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Estimating and generating a three-dimensional (3D) model from a single image are 

challenging problems that have gained considerable attention from researchers in different 

fields of computer vision and artificial intelligence. Previously, there has been research work 

on single-angle and multi-view object use for 3D reconstruction. 3D data can be represented 

in many forms like meshes, voxels, and point clouds. This article presents 3D reconstruction 

using standard and state-of-the-art methods. Conventionally, to estimate the 3D many 

systems investigate multi-view images, stereo images, or object scanning with the support 

of additional sensors like Light Detection and Ranging (LiDAR) and depth sensors. The 

proposed semi-neural network system is the blend of neural network and also image 

processing filters and machine learning algorithms to extract features that have been used in 

the network. Three different types of features have been used in this paper that will help to 

estimate the 3D of the object from a single image. These features include semantic 

segmentation, depth of image, and surface normal. Semantic segmentation features have 

been extracted from the segmentation filter that has been exploited for extracting the object 

portion. Similarly, depth features have been used to estimate the object in the z-axis from 

NYUv2 dataset training using SENET-154 architecture. Finally surface normal features 

have been extracted based on estimated depth results using edge detection, and horizontal 

and vertical convolutional filters. Surface normal helps in determining the x, y and, z 

orientations of an object. The final representation of the object model has been in the form 

of a 3D point cloud. The resultant 3D point cloud has made it easy to analyze the model 

quality by points and distance representing intermodal and ground truth. In this article, three 

publicly available benchmark datasets have been used for system evaluation and 

experimental assessment including ShapeNetCore, ModelNet10 and ObjectNet3D datasets. 

The ShapeNetCore has archived an accuracy of 95.41% and chamfer distance of 0.00098, 

the ModelNet10 dataset has achieved an accuracy of 94.74% and chamfer distance of 

0.00132 and finally, the ObjectNet3D dataset has achieved an accuracy of 95.53% and 

chamfer distance 0.00091. The results of many classes of the proposed system are 

outstanding at visualization as compared to standard methods. 
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1. INTRODUCTION

Nowadays, 3D perception has gained more importance in 

the vision domain. It is worth mentioning that the mainstream 

in the field of deep learning includes machine learning tasks, 

object detection, object recognition, object reconstruction, 

mapping of 2D information of an object in 3D, and so on. 

Human intelligence can easily map a 3D model of an object 

using CAD software and 3D development tools using its image. 

Extraction of the 3D model from a single RGB image is one 

of the difficult problems in the field of computer vision as most 

of the 3D information is lost during sampling [1] and the 

colour quantization process [2]. To estimate and reconstruct a 

3D model from a single image, we use different encoders and 

deep-learning convolutional neural networks to get the 

features from the image. Furthermore, these features can be 
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then later used to generate the 3D model in the form of a mesh, 

point cloud and voxel-based image. By using deep learning 

and parallel computing, the process of estimation, rendering 

and calculation of geometry and points are much easier and 

more efficient. The deep generative methods have not only 

done processing so easily on images but also on 3-dimensional 

complex object representation, segmentation [3], 

reconstruction, clustering and compression [4]. There are 

multiple systems for 3D point cloud generation like PSGN [5], 

RealPoint3D [6] and 3D-ReconstNet [7]. Most of these 

systems depend on end-to-end deep learning, as these systems 

require large datasets and a much longer time to train the 

model. Some systems depend on stereo imaging [8, 9] and 

multi-view [10, 11] to generate 3D of an object. Nowadays 

many types of sensors are also available like depth sensors [12, 

13]. Most of the real-world data is available in single RGB 

image form. So, we need systems that are accurate in terms of 

estimation and generation of 3D using a single 2D image. 

Some 3D methods depend on single image archives and have 

good accuracies with end-to-end deep learning but their 

performance may drop when considering a training model 

based which is based on a large dataset upon reviewing the 

literature on image-based 3D reconstruction systems, we 

identified several shortcomings that served as the primary 

focus for our proposed system. Most of the previous systems 

are based on deep learning, and machine learning algorithms 

and the features details are missing. Some researchers worked 

on multi-view images, and depth information of the image to 

generate 3D models. Moreover, most of the work has been 

done by training the model on only a limited dataset and thus 

failed to recognize objects in an unseen environment. 

Furthermore, few studies have been based on generating the 

visible elevation of an object or scene. The proposed system 

has been based on feature extraction, machine learning 

algorithms and image processing techniques [14] that have 

saved the computational cost of neural networks. 

