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 Bridges play a critical role in transportation systems, making their long-term operational 

safety an urgent concern. The vibration characteristics of bridges are influenced by various 

external factors, including temperature, load, and wind. Among these, temperature 

fluctuations significantly affect the dynamic response of bridge structures. Thermal 

expansion and contraction of bridge materials induced by temperature changes can alter 

vibration characteristics, impacting the accuracy of structural health monitoring. 

Traditional bridge health monitoring methods primarily rely on static analysis and manual 

inspections. However, under complex environmental conditions, particularly with 

significant temperature variations, these methods struggle to provide accurate and real-time 

monitoring results. Recently, vibration acceleration-based anomaly detection methods 

have garnered research attention, yet the influence of temperature on vibration 

characteristics remains insufficiently addressed. Current studies predominantly focus on 

applying machine learning and deep learning techniques to bridge vibration anomaly 

detection but often neglect the disruptive effects of temperature variations, limiting their 

adaptability and accuracy in real-world applications. To address this issue, this study 

analyzes bridge vibration characteristics under varying temperature conditions, constructs 

a temperature-inclusive vibration acceleration dataset, and proposes a novel anomaly 

detection model to enhance detection precision and robustness. The findings offer a new 

perspective for bridge health monitoring and provide theoretical insights for managing and 

maintaining bridges under temperature variations. 
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1. INTRODUCTION 

 

With the rapid development of modern transportation, the 

safety and stability of bridges, as critical transportation 

infrastructure, have garnered increasing attention. Bridges are 

subjected to long-term influences from external factors such 

as temperature, wind, and traffic loads, resulting in changes in 

their structural vibration characteristics, and in some cases, 

damage or fatigue. Particularly in regions with significant 

temperature variations, temperature fluctuations can cause 

thermal expansion or contraction of bridge materials, thereby 

altering the vibration modes and dynamic characteristics of the 

structure [1-5]. Therefore, effectively monitoring and 

analyzing the vibration characteristics of bridges under 

temperature variations has become an important issue for 

ensuring the safe operation of bridges [6-11]. 

To address the issue of bridge safety monitoring, traditional 

health monitoring methods primarily rely on analyzing the 

static characteristics of the structure or conducting periodic 

manual inspections. However, these methods have certain 

limitations, especially when dealing with dynamic 

characteristic changes induced by environmental variations, 

making it challenging to obtain real-time and accurate 

information about the bridge's condition. With advancements 

in sensor technology, data acquisition techniques, and big data 

analysis methods, vibration signal-based bridge health 

monitoring approaches have become a research hotspot. 

Particularly under complex conditions such as temperature 

variations, performing anomaly detection using vibration 

acceleration data enables the precise capture of subtle changes 

in the bridge's condition, providing scientific support for early 

fault warnings and maintenance decisions [12-17]. 

Existing methods for anomaly detection in bridge vibration 

acceleration primarily rely on statistical analysis, machine 

learning, or deep learning models. Although these methods 

have achieved certain results under standard testing 

conditions, in practical applications, the influence of 

temperature variations on bridge vibration characteristics is 

often insufficiently considered [18-20]. Many existing 

methods overlook the interference effects of temperature 

variations on vibration acceleration signals, and most models 

fail to effectively address the complexity and variability of 

bridge vibration characteristics [21-24]. Consequently, the 

applicability and accuracy of current research methods under 

temperature variation conditions remain limited, necessitating 

further innovation and optimization. 

This paper aims to address the shortcomings of existing 

research by focusing on anomaly detection of bridge vibration 

acceleration under temperature variations. Firstly, the specific 

impact mechanism of temperature on vibration characteristics 
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is explored through an analysis of bridge vibration 

characteristics under temperature variations. Secondly, a 

bridge vibration acceleration dataset incorporating 

temperature variation factors is constructed, and features are 

extracted and analyzed in conjunction with temperature data. 

Finally, a bridge vibration acceleration anomaly detection 

model adaptable to temperature variations is proposed, aiming 

to improve detection accuracy and robustness. This study not 

only provides a novel detection method for bridge health 

monitoring but also offers theoretical support and practical 

guidance for bridge maintenance and management under 

temperature variation conditions. 

 

 

2. ANALYSIS OF BRIDGE VIBRATION 

CHARACTERISTICS UNDER TEMPERATURE 

VARIATIONS 

 

Under temperature variation conditions, the vibration 

characteristics of bridges often exhibit complex changes. 

Temperature rise and fall directly affect the geometry and 

material properties of bridge components, particularly for 

metal and concrete structures. Temperature variations lead to 

material expansion or contraction, thereby altering the 

structural stiffness and centroid position of the bridge. These 

changes can cause variations in vibration frequencies and even 

changes in vibration modes. Specifically, when a bridge 

experiences temperature fluctuations, the elastic modulus of 

materials such as reinforcement bars or prestressed steel cables 

exhibits temperature-dependent changes, resulting in stiffness 

fluctuations that affect the amplitude and frequency of the 

vibration response. Moreover, temperature variations are often 

closely related to the motion state of the bridge, influencing 

the vibration acceleration signals and forming a unique 

temperature-vibration response relationship. Without proper 

analysis and identification, these responses can easily be 

confused with actual fault signals. Therefore, analyzing the 

impact of temperature variations on bridge vibration 

characteristics not only helps reveal the structural response 

characteristics caused by temperature changes but also 

provides theoretical support for subsequent vibration 

acceleration data analysis and anomaly detection. 

In the process of constructing an anomaly detection model 

for bridge vibration acceleration, it is essential to investigate 

the thermodynamic mechanisms under temperature variations. 

Temperature changes are not only a physical phenomenon but 

also induce changes in the thermal stress distribution and strain 

states within the bridge materials. These thermal stress 

changes can cause localized deformation, crack propagation, 

or looseness at connection points, leading to anomalies in 

vibration characteristics. Such anomalies may manifest as 

sudden changes, amplitude variations, or frequency shifts in 

vibration acceleration signals. If these structural response 

characteristics caused by temperature changes are not taken 

into account, normal temperature fluctuations might be 

misidentified as fault signals, thereby affecting the accuracy 

and reliability of anomaly detection. 

