segmentation method offers several advantages over 

manual and semi-automated approaches, such as those 

described in the works [13, 14, 18]. 

Algorithms like Rough Sets [13] and K-means [14] require 

significant human intervention, making the segmentation 

process lengthy and vulnerable to errors due to observer 

variability. For instance, in the study [18], the method begins 

with an initial segmentation using color thresholding to 

distinguish potential cellular regions, followed by 

morphological operations to refine the segmentation. 

Furthermore, these works highlight that semi-automated 

methods can suffer from reproducibility limits, especially 

when different operators are involved. In contrast, our 

automatic segmentation technique reduces the need for human 

intervention and promotes result standardization, thus 

eliminating the inherent variability of manual methods. This is 

reflected in the lower Dice scores in the study [18] 

(approximately 0.70) compared to our results (0.96), even 

though the precision reaches around 0.98. This indicates that 

the method cited in the study [18] correctly predicts a large 

number of true positives, but also presents a significant 

number of false negatives, suggesting that it misses some 

important parts. 

Our automatic nucleus segmentation method also enables 

the systematic and objective extraction of quantitative cell 

features, such as the size, shape, and texture of the nuclei. 

These features can then be used to inform classification 

models, facilitating differential diagnosis, which is much more 

challenging to achieve with manual approaches. 
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Figure 7. Results of visualizing the WCSegNet network's 

classification of the pixels in the various data sets: showing 

the original image (left), the ground truth (middle ), the 

segmented image(right) 

 

 
 

Figure 8. Results of visualizing the WCSegNet network's 

classification of the pixels 

 

However, one of the main limitations of our method lies in 

its reliance on annotated training databases. Indeed, the quality 

of segmentation and classification heavily depends on the 

quality and quantity of the data used to train the model, 

particularly given that the number of basophils in the human 

body is limited, resulting in restricted annotated databases. To 

address this, we aim to expand our database by seeking varied 

datasets, including images of different qualities, such as those 

containing noise or presenting diverse backgrounds, in order 

to test the robustness of our method and enhance its 

functionalities. 

 

 

4. CONCLUSION 

 

In this work, we propose WcSegNet, an innovative 

technique for the classification and segmentation of white 

blood cells (WBC) in blood smear images. This method 

automatically segments WBCs, specifically focusing on 

neutrophils, basophils, and lymphocytes, assigning each cell a 

distinct color to facilitate their identification. 

Our method is based on a multi-class convolutional neural 

network, built upon the U-Net architecture developed by 

Yildirim and Çinar [30]. This is essential for extracting more 

features and enhancing the learning process, given the 

diversity of the databases used, which come from different 

imaging conditions and staining techniques, captured through 

various medical microscopy methods. 

To optimize deep learning and mitigate the issue of gradient 

vanishing, this network integrates residual "Conv-Block" 

blocks inspired by ResNet [36] in both the encoder and 

decoder paths. Additionally, the Leaky ReLU activation 

function was used instead of the standard ReLU function to 

ensure that all neurons contribute to the learning process, 

preserving complete information. 

Our results, both quantitative and qualitative, demonstrate 

that our proposed approach represents a significant 

advancement over the state of the art, with accuracy exceeding 

90% and rapid convergence. However, some images were 

misclassified and others poorly segmented, particularly due to 

overlapping colors in certain image types. These issues could 

be addressed by increasing the size of the database and 

refining the design of the convolutional neural network (CNN). 
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