This paper focuses on the structure of objects by converting 

2D images to 3D using graph convolutional networks. The 

proposed system includes three main steps: First the pre-

processing has been done to determine the projection of 3D in 

the form of 2D image [15]. Second, feature extraction for 

segmentation [16], depth [17] and surface normal [18] has 

been applied. Finally, extracted features have been used in the 

deep neural network to generate the 3D point cloud. The 3D 

model of 2D images has been visualized as: 

1) The 3D model has been represented in meshes that

contain the rich representations of object vertices and edges of 

a 2D model that result in the highly efficient mapping of the 

2D image to the 3D model. 

2) Voxels are one of the high geometric resolution 3D

representations of 3D models [19]. The pixels have been taken 

by CMOS as a standard unit of image [20], and have been 

converted to dpi for printing purposes. Similarly, the voxel-

based model has been converted to a point-based model for 

analysis. 

3) Point Cloud is mostly saved in the standard Point

Cloud file format. These files have information about the 

points and locations in sequence [21, 22]. It is a better 

representation than meshes and voxels because these points 

can easily be compared and we can also find the distance from 

one point to another to measure the quality and analysis of our 

model. 

4) To test our method, many evaluations have been

conducted. More specifically, simple distance and loss 

functions are mostly used in 3D-generated model evaluation. 

These distance and loss functions include chamfer distance 

(CD) [23] earth mover’s distance (EMD) [24] and intersection

over union (IoU) [25]. The quality of the 3D generated model

has been measured concerning the ground truth, number of

points in the point cloud, vertices and edges in mesh and

number of voxels in the voxel-based 3D model. The proposed

system has been tested on three state-of-the-art datasets:

ShapeNetCore [26], Pascal3D [27] and ObjectNet3D [28].

The rest of the paper has been organized as follows. Section 

II presents a literature review of the existing methods. Section 

III discusses the proposed system of 3D point cloud generation. 

Section IV represents the experimental structure and analysis 

of three State-of-the-art datasets as compared to existing 

systems. Section V presents experimental settings and results. 

Finally, Section VI discuss the conclusion and 

recommendation for future work. 

2. RELATED WORK

Many researchers have extensively worked on 3D 

reconstruction using a single image. Different methods mostly 

consisted of Deep Neural Networks (DNN), Encoder and 

Decoder of features, Graph Convolutional Networks (GCN) 

and semi-supervised methods to construct 3D models easily 

and efficiently. 

2.1 Generation of 3D models using deep neural networks 

DNN for 3D reconstruction has been widely deployed in 

extensive research. Hu et al. [29] used Principal Component 

Analysis (PCA) that used 3D point clouds to create its feature 

vector that helped in the reconstruction of point clouds of an 

object with its image. Similarly, the Depth feature is extracted 

using a 3D mesh with its image by Liu et al. [30]. Faster 

region-based convolutional neural networks (RCNN) by Ren 

et al. [31] used multi-scale feature extraction using an image 

pyramid for feature extraction. According to Han et al. [32] 

used deep learning for the generation of point clouds. These 

methods are known as variational auto-encoders (VAEs), 

adversarial auto-encoders (AAEs) and generative adversarial 

networks (GANs). Yu and Lee [33], Gadelha et al. [34] used 

VAEs for the generation of a 3D point cloud in their research. 

They used VGG-11 [35] and MRT-Encoding techniques. For 

the good compact representation, some AAEs are also used as 

discussed in study by Zamorski et al. [4]. 

2.2 3D Reconstruction using graph convolutional networks 

With the development of parallel processing like DNN, 

GCN and Graphic Processing Units (GPUs), it’s possible to 

work on 3D reconstruction-related work. GCN system is based 

on a Convolutional Neural Network (CNN). Yang et al. [36] 

present the mesh model of an object as composed of a set of 

edges and vertices, which resembles nodes and connections 

represented in a graph. So, mesh models can be generated 

using MGCN. Similarly, for the generation of other forms of 

3D like point cloud and voxel-based 3D. 

Zhang et al. [37] have proposed a method named scene 

graph convolutional networks that is very helpful in 

understanding the scene in 3D using a single image. It has 3 

main nodes that help determine the layout, a bound box and 

object node that categories different objects in the scene and a 
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relationship node in distances and 2D appearance of the object. 

A method using Nodeshuffle, based on PixelShuffle and image 

super-resolution techniques, has been employed to intercept 

multiscale features in the upsampling layer of the multiscale 

graph convolution layer [38, 39]. 

3. PROPOSED 3D GEOMETRIC GENERATION

The proposed system reconstructs 3D point clouds and 3D 

voxel-based models using a single image. Primarily, an image 

has been captured using a digital camera. The detected image 

has been then converted to an array of pixels using 

quantization and sampling. Each pixel consists of 3 channels 

(Red Green Blue) RGB. Most of the information has been lost 

in the process of digitizing the 3D data into 2D images. Our 

main goal is to estimate the lost information and reconstruct a 

3D model of the object represented in the image. Three 

different features have been extracted from the image that 

helped in the estimation of the 3D model. These features have 

been categorized as depth, surface normal and intrinsic. 