 

2.1 Finite element analysis of bridge vibration 

 

In finite element analysis, the vibration behavior of a bridge 

is typically described by its dynamic equations. The influence 

of temperature variations on bridge structures is reflected in 

changes in the physical properties of materials, such as elastic 

modulus and expansion coefficients, which further affect the 

stiffness and mass distribution of the structure. Therefore, 

when establishing finite element dynamic equations under 

temperature variation conditions, these temperature-induced 

changes must be considered. The finite element model 

constructed in this study divides the bridge structure into a 

finite number of elements, decomposing the overall dynamic 

behavior into the local behavior of each element. The vibration 

response of each element is described by the mass matrix and 

stiffness matrix, both of which are adjusted based on 

temperature variations. Temperature changes affect not only 

material stiffness but also the mass distribution of the 

structure, and these combined effects determine the vibration 

characteristics of the bridge. Assuming the mass matrix is 

represented by L, the damping matrix by Z, the elastic stiffness 

matrix by J, and the external load vector by d, the finite 

element dynamic equation is expressed as follows: 

 

L Z J d  + + =  (1) 

 

In the analysis of free vibration in bridges, it is typically 

assumed that the structure is undamped, resulting in the 

undamped free vibration equation. The purpose of the 

undamped free vibration equation is to describe the free 

vibration process of a bridge excited by initial conditions 

without external forces. Under temperature variation 

conditions, the physical properties of materials (e.g., elastic 

modulus) change with temperature, leading to the degradation 

of bridge stiffness. This implies that the stiffness matrix of the 

bridge adjusts with temperature fluctuations, thereby affecting 

its vibration frequencies and modes. Consequently, in 

analyzing free vibration under the influence of temperature, it 

is necessary to model the stiffness changes induced by 

temperature variations and incorporate them into the 

undamped free vibration equation. Assuming the overall mass 

matrix is represented by L, composed of the element mass 

matrices Lr, the undamped free vibration equation is given as: 

 

0L J + =  (2) 

 

By solving the eigenvalue problem of the dynamic equation, 

the natural frequencies and corresponding vibration modes of 

the bridge can be obtained. Under temperature variation 

conditions, changes in the stiffness matrix and mass matrix 

result in variations in the bridge's natural frequencies. Solving 

the eigenvalue problem essentially involves finding a set of 

frequencies and modes that satisfy the dynamic behavior of the 

structure under temperature variation conditions. The solution 

to the eigenvalue problem can be obtained by solving a 

specific mathematical equation, yielding the natural 

frequencies and modes of the bridge under particular 

temperature conditions. These frequencies and modes reflect 

the inherent response characteristics of the bridge under 

temperature variations and provide critical references for 

further vibration acceleration analysis, health monitoring, and 

anomaly detection. The expression for the element mass 

matrix is as follows: 

 
r SL V VfN=     (3) 

 

In finite element analysis, the mass matrix of a bridge is a 

key matrix used to describe the mass distribution within the 

structure. The mass matrix of the bridge is not only related to 
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the geometry and material density of the structure but also 

closely related to temperature variations. Temperature 

changes affect the density of materials, thereby influencing the 

computation of the mass matrix. Specifically, when the 

temperature rises or falls, the density of bridge components 

may change, necessitating the incorporation of temperature 

dependency into the calculation of the mass matrix. For 

instance, by integrating the mass matrix of each element, the 

mass distribution of each element can be obtained, which 

varies under temperature fluctuations. The element mass 

matrix of the beam obtained through integration is as follows: 

 

r

0

2 2

2 2

154 21 56 14

21 4 14 3

54 14 156 21418

14 3 21 4

V

SL X V Vda

M M

M M M MX M

M M

M M M M







 −  
 

   −   =
  − 
 
−  −  −    



 (4) 

 

Assuming that the frequency of free vibration of the 

structure is represented by μ, the solution of Eq. (2) can be 

expressed as: 

 

( ) ss SIN  =  (5) 

 

By combining the above equation with Eq. (2), the 

following is obtained: 

 

( )2 0J L − =  (6) 

 

The natural frequency of a bridge under temperature 

variation conditions is an important parameter for describing 

its free vibration characteristics. The free vibration frequency 

of the structure is directly influenced by its mass matrix and 

stiffness matrix, both of which vary with temperature changes. 

Therefore, in the finite element analysis process, solving the 

natural frequency of the structure under temperature variation 

conditions requires fully considering the changes in mass and 

stiffness induced by temperature. During the solution process, 

adjustments to the mass matrix and stiffness matrix under 

temperature variations allow the natural frequency μ of the 

bridge under different temperature conditions to be obtained. 

The variation in frequency directly reflects how the vibration 

characteristics of the bridge change with temperature, 

providing a foundation for health monitoring, vibration 

anomaly detection, and subsequent structural assessment of 

the bridge. 

 

2.2 Thermal vibration analysis of bridges 

 

Under temperature variation conditions, the vibration 

characteristics of bridges are influenced not only by material 

stiffness and mass but also by changes in external loads, such 

as axial and transverse forces. Temperature changes induce 

thermal expansion in various parts of the bridge, thereby 

affecting the internal force state of the structure. For instance, 

as the temperature increases, the bridge components expand, 

generating axial and transverse forces, which alter the overall 

stiffness distribution of the bridge and, subsequently, its 

vibration characteristics. In finite element analysis, the internal 

force variations caused by temperature changes need to be 

precisely modeled to ensure that the dynamic equations 

accurately reflect the stress state of the bridge under different 

temperature conditions. The axial and transverse forces under 

temperature variation conditions are typically described by 

introducing a temperature field and incorporating the thermal 

expansion coefficient and material properties to depict the 

deformation and stress states of individual components. These 

changes can cause shifts in the vibration frequencies of the 

bridge and may also lead to changes in the vibration modes. 