Features that helped in the generation of different forms of 3D. 

Figure 1 shows the architecture of a 2D image to 3D point 

cloud generating system. Our proposed system has been based 

on feature extraction using image processing filters and CNN. 

Figure 1. Flow architecture of the proposed 3D generating system 

3.1 Data preprocessing and rendering 2D image 

The proposed system has taken 3D information for training 

purposes to test the final result with the initial ground truth. 

Next, a 2D image has been rendered using 2D projection from 

the 3D models of data. According to Dhome et al. [40] using 

perspective view determines the projection of 3D in the form 

of 2D image. In this process, depth, orientation, and z-axis 

information are lost from 3D and as a result, get the 2D image 

we get from the RGB camera sensor. It is the perfect 

simulation of a camera. Using the 2D projection method, we 

already have a ground truth for the end to analyze the final 
generated 3d using our proposed system. The 2D projection 

from 3D space is shown in Figure 2. 

𝑙𝑖𝑛𝑒(𝑎, 𝑏) = 𝐵𝑖𝑏 + {𝐶𝑖𝑐 ∗ (𝐴𝑖𝑎 − 𝐵𝑖𝑏)} (1) 

where, the line(a,b) is used to calculate the intersection point 

of the line between points a and b. a is the initial point of 3D 

space from there we start calculating on the other end of the 

2D projection side we use point b. Ai, Bi and Ci are the 

components of the line. 

(𝑒, 𝑓, 𝑔) = (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) (2) 

(𝑢, 𝑣, 256) = (𝑥𝑐, 𝑦𝑐, 256) (3) 

where, (e, f, g) points on the line where c exists. While, u=cx, 

v=cy are the new projection points if we look from point 

z=256/c. We can easily get the value of u and v using the value 

of c. Figure 3 shows the result of 2D projection. 

Figure 2. Graphical visualization of objects form 3D space to 

2D using projection mechanism 
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a b c 

Figure 3. Rendered images results of 2D projection from 

objects source dataset 

3.2 Extraction of semantic segmentation 

The proposed method has been used for the extraction of 

semantic segmentation. In this proposed research we have 

applied scaling, normalization, mean, Standard deviation, 

transposition and a combination of many other mathematical 

functions to extract the semantic segmentation of the object 

from the image. Using this method first image has been 

cropped to get the square-shaped image. Second, scale the 

image intensity values to 0.0 to 0.1. Third, normalized the 

image using the mean and standard deviation of the image. 

Fourth, the transpose of the image was calculated. Further, the 

image has been segmented based on its intensity values. After 

segmentation get the smoother output according to the object. 

Argmax has been used to get the max value and SoftMax was 

used to further scale the value. The output result has been the 

segmented portion of the object and its background. That has 

been used in creating a mask for removing background and 

unwanted portions. Figure 4 shows the semantic segmentation 

results of experimented data. 

a b c 

Figure 4. Semantic segmentation results of object colour 

partitioning in 2D images 

𝑉𝑒𝑐_𝑇(𝐴) = [𝑎𝑖𝑗]
𝑇
, 𝐴 ∈ 𝑅𝑛𝑥𝑚 (4) 

Resized the original image as our algorithm requirement. 

Then change the scale of intensity in the 0 to 1 range. Then 

some normalization using mean and standard deviation. Later, 

the shape of that matrix was adjusted by using, finding maxima 

and some activation functions. For depth estimation, the 

Squeeze-and-Excitation Network (SENET) [41] was used for 

training and the model was then used for getting the depth of 

the image using its RGB inputs (See Algorithm (1)). 

Algorithm 1: Semantic Segmentation using Torch library 

and normalization 
Input: Original_Image = RGB_Image, 

Output: S_Seg_Img  = Semantic Segmentation Image 

     Resize: [512×512] Image ← Resize(Image) 

     Scale: [0.0 to 1.0]  Image  ← Image.float()/255 

    Normalize:  

    Mean = Mean[Mean_Value_of_image] 

    SD = list[SD_Value_of_image] 

Image←T.Normalize((Mean),(SD))(image) 

    Foreach i in Image 

 i←(i-min(i))/(max(i)-min(i)) 

   Add batch size 

      image = Transpose of image to change the sequence 

      image.shape 

Shape adjustment and relative scaling 

     argmax: argmax f(x) where f(x)>= in all subsets of X 

     softmax: softmax [0 to 1] 

Depth_Map_Module: 