This is particularly significant under conditions of large 

temperature gradients, where local deformations and force 

variations may trigger uneven vibration responses. Assuming 

the structural bending stiffness matrix is represented by Jm, the 

geometric stiffness matrix by JH, the total stiffness matrix by 

Jm+JH, and the mass matrix by L, the thermal vibration 

equation of the bridge structure under temperature variation 

conditions can be established as follows: 

 

( )2 0m HJ J L + − =  (7) 

 

 
 

Figure 1. Trend of bridge vibration acceleration with 

vibration frequency under different temperature differences 

 

 
 

Figure 2. Trend of bridge vibration acceleration with 

vibration frequency considering both temperature differences 

and thermal elastic modulus 
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Bridge vibration acceleration is an important indicator of 

vibration intensity and is closely related to the vibration 

characteristics of the bridge. Under temperature variation 

conditions, changes in the vibration characteristics of the 

bridge lead to corresponding changes in vibration acceleration. 

If the natural vibration frequency of the bridge decreases, the 

vibration acceleration will increase under the same external 

excitation because the flexibility of the structure increases, 

resulting in greater displacement and higher acceleration. 

Conversely, if the temperature decreases, leading to an 

increase in the stiffness of the bridge and a rise in its natural 

vibration frequency, the vibration acceleration will decrease 

under the same excitation. Figures 1 and 2 illustrate the trends 

of bridge vibration acceleration with vibration frequency 

under different temperature differences and considering both 

temperature differences and thermal elastic modulus, 

respectively. 

 

 

3. CONSTRUCTION OF VIBRATION DATASET OF 

BRIDGES UNDER TEMPERATURE VARIATIONS 

 

This study takes the wind-induced vibration response 

monitoring system of the Toutunhe Interchange Main Bridge 

in Urumqi, Xinjiang, as the research object to carry out 

research on anomaly detection algorithms for acceleration data 

measured during the bridge construction phase. The bridge is 

located in a low-mountain valley topography, with a total 

length of 2292 m, a deck width of 19 m, and a height of 123.8 

m. The main structure is oriented east-west. The main bridge 

is a continuous rigid-frame cast-in-place box girder with spans 

of 82+4×150+82 m. The substructure adopts pile foundations, 

and the piers are variable-section hollow piers, with a 

maximum pier height of 114.8 m. Piers 3 and 4, located in the 

valley terrain and subject to strong wind effects, were selected 

as the primary measurement objects. The construction site is 

shown in Figure 3. 

 

 
 

Figure 3. Construction site 

 

When constructing the vibration acceleration dataset of the 

bridge, it is necessary to comprehensively consider the impact 

of temperature variations on the vibration characteristics of the 

bridge and arrange the sensors accordingly. First, the vibration 

characteristics of the bridge undergo significant changes with 

temperature variations, particularly due to axial and transverse 

force changes, which may result in shifts in vibration modes. 

Therefore, during the construction of the dataset, vibration 

acceleration sensors need to be installed at several key 

locations on the bridge. Specifically, two JM3873G 

accelerometers were installed on each side of the cantilever at 

one-quarter span from the piers during cantilever construction. 

Data were transmitted remotely via wireless communication. 

Each accelerometer was equipped with two high-precision 

low-frequency vibration pickups, which collected four-

directional acceleration (longitudinal, transverse, vertical, and 

torsional) at one-quarter span positions on the cantilever. The 

sampling frequency was set to 64 Hz. The specific 

instrumentation layout is shown in Figure 4. 

 

 
 

Figure 4. Schematic diagram of instrument placement (①, 

②, ③, and ④ are biaxial accelerometers) 

 

Under temperature variation conditions, in addition to 

acceleration sensors, this study also deployed temperature 

sensors and strain gauges to synchronously record temperature 

changes and structural stress states. Temperature sensors were 

placed on the bridge surface and at key structural locations to 

accurately monitor environmental temperature and the bridge's 

own temperature changes. Strain gauges were used to capture 

changes in internal forces of the bridge caused by temperature 

variations, especially axial and lateral forces. By combining 

data from temperature sensors and strain gauges, a more 

comprehensive understanding of the impact of temperature 

changes on the vibration characteristics of the bridge can be 

achieved. 

 

 

4. VIBRATION ACCELERATION ANOMALY 

DETECTION MODEL FOR BRIDGES UNDER 

TEMPERATURE VARIATION CONDITIONS 

 

4.1 Anomaly Transformer model 

 

The Anomaly Transformer model achieves this by 

alternately stacking Anomaly-Attention blocks and 

feedforward layers. This stacking structure facilitates learning 

underlying correlations from deep multi-level features. The 

Anomaly Transformer model is shown in Figure 5. 

 

 
 

Figure 5. Anomaly Transformer model 
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Assume the model has L layers. For an input time series X 

of length N, the formula for the l-th layer is formalized as: 

 
1 1

( ( ) )
l l l

Layer Norm Anomaly Attention
− −

 = − −  +   

( ( ) )
l l l

Layer Norm Feed Forward Z Z = − − +  
(8) 

 

where, Xl represents the output of the l-th layer with dmodel 

channels. X0
=Embedding(X) represents the embedded raw 

sequence. Zl denotes the hidden state of the l-th layer. 

Anomaly-Attention( ) calculates the association difference. 

 

4.1.1 Anomaly-Attention 

The Anomaly-Attention mechanism adopts a dual-branch 

structure, addressing the limitation of the single-branch self-

attention mechanism in traditional Transformers, which fails 

to model both prior and sequence associations simultaneously. 