Dataset: NYU v2 (Depth Dataset), 

Depth Model: After training using NYU v2(Depth Dataset) 

CNN Architecture: SENet-154 

Module Forward: 

avg pooling: def avgpool(Hfeature, Wfeature, f, s, Ch): 

Hfeature-f+1)/s*(Wfeature-f+1)/s*Ch 

Full convolution:def full_conv(x,kernal): 

{H(x)= f(x)* g(x) 

Relu: Relu:max(0,x): 

return [0 to max] 

Full convolution repeat 

Sigmoid: def Sigmoid(x): 

return:e**x/(e**x+1) 

return S_Seg_Image, Depth_Image 

3.3 Extracting depth using SENET-154 

This paper utilized the proposed SENET-154 model [42] 

SENET architecture consists of 3 major blocks. The first block 

squeezes a channel descriptor for global spatial information. 

To achieve this, global average pooling has been used that 

generate channel-wise statistics. The descriptor value has been 

calculated using shrinking of spatial dimension information. 

The second block named, excitation which was used for fully 

captured channel-wise dependencies. It is also called adaptive 

recalibration, this functionality has two main criteria: one, the 

function must be flexible (means capable of learning a 

nonlinear interaction between channels) and next, it must learn 

non-mutually exclusive multi-channel relationships. Block 

three, apply AlexNet [43] and VGGNet [44]. There are some 

more usable variants. NYUv2 depth dataset [45] has been used 

that consists of a single back-and-forth sweep. The trajectory 

of this dataset represents the scanned motion agents for better 

knowledge of the scene. In the current proposed approach, 

SENet-154 has been used for the training of images with their 

respective depth. By using this network, we can compute the 

depth of an object from its image as shown in Figure 5. We 

further use the depth feature for the estimation of surface 

normal and also used in neural networks for 3D point cloud 

generation. 

𝑋𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐹𝑠𝑒𝑞 = (∑∑𝑓(𝑖, 𝑗))/(𝐻X𝑊

𝑊

𝑗

)

𝐻

𝑖

 (5) 

where, Fseq is the squeeze function on image f with W rows and 

H columns. This descriptor shrinks the spatial domain data 

into a single channel that is used by the next layer. 

𝐹𝑒𝑥𝑐 = z𝜎(𝑔(𝑥𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ,𝑊))

= 𝜎(𝑊𝑖𝛿(𝑥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑊𝑖−1))
(6) 

where, Fexc is the excitation layer function. We apply the 

sigmoid σ function on the result of δ function on xchannel we got 

from the squeeze layer. 

2938



a b c 

Figure 5. Using SENET-154 results of depth 

3.4 Calculating surface normal 

Semantic environment understanding is one of the toughest 

parts of using images. According to Klasing et al. [46], robust 

object recognition in 3D is the very important part. 3D object 

recognition algorithms need geometric segmentation and 

extraction. So, surface normal vectors turn out to be one of the 

most fundamental features. Plane SVE surface normal 

estimator [47] is one of the simplest ways of estimation point 

p=[x,y,z] T in camera coordinates in the local plane. In the 

current proposed system simple and fast method has been used 

that was based on image filters to compute surface normal 

from RGB and calculated depth of image. The following 

method has 3 main filters. First, horizontal gradient filter. 

Second vertical gradient filter. Both above filters get the 

horizontal and vertical edges of an object. Then lastly, the 

mean/ median filter in our case, the Gaussian filter has been 

used with 3×3 kernel size and stride rate of 1. This method 

highlighted the surface orientation feature from images. Then 

these features have been used in 3D estimation. The results of 

surface normal are shown in Figure 6. 

a b c 

Figure 6. Surface normal results on selected classes a) bench, 

b) chair and c) airplane

𝐺𝑥 = [[1,1,1], [0,0,0], [−1, −1,−1]]𝑇∑𝑥 (7) 

𝐺𝑦 = [[[−1,0,1], [−1,0,1], [−1,0,1]]]𝑇∑𝑦 (8) 

𝑅𝑀𝑆 = √𝐺𝑥 + 𝐺𝑦 (9) 

where, Gx is the horizontal gradient filter and Gy is the vertical 

gradient filter. Using Root Mean Square (RMS) value to 

combine them. 

The final result was obtained after the RMS applied the blur 

filter using mean or Gaussian filter, and a slight difference was 

obtained using the blur filter. In our proposed method we used 

Gaussian filter window size 3×3. 

3.5 Graph-based fusion 

Represent the relationships between features from different 

modalities as a graph, where nodes represent features and 

edges represent relationships. Applied graph convolutional 

networks (GCNs) to perform fusion by aggregating 

information from neighbouring nodes in the graph. 