The Anomaly-Attention mechanism captures both global and 

local associations within the input sequence. For the prior 

association branch, a learnable Gaussian kernel function is 

introduced to construct local associations for each time point, 

ensuring that anomalous points are more likely to establish 

strong associations with their neighboring time points, thereby 

better capturing local anomalies. By employing a learnable 

scale parameter σ, prior associations can adapt to various time-

series patterns. The sequence association branch learns the 

global dynamics of the entire bridge acceleration sequence 

through a self-attention mechanism, aiding in identifying 

anomalous vibration patterns. The Anomaly-Attention 

mechanism in the l-th layer is represented by the following 

equations: 

 

l -1 l l -1 l l -1 l l -1 l

Q K V

Initialization :

Q,K,V, = X W , X W , X W , X W



 (9) 

 

where, Q, K, V, σ represent the query, key, value, and learnable 

scale of the self-attention layer. WQ
l, WK

l, WV
l, Wσ

l denote the 

parameter matrices of Q, K, V, σ in the l-th layer. 

 

2

l

2

ii i, j {1,,N}

Prior - Association :

j - i1
P Rescale exp(- )

22 


=


  
  
   

 (10) 

 

The prior association is generated based on the learned scale 

σ. The association weight between the i-th and j-th time points 

is calculated using the Gaussian kernel as follows: 

 

( );

2

i 2

ii

j - i1
G j i exp -

22



− =



 
 
 

 (11) 

 

In addition, Rescale( ) is used to transform the association 

weight into a discrete distribution Pl: 

 

T

l

model

QK
Series - Association : S = Softmax

d

 
 
 
 

 (12) 

 

where, Sl represents the sequence association, where softmax( ) 

normalizes the attention map along the last dimension: 

l lReconstruction : Z = S V  (13) 

 

Ẑl represents the hidden representation after the Anomaly-

Attention mechanism in the l-th layer: 

 

4.1.2 Association difference 

Due to the rarity of anomalous points and the dominance of 

normal patterns, anomalous points are less likely to establish 

strong associations with the entire sequence, and their 

associations are more likely concentrated on adjacent time 

points. Thus, the association difference for anomalous points 

is typically smaller than that of normal points. The association 

difference is formalized as the symmetric KL divergence 

between the prior association and the sequence association, 

representing the information gain between these two 

distributions. The association difference for multi-layer 

associations is averaged to combine associations from multi-

level features into a more informative metric: 

 

( ),: ,: ,: ,:

1 1, ,

AssDis( , ; )

1
KL( ) KL( )

L

l l l l

i i i i

l i N

P S X

P S S P
L = =

= +
 
  
 ‖ ‖

 (14) 

 

where, KL( ) calculates the KL divergence between two 

discrete distributions Pl and Sl for each row. AssDis(P,S;X) 

represents the pointwise association difference for X relative 

to multi-layer prior associations P and sequence associations 

S. 

 

4.1.3 Anomaly criteria based on association difference 

We incorporate normalized association differences into the 

reconstruction criteria, and the final anomaly score X is 

expressed as: 

 

2

,:
,: 2 1, ,

AnomalyScore( )

Softmax AssDis( ], ; ) [( ) i
i i N

X

P S X X X
=

= − −‖ ‖
 (15) 

 

where, ⊙  denotes element-wise multiplication. 

AnomalyScore(X) represents the pointwise anomaly criteria of 

X. To improve reconstruction, anomalies typically reduce the 

association difference, which still results in higher anomaly 

scores. Thus, this design enables the reconstruction error and 

the association difference to jointly enhance anomaly 

detection performance. 

 

4.2 Bi-LSTM-based anomaly data reconstruction 

algorithm 

 

Due to factors such as monitoring sensor failures, network 

interruptions, or on-site disturbances, the monitored data 

inevitably contains outliers. To reconstruct these outliers, this 

paper adopts an anomaly detection model based on the 

Bidirectional Long Short-Term Memory Network (Bi-LSTM). 

Bi-LSTM consists of a forward LSTM and a backward LSTM 

network structure, capable of simultaneously extracting 

abstract features from historical data in both directions. Bi-

LSTM inherits the long-term memory capability and 

forgetting mechanism of LSTM through its gated structure, 

and its bidirectional information flow significantly enhances 

its ability to capture the contextual information of vibration 

data. At each time step, Bi-LSTM updates the hidden states in 
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both directions, allowing for a more comprehensive extraction 

of features from time-series data. This characteristic enables 

Bi-LSTM to exhibit higher prediction accuracy and 

performance in long-term forecasting tasks, such as predicting 

wind-induced acceleration responses under temperature 

variation conditions, which are highly sensitive to historical 

and future data. Bi-LSTM provides an effective solution for 

reconstructing anomalies in bridge vibration acceleration 

time-series data under temperature variation conditions, 

enabling a more precise understanding and exploration of the 

dynamic changes and long-term dependencies within such 

data. 

 

 
 

Figure 6. Bi-LSTM algorithm structure diagram 

 

The Bi-LSTM algorithm uses LSTM units as its basic 

building blocks. The fundamental structure of an LSTM unit 

is shown in Figure 6. An LSTM unit consists of an input gate, 

forget gate, output gate, and cell state. These gates control the 

flow of information and memory updates, allowing the 

network to capture the long-term dependencies of bridge 

vibration sequences while preventing gradient vanishing or 

exploding problems when processing long sequences. 

The forget gate (ft) in LSTM is used to determine which 

information in the cell state ct-1 should be ignored. At the 

current time step t, the input data is xt, and the output from the 

cell of the previous time step t-1 is ht-1. The bias term for ft is 

bf, and the weight matrices are Wf,x and Wf,h. After being 

processed by the sigmoid activation function σ, the output of 

the forget gate ft is: 

 

, , 1( )t f x t f h t ff W x W h b −= + +  (16) 

 

The sigmoid activation function is defined as: 

 

1
( )

1 x
x

e


−
=

+
 (17) 

 

The LSTM layer determines the new information to retain 

in the cell state (ct). The values of the input gate (it) and the 

new candidate value (c~
t) at time step t are calculated as 

follows: 

, , 1( )t i x t i h t ii W x W h b −= + +  (18) 

 

1, ,
tanh( )t t tc x c h c

c W x W h b−= + +  (19) 

 

The results obtained from the previous steps are used to 

compute the new cell state ct: 

 

1t t t t tc f c i c−=  +   (20) 

 

The output ht of the LSTM layer's memory unit is as 

follows: 

 

, , 1( )t o x t o h t oo W x W h b −= + +  (21) 

 

tanh( )t t th o c=   (22) 

 

The tanh activation function is defined as: 

 

tanh( )
x x

x x

e e
x

e e

−

−

−
=

+
 (23) 

 

For Bi-LSTM, the architecture consists of forward and 

backward LSTM layers. The outputs of the forward and 

backward layers are processed simultaneously by the output 

layer as follows: 

 

1 2 1( )t t th LSTM W x W h b−= + +  (24) 

 

3 5 1( )t t th LSTM W x W h b−= + +  (25) 

 

4 6t t t yy W h W h b= + +  (26) 

 

where, Eqs. (24) and (25) are the output vectors of the forward 

and backward LSTM, respectively, and W1, W2, W3, W4, W5, 

W6 are the corresponding weight vectors. yt is the final output 

of Bi-LSTM at time step t. 

 

4.3 Anomaly data reconstruction 

 

The main idea of this study is to transform the problem of 

anomaly reconstruction for bridge vibration data under 

temperature variations into a problem of data prediction and 

judgment with learning behavior. First, the measured data 

under temperature variation conditions is preprocessed. Then, 

the Bi-LSTM model is utilized to model the temporal 

relationships between the bridge wind-induced vibration 

acceleration data under varying temperature conditions. 

Finally, the predicted acceleration data is obtained as the 

reconstructed anomaly data. 

 

4.3.1 Data preprocessing 

The measured bridge vibration data under temperature 

variation conditions is preprocessed. Assume the raw data is 

X={x1,x2,…xm-1,xm}. First, non-numerical data is removed to 

obtain an m-dimensional array X*={x*
1,x*

2,…x*
m-1,x*

m}. Then, 

normalization is performed on X* using Eq. (12): 

 

min( )

max( ) min( )

X X
X

X X

 


 

−
=

−
 (27) 
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The normalized data is then grouped, with the regression 

step size set to p. The input and output data sequences of the 

Bi-LSTM model are represented by Eqs. (28) and (29), 

respectively: 

 

1 2 1 2 3 1 2{ , , , , , , , , , , , , , }in p p l l l pX x x x x x x x x x        

− + + −=  (28) 

 

1 1{ , , , , }out p p p lX x x x  

+ + −=  (29) 

 

4.3.2 Bi-LSTM network algorithm training 

After preprocessing, the measured bridge vibration data 

under temperature variation conditions is fed into the Bi-

LSTM model for training. During the forward propagation, 

forward calculations are performed from t=0 to t=n for the 

forward hidden layer weight matrix Vt and output ht, and the 

forward weight matrix Vt is saved. Similarly, in the backward 

propagation, calculations are performed in reverse from t=n to 

t=0, obtaining the backward hidden layer weight matrix V't and 

output h't, with the reverse weight matrix V't saved. Finally, the 

total weight matrix V* is obtained by summing the forward and 

backward weight matrices at corresponding time points. To 

train the predictive model, the Mean Squared Error (MSE) loss 

function is defined as follows: 

 

2

1

1
ˆ ˆ( , ) ( )

m

i i

i

MSE y y y y
m =

= −  (30) 

 

where, y is the actual output data as a one-dimensional array, 

ŷ is the predicted data as a one-dimensional array, and m is the 

length of the prediction data. 

In this study, the Bi-LSTM model employs the Adam 

optimizer and completes the training of all grouped units 

through multiple iterations. The predicted values Xpre are 

calculated from the input data sequence Xin. Anomaly scores 

are obtained by comparing the predicted values Xpre and 

measured values Xout for anomaly detection. 

 

4.4 Model architecture diagram 

 

This study uses high-precision sensors installed at critical 

positions of the bridge structure to collect real-time vibration 

data under temperature variation conditions during 

construction. The data is transmitted wirelessly to storage 

devices. A dataset is then constructed, and anomaly detection 

is performed. This phase uses the Anomaly Transformer 

model to analyze the stored data. By employing a self-

attention mechanism, the model learns the global and local 

correlations at each time point in the time series and calculates 

the correlation difference for each data point. The model 

effectively detects various types of anomalies, such as isolated 

outliers, continuous anomalies, and missing data, and marks 

these anomalies. Finally, the Bi-LSTM model is used to 

reconstruct the anomaly data. Since the bridge vibration 

acceleration data exhibits temporal dependency, the 

bidirectional network structure of Bi-LSTM fully leverages 

forward and backward information in the time series. By 

learning the temporal patterns of normal data, it generates 

reconstructed data consistent with the vibration characteristics 

of the bridge. The model architecture is illustrated in Figure 7. 

 

 
 

Figure 7. Model architecture diagram 
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5. EXPERIMENTS AND RESULTS ANALYSIS 

 

5.1 Description of experimental dataset 

 

The data used in this study are obtained from the main 

bridge of the Toutunhe Interchange Connection Line in 

Urumqi, Xinjiang, which is currently under construction. By 

deploying acceleration sensors on the bridge, the vibration 

acceleration of the bridge is collected. Due to various activities 

during the construction process, such as equipment operation, 

material transportation, and changes in the construction 

environment, the data contain rich dynamic response 

characteristics and anomalies. These data provide an essential 

foundation for studying the structural behavior of bridges 

under complex working conditions, and they serve as an ideal 

experimental dataset for verifying the anomaly data detection 

and reconstruction models. The measured bridge vibration 

acceleration data collected are used to construct the dataset, 

totaling 41,600 records, with 30,000 records as the training set 

and 11,600 records as the testing set. Detailed information is 

shown in Table 1. 