𝐻𝑙+1 = 𝜎(𝐷−1/2𝐴𝐷−1/2𝐻𝑙𝑊𝑙) (10) 

where, 

𝐻𝑙  is the feature matrix at the 𝑙-th layer, where each row

corresponds to the features of a node in the graph. 𝑊𝑙 is the

weight matrix for the 𝑙-th layer. 

𝐴 is the adjacency matrix of the graph, which represents the 

relationships between nodes. It may be normalized, such as by 

row-wise normalization to represent the strength of 

connections. 

𝐷 is the degree matrix of the graph, a diagonal matrix where 

𝐷𝑖𝑖  is the sum of the elements of row 𝑖 of 𝐴.

𝜎 is the activation function, sigmoid. 

3.6 3D point cloud generation using GCN and 3D bounding 

box computation 

Point cloud generation is one of the most vital modules of 

our proposed method, which is based on GCN to reconstruct a 

3D point cloud. The point cloud is the representation of 3D 

using the grouping of points within 3D space, each point in the 

point cloud is just like a node in a graph so it can be 

reconstructed using a graphical convolutional network [48, 49]. 

In this step, a 3D shape has been constructed using GCN with 

the help of convolutional layers on the same result refined 

form of 3D generated, the computation depends on number of 

points required in each 3D point cloud. If each point of point 

cloud is connected with its neighboring points. These 

connections between points will represent edges and it will 

form a 3D mesh. Also point cloud is easy for analyzing the 3D 

object in space. Because, when comparing points of the 

predicted 3D object point cloud with respect to the ground 

truth of object model points. 

𝐺(𝑋) = 𝑓(𝑉𝑛 , 𝐸𝑛) (11) 

where, G(X) is the Graph of X which consists of vertices V and 

Edges E. 

𝐻𝑖 = 𝐹𝑖 ∗ 𝑁 (12) 

where, Hi is the hidden layers. Fi represents a number of 

features and N is the number of features in each hidden layer. 

𝐿𝑖 = 𝑓(𝐿𝑖 − 1, 𝑋) (13) 

where, Li is the number of layers in network on a specific input 

matrix X. On initialisation L0 is the initial input matrix X0. 

Algorithm 2: GCN and point cloud 

Input: Depth, SurfaceNormal. 

Output: 3d_Point_Cloud =.pcd file 

Training Dataset: ShapeNet, 

3D_Point_Cloud_Model:Function 

GCN_3D_PointCloud(dep [], SN[], no_of_.points) 

   {  x=64;n=0 

      While: exit condition n>4 

      { 

 Convolve2D(dep[3*3],x) 

 Convolve2D(dep[3*3],x) 

 If: x<128 

     Convolve2D(SN[3*3],x) 

 Pooling(2*2) 
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 If: x<512 

 x=x*2 

 n++} 

   } 

CNN Architecture: GCN_3D_PointCloud (depth, 

Surface_Normals, no_of_.points) 

return 3D_PointCloud 

According to Shu et al. [50], 3D point cloud is generated 

using a generative adversarial network (GAN) known as tree-

GAN. Based on Tree GCN that performs 3D graph 

convolutions in a tree the information has been boosted using 

this method. The tree has n number of branches that use graph 

convolution at each layer and pass to the next layer. The tree 

expends from set {z} to {z, p1, p2, …pn-1}. Figure 7 shows 

the visual representation of the deep learning method based on 

GCN that has been used for generating a 3D point cloud. 

Figure 7. Visual representation of 2D projection from 3D 

space 

Figure 8. Using GCN to generate 3D point cloud of the class 

bench, chair and airplane 

GCN architecture has been used to generate 3D models in 

the form of the point cloud. Each model has been rendered 

using 2000 points to create a refined 3D point cloud. Diverse 

numbers of points have been used to generate a 3D model. The 

quality of the reconstructed model depends on the quantity of 

points. So, when we increase the number of points it will 

increase the scalability of the model but needs more time to 

render and also takes more memory. The created point cloud 

has been then further useful in the development of 3D games 

and VR/AR. Figure 8 shows 3D point clout generated using 

depth and surface normal features that have been calculated 

using Extracting Depth using SENET-154 and Calculating 

Surface Normal. 

4. EXPERIMENTAL SETTINGS AND ANALYSIS

All experiments have been performed on google-

collaborator equipped with Intel Xeon 2.3GHz processing 

power and 12GB RAM and Nvidia K80/T4 GPU and a laptop 

with the following specifications Intel Core i5-4th Gen 2.70Hz 

processing power, 12GB RAM, x64 Bit Windows 10 and 

PyCharm 2020 tool. The experiment has been divided into 2 

sections. In the first section, the 3D point cloud of object 

generation performance has been evaluated. The accuracy of 

the proposed method has been evaluated using a confusion 

matrix and precision, sensitivity, specificity and F1 scores 

with state-of-the-art (SOTA) methods. In the second section, a 

distance matrix has been used to analyse the 3D model. True 

relative distance has been measured using Chamfer distance 

and Euclidean distance. These distances measure the 

orientation of points in the point cloud according to ground 

truth. 

4.1 Datasets description 

The three datasets that have been used for experimentation 

including: The ShapeNetCore dataset, ModelNet-10 dataset 

and ObjectNet3D dataset. Details of each dataset given has 

been depicted in following subsection. 

4.1.1 Shapenetcore dataset 

In the benchmark dataset named ShapeNetCore. It is the 

subset of full dataset ShapeNet [51]. It has 55 common object 

categories that consist of 51300 unique models of 3D objects. 

The 7 categories have been used for our research purpose 

including: airplane, bed, bench, car, chair, sofa and table. Few 

categories of ShapeNetCore dataset have been mentioned. In 

Figure 9, the models are created using CAD software and 

arranged using WordNet dataset [52]. 

Figure 9. ShapeNetCore dataset CAD sample images of 

selected classes 

4.1.2 ModelNet-10 dataset 

Figure 10. Pascal3D dataset CAD sample images of selected 

classes 
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ModelNet-10 [26] has been composed of 3D CAD models 

of inhouse objects. ModelNet-10 includes 10 classes: bathtub, 

bed, chair, desk, dresser, monitor, night stand, sofa, table and 

toilet. Some samples from the ModelNet-10 dataset are shown 

in Figure 10. This dataset has been compiled from the 

ShapeNet dataset. 

4.1.3 ObjectNet3D dataset 

The ObjectNet3D [28] dataset consists of 100 categories, 

90,127 images and in these images 201,888 objects and 44,147 

3D shapes. We selected 10 classes for testing the following 

objects: plane, bed, car, chair, dining table, sofa, and, rifle. The 

reason for using this dataset is all 3D shapes have been aligned 

concerning their 2D images. Figure 11 depicts a few classes 

from the ObjectNet3D dataset. Each 3D CAD model has been 

aligned with its 2D image very useful for 3D pose recognition 

and estimating the 3D shape of object retrieval from the image. 

Figure 11. Illustration of ObjectNet3D models dataset 

5. PERFORMANCE EVALUATION

The performance of our 3D point cloud generation system 

has been evaluated using the quality of the model having the 

number of points in the point cloud, chamfer distance (CD) 

and earth mover’s distance (EMD) over ShapeNetCore, 

Pascal3D and ObjectNet3D datasets. 

Table 1. Chamfer distance, edge loss, normal loss and 

Laplacian loss on ShapeNet 

Objects 
Chamfer 

Distance 

Edge 

Loss 

Normal 

Loss 

Laplacian 

Loss 

Airplane 0.0006 0.0033 0.0358 0.0051 

Bed 0.0014 0.0039 0.0149 0.0037 

Bench 0.0006 0.0022 0.0156 0.0031 

Car 0.0009 0.0021 0.0084 0.0023 

Chair 0.0009 0.0025 0.0158 0.0034 

Sofa 0.0018 0.0039 0.0163 0.0043 

Table 0.0007 0.0035 0.185 0.0038 

Mean 0.00098 0.00305 0.041686 0.003671 

The numerical experimentation of 3D reconstruction and 

four loss functions has been calculated on the Benchmark 

dataset for result analysis. First, chamfer distance showed the 

orientation and directional loss using [23]. Second, edge loss 

has been computed using the conversion of mesh edge length 

regularization loss average. Third, normal loss has been 

computed using consistency between each pair of neighbours 

and fourth Laplacian loss has been calculated using difference 

in each batch using Laplacian smoothing. Table 1 represents 

the compiled result of the final loss after 2000 iterations. Each 

object's distance has been calculated from a 3D ellipsoidal 

point cloud with 2048 points on the ShapeNet Dataset. 

Similarly, Table 2 depicts the results on ModelNet and Table 

3 on the ObjectNet3D dataset. 