 

Table 1. Details of the dataset 

 
Category Training Set Testing Set 

Data Volume 30000 11600 

Maximum Value (/m·s²) 9.53×10-3 12.2×10-4 

Minimum Value (/m·s²) -8.18×10-3 -6.81×10-4 

Mean Value (/m·s²) 1.53×10-4 1.69×10-4 

Variance (/m·s²) 1.8×10-6 1.57×10-6 

Number of Anomalies - 1732 

 

5.2 Evaluation metrics 

 

To evaluate the performance of the model, this paper uses 

the following evaluation metrics: Accuracy, Precision, Recall, 

and F1-score. According to the anomaly judgment rules, the 

actual values and predicted values are compared and divided 

into four categories. The details can be seen in the confusion 

matrix shown in Table 2. 

 

Table 2. Confusion matrix 

 
Classification of 

Results 

Predicted 

Anomalies 

Predicted Normal 

Values 

Actual Anomalies TP FN 

Actual Normal 

Values 
FP TN 

 

TP (True Positive): The number of anomalies correctly 

identified. 

TN (True Negative): The number of normal data correctly 

identified. 

FP (False Positive): The number of normal data 

misclassified as anomalies. 

FN (False Negative): The number of anomalies 

misclassified as normal data. 

Accuracy is defined as the ratio of correctly predicted 

samples to the total number of samples: 

 

TP+TN
Accuracy =

TP+FP+TN +FN
 (31) 

 

Precision is defined as the ratio of correctly predicted 

anomaly samples to all samples predicted as anomalies: 

 

TP
Precision =

TP+ FP
 (32) 

 

Recall is defined as the ratio of correctly predicted anomaly 

samples to the actual anomaly samples: 

 

TP
Recall

TP FN
=

+
 (33) 

 

F1-score is defined as the harmonic mean of Precision and 

Recall: 

 

1 2
Precision Recall

F - score=
Precision+Recall


  (34) 

 

In the anomaly detection problem, it is crucial to detect as 

many anomalies as possible rather than misclassify normal 

values as anomalies. The F1-score is an evaluation metric that 

considers both Precision and Recall, and a higher F1-score 

indicates better classifier performance. 

 

5.3 Analysis of bridge vibration characteristics under 

different temperature changes 

 

From the data presented in Table 3 and Figure 8, it is evident 

that as the temperature difference increases, the maximum 

frequencies of the bridge change significantly. For instance, 

when ΔT = 455℃, the 1st order frequency of the bridge is 

15.236 Hz, and the 2nd order frequency is 15.369 Hz. When 

the temperature difference increases to 562℃, the 1st order 

frequency decreases to 1.562 Hz, and the 2nd order frequency 

decreases to 1.548 Hz. This indicates that the frequencies 

decrease as the temperature load increases. Simultaneously, 

the lower limit of the maximum cross-section area of the 

bridge gradually increases with the temperature load. For 

example, when ΔT = 455℃, the minimum cross-section area 

is 0.0256, which increases to 0.0554 at ΔT = 562℃. This 

suggests that as the temperature load increases, the bridge's 

materials need to concentrate more in the central section to 

ensure structural stability. This phenomenon may result from 

changes in the force distribution under high-temperature 

conditions. To maintain stiffness and load-bearing capacity, 

bridge design emphasizes resistance to bending, stretching, 

and other deformations under temperature loads. 

 

Table 3. Maximum vibration frequencies of the bridge under 

high-temperature load 

 
ΔT 455 512 562 

Maximum cross-sectional area 

lower limit 
0.0256 0.0345 0.0554 

1st Order Frequency (Hz) 15.236 11.235 1.562 

2nd Order Frequency (Hz) 15.369 11.257 1.548 

 

Figure 8 illustrates the cross-section distribution of 

maximum frequencies under different temperature 

differences. It shows that with greater temperature loads, the 

materials of the bridge concentrate more in the middle section. 

This is likely because, under larger temperature differences, 

the central region of the bridge is more susceptible to stress 

changes caused by thermal expansion. Increasing material 
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concentration in this area enhances stiffness and resistance to 

thermal deformation. This optimization design reduces 

vibration frequency fluctuations due to temperature changes, 

improving the accuracy of anomaly detection in vibration 

acceleration. 

 

 
 

Figure 8. Cross-section distribution of maximum vibration 

frequencies under high-temperature load 

 

Table 4. Maximum vibration frequencies of the bridge under 

low-temperature load 

 
ΔT 0 101 214 

Maximum cross-sectional area 

lower limit 
0.0001 0.0042 0.132 

1st Order Frequency (Hz) 72.325 52.326 37.225 

2nd Order Frequency (Hz) 72.315 52.124 38.659 

 

Table 4 lists the vibration frequencies and the minimum 

cross-section area of the bridge under different low-

temperature differences (ΔT). As the temperature difference 

increases, the vibration frequencies of the bridge decrease. For 

instance, when ΔT = 0℃, the 1st order frequency is 72.325 

Hz, and the 2nd order frequency is 72.315 Hz. When the 

temperature difference increases to 214℃, the 1st order 

frequency decreases to 37.225 Hz, and the 2nd order frequency 

decreases to 38.659 Hz. This trend indicates that increasing 

low-temperature loads gradually reduces the vibration 

frequencies of the bridge. This change can be attributed to the 

effect of low temperatures on bridge materials. Low 

temperatures may make materials brittle, altering stiffness and 

elastic modulus, which affects the dynamic characteristics of 

the structure. Additionally, as the temperature difference 

increases, the minimum cross-section area of the bridge 

gradually increases. Specifically, when ΔT = 0℃, the 

minimum cross-section area is 0.0001, which increases to 

0.1321 at ΔT = 214℃. This suggests that to maintain the safety 

and stability of the bridge structure, the design requires more 

materials to concentrate at the ends of the beam under 

increasing low-temperature loads. 

 

 
 

Figure 9. Cross-section distribution of maximum vibration 

frequencies under low-temperature load 

 

Figure 9 shows the cross-section distribution of maximum 

frequencies under different initial temperature differences. 