Table 2. Chamfer distance, edge loss, normal loss and 

Laplacian loss on ModelNet10 

Objects 
Chamfer 

Distance 

Edge 

Loss 

Normal 

Loss 

Laplacian 

Loss 

Bathtub 0.0022 0.0033 0.0282 0.0051 

Bed 0.0005 0.0024 0.0083 0.0022 

Chair 0.0009 0.0037 0.0325 0.0061 

Desk 0.0008 0.0032 0.0207 0.0044 

Dresser 0.0018 0.0039 0.0162 0.0045 

Monitor 0.0009 0.0022 0.0168 0.0033 

Night_Stand 0.0009 0.003 0.0147 0.0032 

Sofa 0.0008 0.0023 0.014 0.003 

Table 0.0009 0.0037 0.0172 0.0047 

Toilet 0.0035 0.00566 0.0155 0.0055 

Mean 0.00132 0.00333 0.01841 0.0042 

Table 3. Chamfer distance, edge loss, normal loss and 

Laplacian loss on ObjectNet3D 

Objects 
Chamfer 

Distance 

Edge 

Loss 

Normal 

Loss 

Laplacian 

 Loss 

Bed 0.0016 0.0037 0.0194 0.0042 

Car 0.0005 0.0019 0.011 0.0023 

Chair 0.0006 0.0024 0.016 0.0034 

Dining 

Table 
0.0008 0.0047 0.0205 0.0052 

Plane 0.0006 0.0027 0.0382 0.0048 

Rifle 0.0003 0.0014 0.008 0.0016 

Sofa 0.0020 0.0043 0.0209 0.0050 

Mean 0.00091 0.00301 0.01914 0.00378 

Table 4. Accuracy, precision, recall and F1-Score on 

ShapeNet 

Objects Accuracy (%) Precision Recall F1-Score 

Airplane 95.208 0.337 0.814 0.477 

Bed 94.234 0.977 0.956 0.967 

Bench 96.686 0.587 0.784 0.671 

Car 96.686 0.395 0.683 0.500 

Chair 96.074 0.767 0.936 0.843 

Sofa 93.722 0.855 0.831 0.857 

Table 95.264 0.992 0.814 0.894 

Mean 95.411 0.701 0.831 0.744 

Table 5. Accuracy, precision, recall and F1-Score on 

ModelNet10 

Objects Accuracy (%) Precision Recall F1-Score 

Bathtub 93.783 0.969 0.9626 0.966 

Bed 96.794 0.909 0.906 0.907 

Chair 94.415 0.636 0.935 0.757 

Desk 95.298 0.794 0.933 0.857 

Dresser 93.701 0.326 0.511 0.398 

Monitor 96.409 0.782 0.661 0.716 

Night_Stand 95.585 0.919 0.732 0.815 

Sofa 96.397 0.855 0.809 0.831 

Table 94.733 0.770 0.552 0.643 

Toilet 90.268 0.481 0.614 0.540 

Mean 94.738 0.744 0.761 0.743 
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Tables 4-6 present the accuracy, precision, recall and F1- 

score on different classes of datasets. For accuracy, precision, 

recall and F1-Score point-by-point difference in the local 

points has been calculated and compared the predicted model 

with its ground truth model. Also, distance from the ground 

truth has been computed. Then on the basis of these distance 

values accuracy, precision, recall and F1-Score values have 

been computed. Accuracy has been measured using the 

difference between predicted points and ground truth points. 

Precision, and recall values has shown the distance from 

ground truth to predict. F1-Score has shown the harmonic 

mean of precision and recall values. 

Table 6. Accuracy, precision, recall and F1-Score on 

ObjectNet3D 

Objects Accuracy (%) Precision Recall F1-Score 

Bed 94.155 0.813 0.905 0.856 

Car 97.251 0.801 0.823 0.856 

Chair 96.533 0.227 0.8172 0.356 

Dining Table 93.759 0.860 0.677 0.758 

Plane 95.897 0.397 0.704 0.508 

Rifle 98.045 0.718 0.652 0.683 

Sofa 93.063 0.818 0.621 0.706 

Mean 95.529 0.662 0.743 0.675 

Figure 12. EMD graph of ShapeNet dataset 

Figure 13. EMD graph ModelNet10 dataset 

Figure 12 shows the EMD value graph of the ShapeNet 

dataset. The mean value is 34.32 for the selected sample 

classes. On our test results. The ground truth and predicted 3D 

model orientation have shown different results accordingly. 

EMD depends on the orientation of a 3D object because it is 

the distance between predicted and actual probability 

distribution over a region. To compute the EMD value. The 

methods contain Wasserstein distance [53] also known as sink 

horn distance is calculated from the 3D tensor of the predicted 

point-cloud and ground-truth point-cloud. 

EMD has been evaluated on the ModelNet10 dataset as 

shown in Figure 13. The average value is 5.70 has been 

achieved as compared to the ShapeNet and ObjectNet datasets 

average value is very different because this dataset has been 

aligned with the predicted model. 

The EMD graph of ObjectNet3D is shown in Figure 14. The 

ObjectNet3D has achieved close results to the ShapeNet 

dataset. There is another reason the point-cloud EMD value is 

much greater when the whole point cloud is inverted it shows 

a combined difference of all the points. 