Under low-temperature loads, the bridge materials primarily 

concentrate at the beam ends. This is likely due to concentrated 

forces at the ends of the bridge in low-temperature 

environments. As the temperature difference increases, 

material distribution in the middle section of the beam 

gradually increases, while material concentration at the ends 

decreases. This indicates that as the temperature further 

decreases, the middle section of the bridge requires more 

materials to maintain structural balance and stiffness, while the 

ends may see reduced material concentration due to increased 

brittleness at low temperatures. 
 

Table 5. Maximum vibration frequencies of the bridge under 

medium thermal load 

 
ΔT 312 401 

1st Order Frequency (Hz) 25.265 22.325 

2nd Order Frequency (Hz) 42.236 22.154 

Maximum cross-sectional area lower limit 0.0326 0.0236 

 

 
 

Figure 10. Cross-sectional area distribution diagram of the 

bridge's maximized vibration frequency under medium 

thermal load 
 

According to the data in Table 5, under medium thermal 

load (ΔT from 312℃ to 401℃), the optimal design solution 

for maximizing the bridge's vibration frequency is a single-

mode solution. Even when the maximum cross-sectional area 

lower limit is reduced, or approaches zero, the system still 

chooses the single-mode optimal solution rather than the 

multi-mode solution. This is different from the situation under 

low and high-temperature conditions. At low and high 

temperatures, due to the changes in the material and structural 

properties of the bridge, a heavy-mode optimal solution is 

more likely to appear. Figure 10 shows the distribution of the 

cross-sectional area for the maximum vibration frequency of 

the bridge under the application of medium-temperature loads. 

The experimental results show that under medium thermal 

load, the temperature variation has a relatively small effect on 

the stiffness of the bridge, so there is no significant multi-mode 

vibration trend in the bridge system. At this point, the beam's 

structure tends to choose a simplified single-mode design to 

achieve frequency maximization. In other words, under 

medium temperature differences, the temperature variation is 

insufficient to induce multi-modal vibration responses in the 

bridge structure. When the temperature difference is within a 

medium range, the force differences at both ends and the 

middle of the bridge are relatively small, and the structure no 

longer needs to rely on multi-mode vibration to adapt to the 

non-uniform stress distribution caused by temperature 

differences. Therefore, the system will choose a more 

simplified single-mode structure, minimizing design 

complexity while still achieving the goal of maximizing 

vibration frequency. 

In combination with the research objectives of this paper, 

especially when constructing the vibration acceleration 

anomaly detection model for bridges under temperature 

variation conditions, the impact of different temperature 

1919



 

ranges on the vibration modes of the bridge must be 

considered: 

(1) In low and high-temperature environments, the bridge's 

vibration frequency and acceleration variations are usually 

more significant and may involve complex multi-mode 

responses. Therefore, the anomaly detection model for 

vibration acceleration should pay more attention to the multi-

modal characteristics of the frequency. 

(2) In an environment with medium temperature 

differences, the bridge's vibration frequency optimization 

tends toward a single mode, and the model should be 

simplified to focus on identifying small changes or anomalies 

caused by temperature through single-mode analysis. 

Therefore, for different temperature load ranges, a 

corresponding vibration acceleration anomaly detection model 

should be designed. For bridges under medium thermal load, 

single-mode vibration analysis may be more effective; while 

at extreme temperatures, more multi-mode features should be 

considered to improve the sensitivity and accuracy of 

detection. 

 

5.4 Bridge vibration acceleration anomaly data detection 

 

Due to the influence of the operating environment and 

equipment status of the bridge structural health monitoring 

system, data anomalies may occur during the data collection 

process, leading to inaccurate bridge structural health 

assessments in the later stages, which may seriously affect 

bridge operation. Therefore, accurate anomaly data detection 

is crucial. In this paper, the Anomaly Transformer algorithm 

is used to detect anomaly data in the bridge structural health 

monitoring acceleration data, with the main anomaly types 

being isolated anomalies and continuous anomalies. 

 

5.4.1 Isolated anomaly detection 

Isolated anomalies, as shown in Figure 11, usually manifest 

as single data points deviating from normal values. This type 

of anomaly is often caused by the complex operating 

environment of data collection equipment, where the sensors 

are affected by environmental factors, leading to inaccurate 

measurements and, thus, data anomalies. In this scenario, the 

Anomaly Transformer can capture the local and global 

correlations of each time point in the time series through the 

self-attention mechanism. When the correlation of a data point 

is significantly lower than that of normal data points, the 

model can effectively identify the point as an isolated 

anomaly. 

 

 
 

Figure 11. Isolated anomaly detection result chart 

 

5.4.2 Continuous anomaly detection 

Continuous anomalies mainly include two types: 

continuous missing value anomalies and continuous data 

pattern anomalies, as shown in Figure 12. These include 

anomalies caused by data loss or damage during transmission 

from the data collection device to the storage system, possibly 

due to network failures, signal interference, etc., leading to 

missing data anomalies. Furthermore, during the data 

collection, if the bridge is in a construction state, ground 

disturbances, frequent movement of mechanical equipment, 

and transportation of materials can cause the bridge structure 

to experience abnormal stress and deformation in a short time. 

This interference is more obvious, especially when the 

construction equipment is close to the bridge or directly affects 

the bridge structure, and it can significantly affect the accuracy 

of monitoring data. In continuous anomaly scenarios, the 

Anomaly Transformer can identify these continuous anomaly 

regions through sequence correlations. Especially for 

continuous missing values, the model can detect abnormal 

areas by the significantly low correlation of adjacent time 

points. 
 

 
(a) Continuous missing value anomaly 

 

 
(b) Continuous data pattern anomaly 

 

Figure 12. Continuous anomaly detection results 
 

Figure 13 shows the confusion matrix for the four models 

on the test set. In the bridge acceleration data anomaly 

detection problem, the motion characteristics of abnormal 

points differ significantly from those of adjacent normal 

points. From the results in Figure 14 and Table 6, it can be 

seen that the RNN model has slightly lower precision and F1-

score compared to other models. Although the RNN model can 

capture the dependencies between time points when handling 

time series data, its recurrent structure makes it prone to 

gradient vanishing or explosion problems when processing 

long sequence data. This limits the model’s ability to capture 

long-term dependencies, especially in the complex bridge 

acceleration data, where its performance does not meet 

expectations. In addition, the LSTM model has slightly higher 

precision than the GRU model, indicating an advantage in 

capturing subtle features in the data. However, its recall and 

F1-score are slightly lower, which may be related to the 

memory unit design of the LSTM. In some cases, LSTM may 

face challenges in memory retention, especially when dealing 

with sparse anomalous points, limiting the model's ability to 

detect anomalies.  
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(a) RNN (b) LSTM 

  
(c) GRU (d) Ours 

 

Figure 13. Confusion matrix for four models on the test set 

 

 
 

Figure 14. Comparison of evaluation metrics for different 

models 

 

Table 6. Performance metrics for different models 

 
Predictive 

Models 
Accuracy Precision Recall 

F1-

Score 

RNN 0.95 0.83 0.85 0.84 

LSTM 0.95 0.85 0.83 0.84 

GRU 0.96 0.85 0.89 0.87 

Ours 0.98 0.94 0.96 0.95 

 

GRU performs well in both short-term and long-term 

dependencies, and in the experiments, its recall rate is higher 

than LSTM's. This indicates that GRU has an advantage in 

detecting anomalies, especially when the anomalies are sparse 

and the dynamic features are complex. While GRU's overall 

performance is similar to LSTM, its simpler structure allows 

it to have better computational efficiency in practical 

applications. The Anomaly Transformer model outperforms in 

accuracy, precision, recall, and F1-score. Its unique 

bidirectional network unit structure quickly adjusts the 

relationship between current and past/future data, effectively 

associating contextual information. The Anomaly 

Transformer model can effectively mine the motion 

characteristics of time series data, avoiding complex function 

relationship estimation, improving prediction accuracy, and 

providing strong support for subsequent anomaly detection 

and judgment problems. 

 

5.5 BiLSTM bridge vibration acceleration anomaly data 

reconstruction 

 

In the anomaly detection task, we have successfully 

identified and located anomalous points using the Anomaly 

Transformer model. Next, in order to ensure the validity and 

availability of the bridge health monitoring system data, we 

need to reconstruct the anomalous data. Through effective 

reconstruction methods, we can restore the integrity and 

continuity of the data, thus improving the reliability of the 

bridge structural health assessment results. 

Since bridge vibration acceleration data has strong 

correlation and dependence on the time dimension, the current 

acceleration value is influenced by both past and future 

acceleration values. It also has complex dynamic patterns, 

such as periodic and trend changes. Therefore, for the anomaly 
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data reconstruction, we use the BiLSTM model, which can 

simultaneously capture the contextual information in both 

directions when processing time series data. By processing the 

data in both forward and backward LSTM networks, BiLSTM 

can better understand the dynamic characteristics of time 

series, thereby improving its ability to reconstruct anomalous 

data. During the reconstruction process, BiLSTM uses its 

bidirectional structure, combining information from the 

current moment and its previous and subsequent moments, to 

precisely reconstruct the anomalous data. This not only 

restores the original trends and patterns of the data but also 

provides more accurate results in the repair of anomalous data. 

 

 
(a) Anomaly reconstruction of data points 

 

 
(b) Anomaly reconstruction of missing data 

 

 
(c) Anomaly reconstruction of data patterns 

 

Figure 15. Anomaly data reconstruction 

 

There are three main types of anomalies in bridge vibration 

acceleration data: isolated data anomalies, continuous missing 

value anomalies, and continuous data pattern anomalies. For 

these three types of anomalous data, this paper uses the 

BiLSTM model to reconstruct the bridge vibration 

acceleration anomaly data. The reconstruction results of 

anomalous data are shown in Figure 15. The experimental 

results show that the BiLSTM model performs well in 

anomaly data reconstruction. It can effectively restore the 

original trends and periodic features of the anomalous data, 

significantly reducing the difference between the 

reconstructed data and the actual observed data. This result 

indicates that BiLSTM can provide accurate and reliable 

reconstruction when handling bridge vibration acceleration 

data with significant time dependencies and complex dynamic 

patterns, significantly enhancing the integrity and reliability of 

the data. 

 

 

6. CONCLUSION 

 

This paper aims to address the limitations in current bridge 

health monitoring systems concerning vibration acceleration 

anomaly detection under temperature variation conditions. By 

analyzing the impact of temperature changes on the bridge's 

vibration characteristics, this study revealed the specific 

mechanisms through which temperature affects vibration 

frequency and mode, finding that temperature changes 

significantly alter the bridge's vibration response. Based on 

this, the paper constructed a bridge vibration acceleration 

dataset that includes temperature factors and combines 

temperature data for feature extraction and analysis, proposing 

an anomaly detection model that adapts to temperature 

changes. The experimental results show that the proposed 

model can effectively handle the effects of temperature 

variations, improving the accuracy and robustness of anomaly 

detection. 

Overall, this research has important theoretical value and 

practical significance. First, the proposed model fills the gap 

in existing studies that have not adequately considered 

temperature variations, providing a new technological 

approach. Second, the constructed dataset provides data 

support for future research and offers a new method for bridge 

health monitoring. However, there are some limitations in this 

study, such as experimental environment constraints and a 

limited dataset size. Future work could further optimize the 

model through field data validation and research on multiple 

types of bridges. Future research directions may focus on field 

data collection and model validation, the application of deep 

learning technologies, and exploration of multi-sensor fusion 

technologies. Additionally, by combining IoT and cloud 

computing technologies, an intelligent bridge health 

monitoring system could be developed for more accurate real-

time monitoring and remote diagnostics. In conclusion, this 

paper provides strong theoretical support and technical 

guidance for bridge health monitoring under temperature 

variation conditions, and future research can further enhance 

the adaptability and practicality of the model. 
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