Figure 14. EMD graph of ObjectNet3D dataset 

Two approaches have been used to compare the 

performance of our proposed system. These are compared 

using CD and EMD. We compare our method with reported 

state-of-the-art 3D object generation networks PSGN [5], 

RealPoint3D [6] and 3D-ReconstNet [7]. For evaluation five 

categories of single images are selected: airplane, bench, car, 

chair and sofa. To make this comparison fairer our proposed 

model has been trained on 1024 points because RealPoint3D, 

PSGN and 3D-ReconstNet CD values have been represented 

with a similar number of points. 

Figure 15. Results of point cloud with 83, 123 and 163 

respectively 

The difference in 3D visualization quality depends on a 

number of points in the 3D point cloud Figure 7 shows the 

representation of some classes with 83, 123 and 163 

respectively. As we increase the number of points in our 

models it takes more time to render but the quality is better as 
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compared to a smaller number of points. The quality also 

depends on less distance between the points. Our system 

constructs 3D according to a required number of points. As we 

see in Figure 15 the quality of the point cloud increases with 

the number of points in the model. The quality of the point 

cloud increase with a number of points but it takes more 

computational time and computation power to reconstruct and 

render the final model. 

Table 7 contrasts many 3D object reconstruction techniques 

for a range of object types, including airplanes, benches, cars, 

chairs, and sofas. Reconstruction mistakes are represented by 

the numbers in the table; lower values indicate greater 

performance when recreating 3D objects from raw data. 

To visualize the comparison between ground truth and the 

predicted model. Figure 16 represents the detailed view of 

some classes from the selected dataset. 

Table 7. CD scores of different methods in our proposed system achieved lower CD in all compared classes (the smallest number 

represents better performance) 

Object RealPoint3D [6] PSGN [5] 3D-ReconstNet [7] Ours (ShapeNetCore) Ours (ModelNet10) Ours (ObjectNet3D) 

Airplane 0.00079 0.00100 0.0242 0.0006 -- 0.0009 

Bench 0.00211 0.00251 0.0357 0.0009 -- -- 

Car 0.00126 0.00128 0.0359 0.0014 -- 0.0008 

Chair 0.00213 0.00238 0.0441 0.0013 0.0010 0.0007 

Sofa 0.00195 0.00220 0.0614 0.0027 0.0012 0.0028 

Figure 16. Visual comparison between ground truth and 

predicted model 

Different types of standards and loss functions for the 

evaluation of 3D models with their ground truth have been 

used in past. These functions include chamfer distance (CD) 

[24, 54] and EMD [55] that calculate the overall performance 

of the 3D point cloud model. 

𝐶𝐷(𝑀1, 𝑀2) =
1

|𝑀1|
∑||𝑥 − 𝑦||

2

𝑀1

𝑛=1

+
1

|𝑀2|
∑ ||𝑥 − 𝑦||2

𝑀2

𝑛=1

(14) 

where, M1 is the generated model and M2 is the ground truth 

model. M1 and M2 are ⊆ℝ3. 

6. CONCLUSIONS AND FUTURE WORK

In this paper, the simplest approach has been used proposed 

and validated to extract features that further help in the 

generation of the 3D point cloud. Some features like depth 

have been estimated using the deep neural network method. 

When creating an image from a real scene many types of 

features for 3D information are lost like depth, and view from 

different angles. Once we got the depth. Furthermore, filters 

are applied to compute the surface normal. Then all these 

features were used in the GCN-based network to estimate the 

3D and we got the result of a 3D point cloud in the form of 

object point clouds are one of the finest representations of 3D 

models for the purpose of analysis. One significant drawback 

of the current 3D point cloud network is its limited 

performance in scenarios involving occlusions and low-

quality images. Occlusions occur when objects in the scene 

partially or completely block the view of other objects, 

resulting in missing or obscured information in the input 

images. Similarly, low-quality images lack sufficient detail or 

clarity, often due to factors such as low resolution, noise, or 

blurriness, making it challenging for algorithms to extract 

accurate depth and geometric information. 

In future work, we will work on human face 3D 

reconstruction and human body pose estimation and 3D 

reconstruction. Also, optimization of 3D models using 

imaging datasets that improve the model alignment and shape 

detailing. 
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NOMENCLATURE 

LiDAR Light Detection and Ranging 

VAEs Variational Auto Encoders 

DNN Deep Neural Networks 

GCN Graph Convolutional Networks 

GPUs Graphic Processing Units 

RMS Root Mean Square 

SENET Squeeze-and-Excitation Network 

CD Chamfer Distance 

EMD Earth Mover’s Distance 
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